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Abstract
To develop and validate a prediction model for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) 
using a temporal unsupervised feature engineering approach, demonstrating improved precision over standard features. 488 
consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, 
while 20% were set aside for validation testing. Baseline information and standard grading scales were evaluated: age, sex, 
Hunt Hess grade, modified Fisher Scale (mFS), and Glasgow Coma Scale (GCS). An unsupervised approach applying ran-
dom kernels was used to extract features from physiological time series (systolic and diastolic blood pressure, heart rate, 
respiratory rate, and oxygen saturation). Classifiers (Partial Least Squares, linear and kernel Support Vector Machines) were 
trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the 
best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.58. Combined 
demographics and grading scales: AUC 0.60. Random kernel derived physiologic features: AUC 0.74. Combined baseline 
and physiologic features with redundant feature reduction: AUC 0.77. Current DCI prediction tools rely on admission imaging 
and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach 
for high-frequency physiologic time series data, we demonstrated that our models achieve higher classification accuracy.
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1 Introduction

The intensive care unit (ICU), and the Neurologic ICU 
(NICU) in particular, collects a myriad of data about their 
patients. Some are physiologic, and some are clinical. In 
addition, time is of the essence to detect adverse events that 
arise as secondary complications. In this paper, we focus 

on patients with subarachnoid hemorrhage (SAH), one of 
the most common disease entities treated in the NICU [1, 
2]. Our interest is in predicting the secondary complication 
of delayed cerebral ischemia (DCI) from vasospasm (VSP).

SAH is a devastating illness and a major public health 
burden, estimated as 14.5 per 100,000 persons in the United 
States alone [3, 4]. Poor outcomes occur after survival from 
the initial aneurysm rupture with 15% mortality and 58% 
functional disability; of which 26% have persistent depend-
ence [5]. Additionally, as many as 20% of patients have 
global cognitive impairment contributing to poor functional 
status [6]. Thereby, SAH is associated with a substantial 
burden on health care resources, most of which are related 
to long-term care for functional and cognitive disability [7]. 
Much of the resulting functional and cognitive disability is 
due to DCI from VSP [7–11]. VSP refers to the narrowing 
of cerebral blood vessels triggered after a ruptured aneu-
rysm due to the unusual presence of blood surrounding the 
vessel. It will occur in 30% of SAH patients [12, 13] (up to 
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54% for SAH patients in coma [14]). In its extreme, severe 
VSP precludes blood flow to brain tissue, resulting in stroke. 
DCI is defined as the development of new focal neurological 
signs or decrease of ≥ 2 points on the Glasgow Coma Scale 
(GCS), lasting for > 1 h, or the appearance of new infarc-
tions on CT or MRI [15, 16]. The underlying pathophysiol-
ogy is VSP, and other causes are thus excluded.

For a syndrome with subtle symptoms and time sensitiv-
ity, it is helpful to be accurate in prediction so clinicians can 
remain vigilant for detection. Clinicians use a static instru-
ment called the Modified Fisher Scale (mFS) to predict like-
lihood of DCI, based on the volume and pattern of blood on 
the initial brain computed tomography scan (CT) [17–19]. 
Resource planning and monitoring intensity are scripted 
around this prediction. Prevention, detection, and manage-
ment of secondary complications generate a large health care 
burden for SAH patients [20, 21]. For the higher risk SAH 
patients, the first 10–14 days are occupied by efforts to detect 
subtle examination changes that suggest VSP (highest risk: 
post-bleed days 4–12) [22], and arrange urgent interventions 
to prevent permanent injury. The only noninvasive tool sup-
ported by guidelines to potentially identify asymptomatic 
VSP is the transcranial Doppler (TCD), which can have poor 
sensitivity and negative predictive values, and is subject to 
technician availability and poor interrater reliability [23–29]. 
Asymptomatic VSP left unchecked may progress to symp-
tomatic VSP, which is dependent on the consciousness of 
the patient and quality and availability of expertise in the 
complex and diurnal environment of the NICU. Discharg-
ing patients from the ICU at low risk for DCI can result in 
significant cost savings [30].

