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Abstract
Cardiac arrest (CA) is the leading cause of death and disability in the United States. Early and accurate prediction of CA 
outcome can help clinicians and families to make a better-informed decision for the patient’s healthcare. Studies have shown 
that electroencephalography (EEG) may assist in early prognosis of CA outcome. However, visual EEG interpretation is 
subjective, labor-intensive, and requires interpretation by a medical expert, i.e., neurophysiologists. These limiting factors 
may hinder the applicability of such testing as the prognostic method in clinical settings. Automatic EEG pattern recognition 
using quantitative measures can make the EEG analysis more objective and less time consuming. It also allows to detect and 
display hidden patterns that may be useful for the prognosis over longer time periods of monitoring. Given these potential 
benefits, there have been an increasing interest over the last few years in the development and employment of EEG quantita-
tive measures to predict CA outcome. This paper extensively reviews the definition and efficacy of various measures that 
have been employed for the prediction of outcome in CA subjects undergoing hypothermia (a neuroprotection method that 
has become a standard of care to improve the functional recovery of CA patients after resuscitation). The review details the 
State-of-the-Art and provides some perspectives on what seems to be promising for the early and accurate prognostication 
of CA outcome using the quantitative measures of EEG.
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1 Introduction

Cardiac arrest (CA) is the leading cause of death in the 
United States [1, 2]. Each year, about 325,000 people have 
an out-of-hospital cardiac arrest, whereas only 10–20% 
of them survive [3, 4]. Poor functional outcomes such as 
moderate to severe disability or persistent vegetative state 

are common among the survivors [5, 6]. Early and accu-
rate prediction of CA outcome is of tremendous value both 
in terms of (a) optimizing the clinical treatment/interven-
tion, and (b) health care cost management. The accurate 
prognosis of CA would also help families of the patients to 
make a better-informed decision with respect to potential 
life support withdrawal versus continued supportive care 
[7]. In addition to higher survival rate and better functional 
outcome, therapeutic hypothermia (TH) has been associ-
ated with shorter hospital stay duration for CA patients [8, 
9]. Thus, TH has recently become a standard of care after 
resuscitation [9]. However, CA outcome prognostication 
for the patients treated with TH is currently qualitative and 
poorly understood [7, 10]. This is mainly due to the use of 
sedative and paralytic agents, and neuroprotective effects of 
hypothermia that reduce sensitivity of the conventional CA 
prognostication markers and/or change their optimal timing 
for the outcome prediction [7, 9, 11–15].

Recent studies have shown that electroencephalogra-
phy (EEG) can be useful in CA outcome prediction [9]. 
For example, several EEG patterns (including the absence 
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of EEG reactivity, the presence of burst suppression with 
generalized epileptiform activity, and the presence of gen-
eralized periodic complexes on a flat background) have 
been associated with poor outcome [16, 17]. In contrast to 
other prognostication modalities, EEG measurement can 
be performed easily, continuously and noninvasively at the 
patient’s bedside. But visual EEG pattern recognition is 
laborious and subjective [18]. It also requires a specialized 
training in EEG interpretation and many nurses and phy-
sicians in intensive care units (ICUs) lack such expertise 
[19]. Recent advances in the quantitative EEG analysis can 
overcome the above limitations [7, 20, 21]. As a result, over 
the last few years, there have been a growing interest in the 
development and employment of quantitative measures of 
EEG to predict CA outcome [22–28]. The aim of this review 
is to discuss the State-of-the-Art in employment of quantita-
tive measures of EEG for prediction of the outcome in CA 
subjects treated with hypothermia. The review can provide a 
platform for the future potential development and examine of 
new measures and/or methods for the early and accurate CA 
outcome prediction for the patients undergoing hypothermia.

2  Materials and methods

Pubmed database was searched for the articles which were 
published between year 2000 and the present time (August 
2017) using (logical conjunction of) the following keywords: 
“quantitative EEG” and “cardiac arrest” and “hypothermia”. 
In our review, we considered both animal and human stud-
ies. The previous investigations on the effect of changes in 
temperature of the brain have indicated that hypothermia has 
relatively similar influences on EEG in animals and humans 
[29]. The search resulted in more than 40 publications. The 
abstracts of these publications (and the body of the papers 
if the abstracts did not provide sufficient information) were 
studied to verify the relevancy of each paper to the subject 
of our search (employing quantitative measures of EEG for 
automatic CA outcome prediction in subjects undergoing 
hypothermia). Following exclusion of the irrelevant publica-
tions, remaining papers were read carefully, their proposed 
measures were identified and their results were summarized.

3  Results

Exclusion of the irrelevant papers (those not related to 
employment of quantitative measures of EEG, or not related 
to cardiac arrest or hypothermia) resulted in selection of 24 
papers. Table 1 lists the selected papers along with a sum-
mary of the main findings of the papers. Table 2 includes a 
list of quantitative measures (features) of EEG which have 
been employed in prediction of CA outcome for the subjects 

undergoing hypothermia. For simplicity, the identified meas-
ures were grouped into four groups: conventional entropy-
based measures; burst suppression measures; information 
quantity measures; and combined measures. In the following 
subsections, we go over the definition of each measure and 
discuss its efficacy in prognostication of CA outcome for 
hypothermia subjects.

3.1  Conventional entropy‑based measures

In information theory, Shannon entropy is defined as a meas-
ure of the uncertainty in a random variable X by quantifying 
the expected value of the information contained in a signal 
[30]. Entropy is typically measured in bits as

where pi is the probability of random variable X being equal 
to value Xi for i = 1, 2, ...,N . Note that 

∑N

i=1
pi = 1 . A higher 

level of randomness or complexity in the data generally indi-
cates larger entropy values.

Similar to many other organs, brain can be considered as 
a system with high level of complexity (entropy). A reduc-
tion of biological system’s complexity is often interpreted 
as a pathological or deteriorating state [31]. Brain injury 
and the disruption of its normal functionality can result in 
the reduction of brain’s complexity [32]. Therefore, using an 
appropriate EEG entropy analysis, one may be able to track 
the brain’s recovery progress after brain injury. Several con-
ventional entropy-based measures have been proposed for 
the CA outcome prediction. Here, we review the definition 
of those which have shown efficacy in prediction of the out-
come when the subject went under hypothermia treatment.

3.1.1  Spectrum entropy

The spectrum entropy (SE) of the EEG signal is calculated 
as the Shannon entropy of the normalized energy of the sig-
nal within certain frequency subbands of interest. In other 
words, the probability pi in Eq. (1) is defined as

where Ei is the energy of the signal within ith subband calcu-
lated from power spectral analysis of the EEG signal.

Chen et al. choose N = 4 frequency subbands to study 
the efficacy of SE as a prognostic measure of CA outcome 
in rats: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), 
and Beta (13–30 Hz) [33]. The results of this study indicated 
that the hypothermic rats have significantly higher values 

(1)Shannon Entropy = −

N∑

i

pilog2pi,

(2)pi =
Ei

∑N

i=1
Ei

,
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of SE (and better neurological outcome) relative to normo-
thermic controls. Using a logistic regression analysis, the 
authors also showed that SE value at 6-h after restoration of 
spontaneous circulation (ROSC) was an independent predic-
tor of 96-h survival outcome in hypothermic group.

Two spectrum entropy-based variables that can be meas-
ured using a commercially available product (Datex-Ohm-
eda entropy module, GE Healthcare, Helsinki, Finland) are 
response entropy and state entropy [22]. State entropy is 
the entropy of the normalized energy of the signal over the 
EEG-dominant frequency range of 0.8–32 Hz, indicating 
the effect of hypnotics on the cortex. On the other hand, 
response entropy is the spectrum entropy over the frequency 
range of 0.8–47 Hz (including EEG and facial electromyo-
graphy frequency components) and can be used to detect the 
patient’s responsiveness [21, 22]. In a study of 30 comatose 
patients by Wennervirta et al., both relative entropy and state 
entropy demonstrated significantly higher values during the 
first 24 h after CA in patients with cerebral performance cat-
egory (CPC) [34] of 1 or 2 comparing to the other patients 
[21].

3.1.2  Approximate entropy

Approximate entropy (ApEn) is a parameter that quantifies 
the unpredictability of fluctuations in a time series [35]. 
Since its introduction two decades ago, ApEn has been 
widely used to characterize the complexity of various bio-
logical and physiological data [36]. ApEn is defined as the 
negative natural logarithm of the probability that the data 
sequences within a time series that are close for m points 
remain close for an additional point (m + 1 points).

For an EEG signal {s(i) | i = 1, 2, ...,N} , one can define a 
template vector �m(i) as

Note that there exist N − m + 1 of such vectors where 
1 ≤ i ≤ N − m + 1 . Now, let us assume that the distance 
between two vectors �m(i) and �m(j) is the maximum differ-
ence of their corresponding scalar components:

where 0 ≤ k ≤ m − 1 . Vector �m(j) with 1 ≤ j ≤ N − m + 1 
is called a match for template �m(i) , if �m(j) is less than 
r distance away from �m(i) , i.e., when d(�m(i),�m(j)) < r.

Thus, the probability that vector �m(j) is within r distance 
of �m(i) can be calculated as

where nim(r) is the number of matches for template �m(i) . 
By averaging all Cm

i
(r) as

(3)�m(i) = {s(i + k)|0 ≤ k ≤ m − 1}.