Existing predictive models of DCI and VSP after spon-
taneous SAH are non-dynamic and while they may help 
risk-stratify patients, they can lack accuracy and precision 
when applied to individuals. The initial head CT assess-
ment of blood thickness and distribution has spawned 3 
grading scales to assess the likelihood of the development 
of DCI [19], angiographic VSP [18], or symptomatic VSP 
[31]. DCI is thought to be a more meaningful outcome than 
symptomatic VSP, especially in patients with severe SAH 
whose neurologic exam may be limited thus allowing for 
deterioration to go unrecognized. Such grading scales are 
performed on static assessments of radiology at admission 
and are associated with differential odds ratios of outcome 
[19]. They are not precise predictors of DCI for individual 
patients. Efforts have been made to improve this early pre-
diction without additional monitoring with moderate results, 
by combining risk scores [32], incorporating baseline fea-
tures such as clinical condition and age [33], or assessment 
of autoregulation [34]. Few efforts have explored time series 
physiological data for the early prediction of DCI.

In prior proof of concept work (SP) [35], a hypothesis-
driven approach to angiographic VSP classification using 

24–48 h summary statistics of passively collected electronic 
health record data (cerebrospinal fluid drainage volume, 
mean arterial blood pressure, heart rate (HR), intracranial 
pressure, sodium and glucose) performed with a moderately 
favorable AUC of 0.71. The raw data used in that study was 
low frequency (hourly at best) and extracted features sum-
marized over 24 or 48 h. This result was encouraging that 
EMR and physiologic data could allow risk stratification 
for future events. The question remains whether increased 
precision can be achieved with use of higher frequency data.

There is an extensive literature regarding robust fea-
ture extraction from physiological time series data for out-
come prediction. Approaches can be broadly classified as 
either hypothesis driven or data driven. Hypothesis driven 
approaches have focused primarily on temporal data abstrac-
tion that relies on knowledge-based symbolic representa-
tions of clinical states, either by a priori threshold setting or 
interval changes [36, 37], summary statistics [35, 38–40], or 
template matching [41]. Hypothesis driven feature extraction 
can be effective in prediction but requires domain expertise 
in designing metafeatures, and may introduce a bias [38]. 
Data driven or learning approaches extract meaningful fea-
tures directly from the labeled data without a priori hypoth-
esis [42–51]. The data-driven approach of featurization via 
random kernels [52, 53] has shown promise in the field of 
image classification [54]. Random kernels, when convolved 
with unknown images, extract features that are frequency 
selective and translation invariant, characteristics that are 
also desired when processing temporal physiologic data. In 
our approach, we apply random kernels to extract features 
from high frequency temporal physiologic data that maxi-
mally classify for DCI.

2  Patients and methods

2.1  Study population

Consecutive patients with spontaneous SAH admitted to 
the Columbia University Medical Center NICU between 
August 1996 and December 2014 were prospectively 
enrolled in an observational cohort study of SAH patients 
designed to identify novel risk factors for secondary injury 
and poor outcome. The study was approved by the medi-
cal center Institutional Review Board. In all cases, written 
informed consent was obtained from the patient or a surro-
gate. SAH secondary to perimesencephalic bleeds, trauma, 
AVM, and patients < 18 years old were not enrolled in the 
study. Starting in 2006, physiologic data was acquired 
using a high-resolution acquisition system (BedmasterEX; 
Excel Medical Electronics Inc, Jupiter, FL, USA) from 
General Electric Solar 8000i monitors (Port Washington, 
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NY, USA; 2006–2013) or Philips Intellivue MP70 moni-
tors (Amsterdam, The Netherlands; 2013–2014) at 0.2 Hz.

Exclusion criteria for this project were the following: 
(1) absence of physiologic monitoring data (before 2006), 
(2) VSP or DCI before post bleed day (PBD) 3, and (3) 
patients missing all candidate features. The targeted classi-
fication outcome was DCI, defined as development of new 
focal neurologic signs or deterioration of consciousness 
for > 1 h or appearance of new infarctions on imaging due 
to VSP [16]. This was adjudicated by consensus among 
the treating neurointensivists during a weekly meeting, as 
part of the observational cohort study.