(4)d(�m(i),�m(j)) = max(|s(i + k) − s(j + k)|),

(5)Cm
i
(r) =

nim(r)

N − m + 1
,
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Table 2  Summary of the State-of-the-Art in employment of quantitative EEG measures (features) for prognostication of outcome in the cardiac 
arrest subjects treated with hypothermia

Feature group Feature’s name Feature’s efficacy in cardiac arrest prognostication

Conventional 
entropy-based 
measures

Spectrum entropy (SE) •In a study of 20 rats, SE at 6-h post-ROSC was predictive of 96-h survival 
outcomes [33]

Approximate entropy (ApEn) •In a study of 46 comatose patients, the average ApEn was significantly higher 
in patients with good outcome (CPC 1–2) evaluated at 3-month post-CA [28]

Multiscale entropy (MSE) •In a study of 10 rats, alpha-rhythm MSE measured within 1–2.5-h post-CA 
was significantly different between the hypothermic and normothermic 
groups. Good recovery outcomes (NDS > 60) was always achieved if the ratio 
of alpha-rhythm MSE measured at 3-h post-CA to that of the baseline (before-
CA) was above 0.85 [26]

Wavelet subband entropy (WSE) •In a study of 30 comatose patients, Beta WSE measured between 24 and 48 h 
post-CA was significantly higher in the good outcome group (CPC of 1–2) 
evaluated within a 6-month follow-up period [21]

•In a study of 11 comatose patients, 64–100 Hz WSE captured from the inferior 
frontal lobes were significantly higher in those survived [18]

C0 Complexity •In a study of 12 rats, C0 complexity measured as early as 4-h after the ROSC 
was significantly higher in hypothermic group than normothermic group. 
In fact, C0 complexity at 4-h correlated well with the 72-h NDS (correla-
tion = 0.882) [44]

Burst suppression 
measures

Burst suppression ratio (BSR) •In a study of 46 comatose patients, the average BSR was significantly lower in 
patients with good outcome (CPC 1–2) evaluated at 3-month post-CA [28]

•In a study of 30 comatose patients, BSR during the first 48 h post-CA was 
significantly lower in the good outcome group (CPC of 1–2) evaluated within 
a 6-month follow-up period [21]

Burst suppression frequency (BSF) •In a study of 20 rats, BSF at 2-h post-ROSC was predictive of 96-h survival 
outcomes [33]

Information quan-
tity measures

Information quantity (IQ) •In a study of 28 rats, the 72-h NDS of the hypothermia group was significantly 
improved compared to the normothermia. The IQ also showed significantly 
different values between hypothermia and normothermia groups [25]

•A study of 30 rodents showed that brain injury results in a reduction of IQ, and 
the average IQ of hypothermic rats was significantly higher than the normo-
thermic rats for various injury levels [49]

•In a study of 28 rats, IQ at 30-min post-CA had strong correlation of 0.735 
with 72-h NDS scores [19]

Subband information quantity (SIQ) •In a study of 36 rats, SIQ values was significantly higher when hypothermia 
was administered immediately post-resuscitation and maintained for 6-h rela-
tive to when hypothermia started 1 h post-resuscitation and maintained 12 h 
[51]

•In a study of 13 rats, SIQ showed a higher correlation (0.74) with 72-h NDS 
scores than IQ (0.65) [50]

•In a study of 14 rats, both IQ and SIQ at as early as 1-h post-CA had high cor-
relation (0.8) with 72-h NDS score [52]

•In a study of 27 rats, the Gamma-band SIQ had the strongest correlation 
(between 0.52 and 0.78), while Delta-band SIQ had the lowest correlation to 
72-h NDS score [53]

Combined meas-
ures

Cerebral Recovery Index (CRI)
(combination of 5 features)
Power, shannon entropy, alpha to delta 

ratio, regularity, coherence

•In a study of 109 comatose patients, CRI at 24-h post-CA classified the good 
outcome (CPC 1–2) versus poor outcome (CPC > 2) [54]

•CRI < 0.29 predicted poor outcomes (sensitivity = 55%, specificity = 100%)
•CRI > 0.69 predicted good outcomes (sensitivity = 25%, specificity = 100%)

Enhanced Cerebral Recovery Index 
(ECRI)

(combination of 9 features)
Power, shannon entropy, alpha to delta 

ratio, regularity, coherence, tsalis 
entropy area, cepstrum coefficients, 
Maximum Phase Lag Index, binary low 
voltage measure

•In a study of 167 comatose patients, ECRI measured in 24-h post-CA 
increased the classification accuracy of good outcome (CPC 1–2) versus poor 
outcome classification by an average of 27% [10]
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we can calculate ApEn for EEG signal of finite length N, 
with pattern length m and similarity criterion r, as

Noirhomme et al. employed ApEn measure with m = 2, 
r = 1.4, and 8-s epochs to study the prognostic value of this 
parameter in 46 comatose patients in hypothermia [28]. The 
results revealed that the average ApEn value measures during 
hypothermia was significantly higher in patients with good 
outcome whose CPC values are 1 or 2.