2.2  Data analysis

Data analysis, and model building were performed using 
custom software developed in Matlab 2016a (Mathworks, 
Natick, MA) and Python (http://www.pytho n.org). Fig-
ure 1 shows a flowchart of the data processing and analy-
sis. The input to the model was physiologic data sampled 
at 0.2 Hz limited to the PBD 0–3. The target classification 
outcome was DCI (beyond PBD 3).

2.2.1  Baseline candidate features and outcomes

The following baseline characteristics, grading scales, and 
outcomes were prospectively recorded at admission: age, 
sex, worst Hunt-Hess grade in first 24 h (HH), mFS, admis-
sion GCS, length of stay, timing of DCI, mortality, and Mod-
ified Rankin Scale (MRS). HH grade was dichotomized into 
low grade (1–3) and high grade (4–5). MFS was dichoto-
mized into low grade (0–2) and high grade (3–4). MRS was 
dichotomized into good outcome (0–3) and poor outcome 
(4–6). Baseline features and outcomes were compared for 
patients with DCI versus no DCI. Baseline features were 
also compared for the derivation versus validation dataset.

Frequency comparisons for categorical variables 
were performed by Fisher exact test. Two-group com-
parisons of continuous variables were performed with the 
Mann–Whitney U test. All statistical tests were two-tailed 
and a p-value < 0.05 was considered statistically significant.

2.2.2  Physiologic feature extraction using random kernels

While 0.2 Hz physiological data was available, we remained 
agnostic about the optimal scale or sampling rate for DCI 

Fig. 1  Overview of the approach

http://www.python.org
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classification. Five universally available ICU variables [HR, 
respiratory rate (RR), systolic blood pressure (SBP), dias-
tolic blood pressure (DBP), and oxygen saturation (O2)] 
were downsampled (ds) from 0.2 Hz to 1, 5, 10, 20, 60 min, 
2, and 4 h. Downsampling was computed as medians, which 
dealt with erroneous data [55]. Data was truncated to PBD 
0–3 and zero-padding was performed for missing data as a 
pre-processing step. We selected random kernels [52–54] to 
be applied and assessed for maximal convolution as shown 
in Fig. 2. In particular, we first generated random kernels or 
filter h of size k by sampling values from the normal distri-
bution N(0,1). Next, given a time series X ∈ R1×t , convolv-
ing filter h ∈ R1×k , where k ≤ t , the feature fi for series X 
and filter h is given by max(f ∗ h) , where ∗ denotes the valid 
convolution. Valid convolution means that f  is applied only 
at each position of x such that f  lies withinx . In other words, 
we performed convolutions only when the contiguous data 
length was twice the length of kernel.

We selected 20 random kernels for each of five variables 
(var: HR, RR, SBP, DBP, O2), for each varying kernel length 
(kl; 2, 5, 10, 20) and for 5 s data and each downsampling 
period (ds; 1, 5, 10, 20, 60, 120, 240 min). For 5 s data, we 
used larger size kernel lengths (kl; 20, 60, 120, 180) with 
the assumption that smaller kernel lengths (10–100 s total 
range) would result in clinically irrelevant features which 

would cause the models to over-fit the dataset. This resulted 
in 3200 candidate random kernel derived physiological 
features. As the number of kernels increases, the computa-
tional complexity to generate the random feature increases. 
Increasing the number of kernels per ds/kl/var combination 
beyond 20 did not affect our analysis, and thus was chosen 
to maximize performance while minimizing computational 
complexity.

Physiologic data was limited to the first 4 days after aneu-
rysm rupture to limit the influence of clinical treatment in 
response to suspected VSP or DCI [22].