3.1.3  Multiple scale entropy

A signal complexity is in general a “meaningful structural 
richness” [37] that incorporates correlations over multiple 
spatiotemporal scales [38]. While the previously discussed 
measures of entropy quantify the regularity of time series on a 
single scale, multiple scale entropy (MSE) considers the com-
plexity of the signal over multiple scales. Given the clinical 
significance of various frequency subbands in EEG analysis, 
MSE may be a more appropriate measure for CA outcome 
prediction.

(6)Cm(r) =
1

N − m + 1

N−m+1∑

i=1

Cm
i
(r),

(7)ApEn = loge
Cm(r)

Cm+1(r)
.

For an EEG signal {s(i) | i = 1, 2, ...,N} , MSE of the signal 
is calculated in two steps: For a given scale ( � ), first a moving-
average filtering (with zero percent overlapping) is applied to 
the data to obtain a “coarse grained” signal y�

j
 as

where 1 ≤ j <
N

𝜆
 . Then, the sample entropy (a refined version 

of ApEn which excludes self-matching to reduce the estima-
tor’s bias [39]) of each coarse-grained signal is calculated. 
The final MSE is obtained as a plot of the calculated sample 
entropies over a range of potential scale values � = 1, 2, ...,.

As synchronous activity in thalamic pacemaker cells are 
related to the α-rhythm [40], Kang et al. hypothesized that 
the complexity changes of EEG α-rhythms (measured by 
α-rhythm MSE) may reveal different degrees of brain recov-
ery during hypothermia after CA [26]. Given the sampling 
frequency of the signal, the scaling factors corresponding 
to the Alpha band (8–12 Hz) were identified and the values 
of MSE over those scales were averaged and used as the 
α-rhythm MSE measure. The results of this study on rodents 
showed that α-rhythm MSE measure within 1–2.5 h post-CA 
was significantly different between the hypothermic and nor-
mothermic groups. Furthermore, the authors found that good 
recovery outcomes were always achieved, when the ratio 
of α-rhythm MSE measured at 3-h post-CA to that of the 

(8)y�
j
=

1

�

j�∑

i=(j−1)�+1

s(i),

Table 2  (continued)

Feature group Feature’s name Feature’s efficacy in cardiac arrest prognostication

Bispectral Index (BIS) •In a study of 62 patients, BIS was significantly higher in the good outcome 
group. BIS at 24 h post-CA was the best predictive of CPC 1–2 outcome com-
pared to the other time points; a BIS cut-point of 45 exhibited a sensitivity of 
63% and a specificity of 86%, with a positive likelihood ratio of 4.67 [61]

•In a study of 97 patients, BIS was higher in patients with good outcome (37 
[28–40] vs. 7 [3–15]). BIS < 22 predicted poor outcome with a likelihood ratio 
of 14.2 and accuracy of 0.91 [60]

•In a study of 75 patients, BIS values were significantly higher in patients with 
good outcome (CPC 1–2). Patients with S100b level above 0.03 mg/l and BIS 
below 5.5 had a 3.6-fold higher risk of poor neurological outcome [64]

•In study of 75 patients, using BIS < 40 as threshold criteria, poor neurological 
outcome(CPC 3–5) was predicted with a specificity of 89.5% and a sensitivity 
of 85.7% [63]

•In a study of 509 patients, those who awakened early had significantly higher 
BIS values after the first dose of neuromuscular blockade [62]

•In a study of 171 patients, BISi < 10 suffered 82% neurological-cause and 91% 
overall mortality, BISi 10–20 suffered 35% neurological and 55% overall mor-
tality, and BISi > 20 suffered 12% neurological and 36% overall mortality [48]

•In a study of 75 patients, BIS was significantly higher in good outcome (CPC 
1–2). Analysis of BIS recorded every 30 min provided an optimal prediction 
after 12.5 h, with an accuracy of 0.89 [65]

•In a study of 46 patients, BIS values were significantly lower in those who 
died (4 versus 34) [66]

•In a study of 103 patients, Low mean BIS value best predicted poor outcomes 
with CPC of 3 to 5 with an accuracy of 0.861 [67]
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baseline (before-CA) was above 0.85. In that study, the good 
outcome was defined as a case where the neurological deficit 
scale (NDS) was above 60. Note that NDS is an neurological 
outcome evaluation standard which includes sub-scores of 
general behavioral deficit, brain-stem function, motor and 
sensory assessment, behavior, and seizures [41, 42].

3.1.4  Wavelet subband entropy

Discrete Wavelet transform is one of the most efficient tools 
for the denoising of the transients, non-stationary and ape-
riodic signals such as EEG with low redundancy and com-
putational complexity.

To calculate Wavelet subband entropy (WSE), one needs 
to first apply a L-level discrete wavelet transform to the sig-
nal. The value of L is usually determined based on the sam-
pling frequency and the clinical subbands of interests. Let 
us assume that ℑl

i
 is i th wavelet coefficient at level l, where 

l = 1, 2, ..., L . Then, the l-level WSE can be obtained as the 
Shannon energy of the squared and normalized version of 
the coefficients at that decomposition level. In other words,

Wennervita et al. employed WSE calculated over Beta 
subband (16–32 Hz) using Daubechies 3 mother wavelet 
to study the CA outcome for the patients undergoing hypo-
thermia [21]. Their result indicated that Wavelet Beta sub-
band entropy measured between 24 and 48 h post-CA was 
significantly higher in the good outcome group (CPC of 1–2) 
evaluated within a 6-month follow-up period.

In a recent study, our group analyzed a dataset of 16-chan-
nel EEG signals collected from 11 CA patients undergoing 
hypothermia at Long Beach Memorial Medical Center using 
WSE [18]. Our results revealed that the frequency oscilla-
tions between 64 and 100 Hz captured from the inferior fron-
tal lobes are significantly more complex in the CA patients 
who survived.

3.1.5  C0 complexity

Another robust measure of the signal’s complexity is C0, 
a percentage of stochastic components of the signal [43]. 
For an EEG signal {s(i) | i = 1, 2, ...,N} , C0 complexity is 
defined as

(9)WSEl = −

N�

i=1

pl
i
log2p

l
i
where pl

i
=

(ℑl
i
)
2

∑N

i=1
(ℑl

i
)
2
.

(10)C0 =

∑N

i=1
�s(i) − y(i)�2

∑N

i=1
�s(i)�2

where {y(i) | i = 1, 2, ...,N} is obtained from EEG signal by 
zeroing the signal at all frequency components where the 
power of the signal is lower than the signal’s average power. 
Lu et al. employed C0 complexity to analyze the nonlinear 
characteristic of EEG for prediction of the outcome in 12 
Wistar rats who were randomly undergoing hypothermia and 
normothermia [44]. Significantly higher C0 complexity val-
ues were found in hypothermic group (relative to normother-
mic group) as early as 4 h after the ROSC. Furthermore, C0 
complexity at 4-h post-ROSC was strongly correlated with 
the 72-h NDS (correlation = 0.882).

3.2  Burst suppression measures

Burst suppression is characterized by the presence of periods 
of bursting, when EEG amplitude rises above certain thresh-
old typically in the range of 75–250 μV, followed by long 
periods (at least 0.5 s) of suppression, when EEG shows low 
amplitude activities (typically below 10 μV) [<l45, 46]. A 
clear description of an algorithm to automatically detect the 
burst suppression patterns in EEG signal has been provided 
by Sarkela et al. in [47]. Several burst suppression features 
can be used to quantify the EEG background activities, e.g., 
burst suppression ratio (BSR), and burst suppression fre-
quency (BSF).

3.2.1  Burst suppression ratio

BSR is defined as the ratio between the total suppression time 
and total recording time [28]. There are commercially avail-
able products that can be used to obtain BSR values. Datex-
Ohmeda entropy module (from GE Healthcare, Helsinki, Fin-
land) calculates BSR using the algorithm described in [22] for 
every 1 min of data, while Bispectral Index (BIS) monitors 
(from ASPECT medical systems Inc., MA, U.S.A) obtains 
BSR for every 63 s of data using a proprietary algorithm [48].

A study on 30 comatose CA patients treated with induced 
hypothermia revealed that BSR (measured by Datex-Ohmeda 
entropy module) during the first 48 h after CA was signifi-
cantly lower in patients with good outcomes (CPC of 1–2) 
evaluated within a 6-month follow-up period [21]. Similarly, 
in another study on 46 CA patients, low BSR values (com-
puted with a software developed in house) were associated 
with good neurological outcome (CPC of 1–2) evaluated at 
3-month post-CA [28].

3.2.2  Burst suppression frequency

BSF is a measure of frequency content of bursts (during burst 
suppression periods), and can be easily obtained using spectral 
analysis [33]. Chen et al. found that BSF was significantly 
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higher in hypothermic rats compared to the control groups. 
The observed continuous increasing trend of BSF during the 
first 2 h after resuscitation of rats treated with hypothermia 
showed the effectiveness of therapeutic hypothermia in brain 
recovery. This study also indicated that the 2-h post-ROSC 
BSF value was independently predictive of 96-h survival 
outcome.

3.3  Information quantity measures

3.3.1  Information quantity

Information Quantity (IQ) measure was developed based on 
the assumption that a better neurotological outcome is associ-
ated with larger information content of the brain rhythm [49]. 
IQ is defined as time dependent Shannon entropy of decor-
related EEG signals using discrete wavelet transform (DWT). 
A sliding temporal window W(n,w,Δ) is applied to the EEG 
signal {s(i) | i = 1, 2, ...,N} such that

where w is the length of sliding window, Δ is the sliding 
step, and n = 0, 1, ...,

N

Δ
− w + 1 . Then using a r-level DWT, 

the signal within each window is decomposed into frequency 
subbands that represent standard clinical bands of interest. 
The DWT coefficients of each window, WC(r, n,w,Δ) , are 
obtained and the time dependent IQ is calculated as

where p
m
(n) is the probability that the sampled signal 

belongs to the interval {Im ∶ m = 1, 2, ...,M} and is obtained 
as the ratio between the number of the samples found within 
interval Im and the total number of samples in WC(r, n,w,Δ).