2.2.3  Feature selection and model building

Minimal Redundancy Maximal Relevance (mRMR) [56–58] 
was applied to identify the most relevant features for clas-
sification. MRMR selects the features that maximize the 
mutual information between features and target class, and 
minimizes mutual information among the features. The 
features are ranked based on the greedy search that maxi-
mizes the Mutual Information Difference Criterion (MID) 
or Mutual Information Quotient Criterion (mRMR-Q). Let 
S ∈ {x1,… , xn} be the set of features and h be the target 
class (in our case DCI vs. non DCI) then the features are 
ranked as

Fig. 2  Feature extraction from physiologic time series data. 20 ran-
domly chosen kernels were applied and assessed for maximal convo-
lution, for each varying kernel length (kl; 2, 5, 10, 20) and for each 

downsampling period (ds; 1, 5, 10, 20, 60, 120, 240) and for each of 
five variables (var; HR, RR, SBP, DBP, O2). This resulted in a convo-
lution matrix of 2800 candidate features
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where I
(
xi, h

)
 is the information gain between the feature xi 

and target class h. The first ‘k’ ranked features are then used 
to learn the classifier. This simplifies the model, reduces 
training times, and enhances the generalizability of the clas-
sification model.

We used mRMR in combination with linear and kernel 
based Support Vector Machines (SVM-L and SMV-K) 
classifiers [59, 60], as well as Partial Least Squares (PLS) 
regression [61] for combined feature selection and clas-
sification. The mRMR feature selection criteria identified 
the top 1600 (50%) features from 3200 physiologic and 5 
baseline demographics/scales. These features were then 
used by the classifiers to learn the model. PLS regression 
performs a principal component analysis on all feature 
vectors first and then applies a least squares regression 
using those components that explain the most variance. 
Weighted SVM was utilized to account for the imbalance 
in classification categories (i.e. fewer DCI vs. non-DCI in 
any consecutive SAH dataset).

All classifiers were trained for binary outcome of DCI 
presence/absence. We trained our models on single vari-
ables as well as collections of variables, to identify the 
optimal combination of features that was most informative 
(i.e. maximally performing) for classifying DCI.

2.2.3.1 Weighted support Vector Machines 
and  imbalanced class sizes Given a training set {{

x1, y1
}
,… , {xN , yN}

}
 , where xi ∈ RN and yi ∈ {−1, 1} , 

then the SVM problem can be formulated as

where w.xi − b is the hyperplane that separates the two 
classes, and ∈i = max (0, 1 − yi(w.xi − b)) is the slack 
variable (a means for relaxing the constraint by consider-
ing points for which our constraint can fail). C is the trade-
off parameter that controls the slack variable; a small C 
allows constraints to be easily ignored and a large C makes 
constraints hard to ignore. For traditional SVM, �ic = 1 , 
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meaning the optimization function penalizes equally for 
all data points. For cases with imbalanced class sizes, this 
biases the classifier in favor of the class with a larger sample 
size. To overcome that issue we have added a penalty term 
�ic , that is set based on the total number of samples for a 
given class, setting higher values for the class with smaller 
size. We used LibSVM [62] for the SVM and weighted SVM 
classification.

2.3  Internal validation and validation strategy

The cohort was randomly split 80/20%, while maintain-
ing proportional targeted outcome (DCI). 80% were used 
to train/test models, and considered the primary deriva-
tion dataset. For internal validation of our models, we per-
formed cross-validation of the derivation data with a 12.5% 
hold-out set; the hold-out set was proportional to the train-
ing data set for percentage of targeted outcome. The dis-
criminative performance is described by an area under the 
receiver operating characteristic curve (AUC). The median 
value of AUC is reported, over 100 runs. 20% of the cohort 
were not involved in model training, and used exclusively 
for testing the classification accuracy of our models. Clas-
sification accuracy of our models on the validation test set 
is reported as AUC, with 95% confidence intervals (CI). An 
overview of the analytical approach is illustrated in Fig. 1.

3  Results

From August 1996 to December 2014, 1595 SAH patients 
were enrolled in SHOP. 562 SAH patients with physiologic 
data were available from May 2006 to December 2014. 8 had 
VSP or DCI identified before PBD 3, 66 were missing all 
candidate features leaving a total of 488 subjects included 
into the study (Fig. 1).