IQ has demonstrated a superior tracking capability for 
both frequency changes and dynamic amplitude changes 
comparing to conventional entropy-based measures such as 
Shannon entropy and Wavelet entropy.

In a study of 28 rats, the IQ values showed significantly 
difference between hypothermia and normothermia groups 
[25]. Also, the experiments carried out on 30 rodents indi-
cated that brain injury results in a reduction of IQ values 
[49]. Furthermore, the hypothermic rats showed greater 
average IQ than normothermic rats for various injury levels, 
confirming that hypothermia accelerates brain’s electrical 
recovery after CA. In another study of 28 rats, IQ values at 
30-min post-CA also showed a strong correlation with 72-h 
NDS [19]. These results demonstrate the efficacy of the IQ 
at prognostication of CA outcome for hypothermia.

(11)W(n,w,Δ) = {s(i)|i = 1 + nΔ, ..., 1 + wΔ}

(12)IQ(n) = −

M∑

m=1

p
m
(n)log2(pm(n)),

3.3.2  Subband information quantity

As discussed in Sect. 3.3.1., IQ measures information of 
the gross EEG signal in all frequency bands from delta to 
gamma. However, brain recovery from CA may be more 
related to the activities of individual EEG subbands. In fact, 
a more recent study on rats indicated that IQ prognostica-
tion sensitivity may degrade over time by overestimating 
the CA outcome at later period of recovery [50]. In contrast 
to IQ, subband information quantity (SIQ) calculates the 
information content within each k th subband of a r-level 
DWT separately:

where k = 1, 2, ..., r + 1 . Note that pk
m
(n) is the probabil-

ity that the sampled signal in k th subband belongs to the 
interval {Im ∶ m = 1, 2, ...,M} , and it is obtained as the ratio 
between the number of the samples found within interval Im 
and the total number of samples in kth subband.

Then the overall SIQ is calculated by averaging the indi-
vidual subband information quantities over all subbands of 
interests:

The examination of IQ and SIQ trends in a rodent hypo-
thermia study indicated that SIQ values were more highly 
correlated (correlation of 0.74 vs. 0.65) with 72-h post-CA 
NDS than IQ values. It was also revealed that the most sig-
nificant variations of SIQ were contributed by Theta, Beta, 
and Alpha bands.

Another study on 36 rats showed that the SIQ value was sig-
nificantly higher when hypothermia was administered immedi-
ately post-resuscitation and maintained for 6-h relative to when 
hypothermia started 1 h post-resuscitation and maintained 12 h 
[51]. Also in a study of 14 rats, Deng. et al. showed that both 
IQ and SIQ at 1-h post-CA had high correlation (0.8) with 72-h 
NDS scores [52].

In another study of 27 rats by the same group, the Gamma-
band SIQvalues showed the highest correlation with 72-h NDS 
at every time point from 30-min to 72-h post-ROSC, while 
the Delta-band SIQ showed the lowest correlation to the CA 
outcome [53].

(13)SIQk(n) = −

M∑

m=1

pk
m
(n)log2(p

k
m
(n)),

(14)SIQ(n) = −

r+1∑

k=1

SIQk(n).
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3.4  Combined measures

3.4.1  Cerebral recovery Index

Given the promising results of CA outcome predictions using 
single quantitative EEG measures (features), one could pos-
sibly enhance the accuracy in prognostication by using a com-
bination of multiple features. Within this context, Tjepkema-
Cloostermans et al. employed a set of EEG features to define 
a single number index, called cerebral recovery index (CRI), 
for the prognostication of outcome in CA patients treated 
with hypothermia [54]. Motivated by the criteria generally 
employed by the neurologists for visual inspection of EEG 
patterns, the authors chose the following five EEG features:

– SD: Standard deviation of the EEG signal over 5-min 
epochs were used as a measure of the signal power.

– Hsh: Shannon entropy of the signal was calculated where 
the values of pi in Eq. (1) were determined using a histo-
gram of the amplitude of the signal with 1 μV bin-width 
over the range of (− 200 to 200 μV).

– ADR: The EEG signal ratio between Alpha-band (8–13 Hz) 
and Delta-band (0.5–4Hz) was obtained from power spec-
trum analysis of the signal.

– COH: The mean coherence in the Delta-band between 
all possible combinations of EEG channels was used as a 
measure to quantify EEG patterns with abnormally high 
synchronization level.