Table 1 displays the baseline features, grading scales, and 
outcomes of subjects with and without DCI. DCI was found 
in 94 subjects (19.3%) in the entire cohort; 75 (19.2%) of the 
derivation set and 19 (19.4%) of the test set. Patients with 
DCI were more frequently women (82 vs. 65% p = 0.001). 
None of the grading scales were found to be significantly 
different between these two groups (HH p = 0.27; MFS 
p = 0.69; GCS p = 0.16). Length of stay was significantly 
longer in the DCI group (18.8 ± 6.6 vs. 9.4 ± 7.1  days, 
p < 0.0001). When DCI occurred, it occurred on day 7.1 
(± 2.6 days). No DCI was associated with significantly more 
mortality (19.8 vs. 8.5%, p = 0.0098); notably 76.9% of mor-
tality in the no DCI group occurred before mean day of DCI 
onset (7.1). MRS at 3 months favored good outcome for 
patients without DCI (p = 0.0236).
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Table 1  Baseline features, 
grading scales, and outcomes of 
subjects with and without DCI

DCI delayed cerebral ischemia, SD standard deviation
a p values were calculated using Fisher exact test for frequency comparisons of categorical variables and 
Mann–Whitney U test for two-group comparisons of continuous variables. All statistical tests were two-
tailed

Baseline Features DCI (n = 94) No DCI (n = 394) p  valuea

Age (years) (mean ± SD) 52.5 ± 12.7 55.8 ± 15.1 0.018
Sex, female (%) 77 (81.9) 255 (64.7) 0.001
Hunt Hess grade (%) 0.27
 1–3 57 (60.6) 263 (66.8)
 4–5 37 (39.4) 131 (33.3)

Modified Fisher Scale (%) 0.69
 0–2 71 (75.5) 287 (72.8)
 3–4 23 (24.5) 107 (27.2)

Glasgow Coma Scale n (%) 0.16
 3–7 28 (29.8) 122 (31.0)
 8–12 18 (19.2) 43 (10.9)
 13–15 48 (51.1) 229 (58.1)

Length of stay (days) (mean ± SD) 18.8 ± 6.6 9.4 ± 7.1 < 0.0001
Timing of DCI (days) (mean ± SD) 7.1 ± 2.6 NA
Mortality, n (%) 8 (8.5) 78 (19.8) 0.0098
Modified Rankin Scale at 3-months (%) n = 56 (57.2) n = 232 (58.2) 0.0236
 0–3 41 (73.2) 201 (86.6)
 4–6 15 (26.8) 31 (13.4)

Table 2  Baseline features, 
grading scales, and outcomes 
of the derivation and validation 
groups

DCI delayed cerebral ischemia, SD standard deviation
a p values were calculated using Fisher exact test for frequency comparisons of categorical variables and 
Mann–Whitney U test for two-group comparisons of continuous variables. All statistical tests were two-
tailed

Derivation dataset 
(n = 390)

Validation dataset 
(n = 98)

p  valuea

DCI (%) 75 (19.2) 19 (19.4) 1.0
Age, years (mean ± SD) 55.6 ± 15.1 53.5 ± 13.2 0.19
Sex, female (%) 264 (67.7) 68 (69.4) 0.81
Hunt Hess Grade (%) 0.72
 1–3 254 (65.1) 66 (67.4)
 4–5 136 (34.9) 32 (32.7)

Modified Fisher Scale (%) 0.20
 0–2 281 (72.1) 77 (78.6)
 3–4 109 (28.0) 21 (21.4)

Glasgow Coma Scale (%) 0.20
 3–7 128 (32.8) 22 (22.5)
 8–12 45 (11.5) 16 (16.3)
 13–15 217 (55.6) 60 (61.2)

Length of stay (days) (mean ± SD) 11.1 ± 7.9 11.6 ± 7.8 0.52
Timing of DCI (days) (mean ± SD) 7.2 ± 2.7 6.8 ± 1.9 0.85
Mortality (%) 72 (18.5) 14 (14.3) 0.376
Modified Rankin Scale at 3 months (%) 220/390 (56.4) 68/98 (69.3) 0.185
 0–3 181 (82.3) 61 (89.7)
 4–6 39 (17.7) 7 (10.3)
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Table 2 displays the baseline features, grading scales, and 
outcomes of the derivation and validation groups that were 
randomly selected while maintaining proportional targeted 
outcome. There was no significant difference found between 
the two groups.

3.1  Model performance

The median AUC of 100 runs of cross-validation (with 
12.5% hold-out set) is presented in Table 3. Among the 
baseline characteristics, sex (AUC 0.59) performed slightly 
better than age (AUC 0.57, PLS). HH (AUC 0.58, PLS) and 
GCS (AUC 0.58, SVM-K) achieved better accuracy for DCI 
prediction than MFS (AUC 0.53, SVM-L). By combining 
baseline characteristics and grading scales (age, sex, HH, 
mFS, GCS), a PLS classifier performed better than the indi-
vidual features with an AUC of 0.64. A combination of all 
random kernel derived physiological features using a PLS 

classifier achieved an AUC of 0.71, while an SVM-L classi-
fier achieved 0.72. Adding baseline characteristics and grad-
ing scales did not improve the performance.

Feature reduction with mRMR achieved the best classifi-
cation performance with an AUC of 0.77 (PLS). In the case 
of the PLS classifier, the weights indicate the discriminative 
power of the features in separating the two classes. Figure 3a 
shows the PLS weights of these features; Fig. 3b shows the 
kernels corresponding to a demonstrative selection of the top 
ten features selected by the PLS model. The kernel associ-
ated with the feature O2 with downsampling (DS) 1 and 
kernel length (KL) 120 was given the highest weight among 
the 1600 features selected by the mRMR. The kernel dis-
plays the time varying characteristics for different variables 
and highlights the need for capturing high frequency data at 
different scales (downsampling rate).

The classification accuracy of the derived models on 
the unseen validation test set was found to be similar to 

Table 3  Model performance 
in derivation and validation 
datasets

AUC  area under the receiver operating characteristic curve, PLS partial least squares, SVM-L and -K sup-
port vector machine-linear and -kernel, BP blood pressure, HR heart rate, RR respiratory rate, mRMR Mini-
mum Redundancy Maximal Relevance. All physiologic features are random kernel derived (diastolic and 
systolic BP, HR, SpO2, RR)

Feature extraction Derivation dataset 
(median AUC of 100 
runs)

Validation dataset [AUC (95% CI)]

PLS SVM-L SVM-K PLS SVM-L SVM-K

Age 0.57 0.56 0.55 0.61
(0.49–0.73)

0.61
(0.49–0.73)

0.65
(0.54–0.76)

Sex 0.59 0.59 0.59 0.64
(0.52–0.76)

0.64
(0.52–0.76)

0.64
(0.52–0.76)

Hunt Hess Scale 0.58 0.54 0.53 0.57
(0.45–0.69)

0.6
(0.48–0.72)

0.56
(0.44–0.68)

Modified Fisher Scale 0.51 0.53 0.48 0.54
(0.42–0.66)

0.58
(0.46–0.7)

0.62
(0.5–0.74)

Glasgow Coma Scale 0.41 0.43 0.58 0.58
(0.46–0.7)

0.63
(0.51–0.75)

0.67
(0.56–0.78)

Combined baseline and scales 0.64 0.60 0.53 0.6
(0.48–0.72)

0.63
(0.51–0.75)

0.53
(0.41–0.65)

Diastolic BP 0.66 0.66 0.53 0.57
(0.45–0.87)

0.54
(0.45–0.87)

0.47
(0.31–0.75)

Systolic BP 0.57 0.62 0.53 0.64
(0.35–0.78)

0.7(0.41–0.84) 0.47
(0.31–0.75)

HR 0.61 0.59 0.50 0.68
(0.4–0.83)

0.62(0.37–0.81) 0.5
(0.28–0.72)

SpO2 0.54 0.55 0.49 0.58
(0.33–0.76)

0.6(0.33–0.77) 0.57
(0.27–0.71)

RR 0.58 0.60 0.49 0.66
(0.36–0.8)

0.67
(0.38–0.82)

0.58
(0.27–0.71)

Combined physiologic 0.71 0.72 0.50 0.68
(0.51–0.91)

0.74
(0.52–0.92)

0.5
(0.28–0.72)

Baseline and physiologic 0.71 0.71 0.50 0.69
(0.51–0.91)

0.75
(0.5–0.91)

0.5
(0.28–0.72)

mRMR (baseline + physiologic) 0.77 0.75 0.50 0.74
(0.58–0.96)

0.77
(0.55–0.94)