– REG: Finally, to differentiate burst suppression from con-
tinuous EEG patterns, a new regularity measure (REG) was 
introduced. For this purpose, first a non-negative smoothed 
version of the EEG signal was obtained by applying a 
0.5-s moving-average filtering to the square of the signal 
{s2(i)|i = 1, ...,N} . Then the values of the smoothed sig-
nal were sorted in descending order (let us call this sorted 
smoothed signal as {q(i)|i = 1, ...N} ) and the normalized 
standard deviation of the sorted values was calculated as

REG range of values is between 0 and 1. An EEG signal 
with shorter bursts would result in smaller values of REG, 
while values closer to 1 indicate a signal with longer bursts.

Following the calculation of above features, they were nor-
malized using a sigmoidal transform function whose coeffi-
cients were selected heuristically [10]. Given the significance 
of the role of the EEG signal power (SD) as an indicator of 
brain’s recovery, the cerebral recovery index was defined as

(15)REG =

�����
∑N

i=1
i2q(i)

1

3
N2

∑N

i=1
q(i)

(16)CRI =
SD(Hsh + ADR + COH + REG)

4
.

The study of 109 hypothermic CA patients showed that the 
calculated CRI at 24-h post-CA can differentiate the dichoto-
mized good outcome (CPC score of 1 or 2) versus poor out-
come (CPC score of above 3) with the following accuracies: 
CRI < 0.29 predicted the poor outcome with sensitivity of 
55% and specificity of 100%, while CRI > 0.69 predicted the 
good outcome with sensitivity of 25% and specificity of 100%.

3.4.2  Enhanced cerebral recovery index

In a recent study, Ghassemi et al. [10] introduced an enhanced 
version of cerebral recovery index (ECRI) by including the 
following additional features:

– Tsalis entropy area (TsEnA): Tsalis entropy is a nonexten-
sive statistics to quantify the regularity of a signal [55], and 
is defined as

where q is the nonextensivity degree. Comparing to con-
ventional measures of entropy, TsEn can better describe 
the quasi-stationary properties of weakly ergodic systems 
in long-ranging interactions [55]. Since EEG signal is the 
result of long-ranging interactions across corticothalamic 
and thalamocortical networks [56], in general, TsEn may 
be able to provide more detailed information on EEG 
spikes and bursts, relative to other traditional entropy 
measures. To predict the CA arrest outcomes in a rodent 
model (with no hypothermia), Zhang et al. defined a new 
Tsalis entropy-based measure named Tsalis entropy area 
(TsEnA) to quantify the complex dynamics of burst sup-
pression in EEG after CA [57]:

where t1 and t2 are the starting and ending times of burst 
suppression. Using a smooth histogram of the amplitude 
of the signal with N = 50, and q = 3, the authors achieved 
a high correlation of 0.86 between TsEnA values and 72-h 
post-ROSC NDS scores. Given the success of this study, 
Ghassemi et al. used TsEnA with q = 2 as one of the 
features to predict CA outcome in patients undergoing 
hypothermia.

– Cepstrum coefficients (CP) is the inverse of the Fourier 
transform of the log-magnitude of the spectrum of the 
signal [58]. CP provides information about rate of change 
in different spectrum bands and is widely used as a fea-
ture vector in signal processing.

(17)TsEn =
1 −

∑N

i=1
(pi)

q

1 − q
,

(18)TsEnA =

t2�

t1

N1−q +
∑N

i=1
(pi)

q

1 − q
for q ≠ 1
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– Maximum phase lag index ( PLIMax ) across all EEG chan-
nels was used as a measure of connectivity/synchroniza-
tion. It is known that the phase lag index characterizes 
the asymmetry of the distribution of phase differences 
Δ� between two signals [59] and can be calculated as

where {ti|i = 1, ...,N}are the time indices. PLI is within 
the range of zero to one. A value of zero indicates 
either no coupling or coupling with Δ� centered around 
0 mod � , while a value of one means phase locking at a 
Δ� different than 0 mod �.Ghassemi et al. used the maxi-
mum values of PLI over all EEG channels as one of the 
additional features for CA outcome prediction.

– A binary low voltage state measure to detect the EEG less 
than 1 μV.

A logistic regression model was applied to the aforemen-
tioned EEG features to obtain the enhanced cerebral recov-
ery index (ECRI) and to estimate a dichotomized CPC score 
at discharge (CPC scores of 1–2 vs. CPC scores of 3–5). A 
one-leave-out cross-evaluation of the proposed method on 
EEG data of 167 CA patients spanning from three institu-
tions revealed that (comparing to CRI) the ECRI increased 
the accuracy of prognostication in the first 24-h post-CA by 
an average of 27%.

These results confirm the efficacy of employing the com-
bined features in prognostication of CA outcome for the 
patients undergoing the hypothermia.