0.5
(0.28–0.72)
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the estimated performance of the cross-validated models. 
AUC curves are shown in Fig. 4. A model based on the 
traditional grading scale (MFS) achieved an AUC of 0.62 
(SVM-L, 95% CI 0.5–0.74). Adding demographics and other 

baseline scales did not improve prediction (AUC 0.63, 95% 
CI 0.51–0.75, SVM-L). Adding random kernel derived phys-
iologic features improved prediction (AUC of 0.75, 95% CI 
0.5–0.91, SVM-L), but actually performed the same as ran-
dom kernel derived physiologic features alone (AUC 0.74, 
95% CI 0.52–0.92, PLS). This combined physiologic model 
(HR, SBP, DBP, RR, and O2 sat) was more predictive than 
any single variable model (AUC range 0.47–0.70). Feature 
reduction (to reduce redundancy and maximal relevance) 
when applied to combined baseline, grading scales, and 
physiologic data produced the best classification perfor-
mance with an AUC of 0.77 (95% CI 0.55–0.94, SVM-L).

4  Discussion

Recognizing trends and patterns, and minutely analyzing 
complex data requires the layered knowledge of clinical 
experts, but defies rule-based systems. In prior work (SP) 
using summary statistics of 24 h (lower frequency) data, a 
Naïve Bayes classifier for angiographic VSP outperformed 
TCD and exams, and generated an AUC of 0.71 [35]. Here, 
we show that features extracted from higher frequency tem-
poral data (ranging from 1 min to 4 h) may be superior to 
lower frequency data in classification of outcome after SAH.

Fig. 3  Features selected by Minimum Redundancy–Maximum Rel-
evance (mRMR) and classification by partial least squares (PLS). a 
A very large candidate feature set was reduced by mRMR, selecting 
for the top 50% of least redundant and most informative features. A 
PLS classifier was trained on these features, the weights are shown. 

b For demonstration, the kernels for the top 10 weighted features 
selected by PLS are visualized, showing the time varying character-
istics captured by the random kernels. Kernel length is represented on 
the x-axis

Fig. 4  AUC curves of model performance on validation dataset
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In our approach, we extracted high level features from 
existing physiologic data, without an a priori hypothesis of 
what patterns might emerge. To enable validation efforts 
and generalizability to other datasets and institutions, we 
focused on universal physiologic ICU variables and typical 
baseline grading scales pertinent to SAH used in the NICU. 
In this translational work, we used a random featurization 
method to extract frequency selective and translation invar-
iant characteristics of time series data. The novel applica-
tion to time series data required some choices bound by 
characteristics of the dataset (kernel lengths) and domain 
(downsampling rates). We tested our method for its dis-
criminative ability for DCI and found that random kernel 
derived physiologic features outperformed current static 
grading scales. When combined with grading scales and 
demographics, our random kernel derived physiologic fea-
tures predicted DCI with an AUC (0.77, PLS) approaching 
clinical reliability (threshold of 0.8 [63]). PLS and SVM-L 
models performed equally well, indicating the sufficient 
discriminative ability of our feature extraction method.

An effort to show robustness of the model was an 
internal validation strategy, testing on a separate dataset 
excluded from model building entirely. Generalizability 
of a machine learning algorithm, however, assumes that 
the training dataset is large and diverse enough to be rep-
resentative. A limitation to this study is the single center 
approach; there is no publicly available dataset for SAH 
with similar granularity of physiologic data. Future efforts 
will include developing complementary SAH cohorts and 
validating these algorithms.

5  Conclusions

A random kernel featurization and learning approach to 
physiological time series data prior to peak DCI period 
shows promise to improve prediction precision. This is a 
computationally inexpensive and agnostic feature extrac-
tion approach for physiologic time series parameters in the 
ICU (HR, RR, SBP, DBP, O2 sat). There is a vast pool of 
candidate features within the EMR with a biological basis 
for classification ability (i.e. drawn from frequentist statisti-
cal studies showing relationship with VSP and DCI in spe-
cific SAH cohorts). Future efforts will also draw from this 
feature pool to further improve the precision of DCI pre-
diction, favoring those candidate features that are obtained 
for standard clinical care and thus potentially automatable.
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