3.4.3  Bispectral Index

Bispectral index (BIS) is a quantitative measure of EEG 
that is measured by a commercially available device from 
ASPECT Medical Systems Inc., MA, USA. The first version 
of the product entered the market in 1994, and since then 
BIS monitors have undergone various updates both in terms 
of software and hardware. Frontotemporal adhesive sensors 
are used to capture the surface EEG, then a weighted sum 
of several EEG features are obtained (including frequency 
below which 95% of the power spectrum resides, the relative 
beta ratio, BSR, and a measure of EEG phase coupling), and 
then a number in the range of 0–100 is reported to indicate 
the level of awareness [48]. BIS is simple to apply, how-
ever the exact algorithm to calculate the index is proprietary 
information. In fact, the use of BIS monitors to track the 
hypnotic component of anesthesia has been controversial 
at times [45].

Several recent studies have been able to use BIS for the 
prediction of CA outcome for the patients undergoing hypo-
thermia. The majority of these studies have revealed that 
the mean BIS values are significantly lower in the patients 
with poor outcomes (CPC of 1 and 2) [48, 60–67]. A BIS 

(19)PLI = ||< Sign[Δ𝜙(ti)] >
||,

cutoff-point in a range of 35–45 has shown an accuracy 
above 0.85 in prediction of the poor outcome [60, 61, 63, 
65, 67]. More details about the results of these studies can 
be found in Table 2.

4  Discussion and conclusion

Early and accurate assessment of brain recovery and neu-
rological outcome after CA can substantially help with the 
optimal healthcare management of the CA patients, and 
minimizing related emotional and financial costs for their 
families. Over the last few decades, several prognostication 
markers of CA outcome have been developed using vari-
ous modalities including clinical examination, biochemical 
markers, electrophysiological testing, and neuroimaging 
[9]. Clinical examination outcomes such as the absence of 
motor response to painful stimuli, presence of myoclonus 
status epilepticus, and lack of brainstem reflexes have been 
widely used for CA prognostication [17, 68]. Biochemical 
markers of cerebral injury such as increased levels of lactate 
and Neuron-Specific Enolase (NSE) have been employed 
to predict the CA outcome, as well [69, 70]. The loss of 
distinction between gray and white matter measured by com-
puter tomography (CT) [71], or reduced glucose metabolism 
detected by position emission tomography (PET) are other 
potential prognostication markers of CA outcome [72].

Hypothermia is shown to be one of the most effective 
neuroprotective methods for improving the CA functional 
outcome in animal models of global ischemia [33, 73, 74] 
and human clinical trials [75, 76]. Moderate hypothermia 
is the process of reducing the body core temperature to a 
range of about 32–34 °C (90–93 °F), and maintaining it for 
12–24 h, to ensure organ perfusion and oxygenation [77]. 
However, the use of sedative and paralytic agents affects 
sensitivity of the conventional CA prognostication markers 
and changes their optimal timing for the outcome predic-
tion [7, 9, 11–15]. Hence, currently there is no universally 
accepted method for CA outcome prognostication of the 
patients treated with hypothermia [7].

EEG monitoring has been shown to be useful in early 
CA outcome prediction [78], but the subjective and time-
consuming visual EEG interpretation limits its applicability 
as the preferred prognostic method. Automatic EEG pat-
tern recognition using quantitative measures of EEG can 
overcome these barriers [54]. Thus, over the last few years 
there has been a growing interest in development and study 
of quantitative EEG prognostication markers [42]. Given 
the applicability of EEG monitoring and the significance of 
hypothermia in the prognostication of the CA outcome, in 
this work, we reviewed the existing literature on the employ-
ment of the quantitative measures of EEG to predict the 
outcome of CA in the patients treated with hypothermia.
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An injury to the brain system can adversely affect its 
complexity. Thus, the use of entropy (a measure of system’s 
complexity) may assist in tracking the recovery status of 
the brain after CA. Given this premise, a majority of the 
developed CA prognostication markers are entropy-based. 
Spectrum entropy, approximate entropy, multiple Scale 
entropy, and Wavelet subband entropy have all proved to be 
useful in CA outcome prediction for the subjects undergoing 
hypothermia [18, 21, 26, 28, 33]. In general, higher values of 
these entropy-based measures have been shown to be associ-
ated with better neurological outcomes. Among the features, 
multiple scale entropy and Wavelet subband entropy can pro-
vide a more comprehensive characterization of the signal’s 
complexity, as they include more spatiotemporal informa-
tion. However, they require higher computational complexity 
which may be an issue for automatic real-time EEG analysis.

A clinically accepted marker of brain injury is burst 
suppression activity in EEG [57]. Few burst suppression 
features have been successfully employed for CA outcome 
prediction during hypothermia [21, 28, 33]. Lower burst sup-
pression ratio and higher burst suppression frequency have 
been generally associated with better outcomes.

Information quantity-based measures have demonstrated 
better tracking capability for both frequency changes and 
dynamic amplitude changes relative to conventional entropy-
based measures [19, 49, 52, 53]. Brain injury results in a 
reduction of information quantity, and thus, higher values 
of information quantity are associated with better outcomes.

It is well-known that brain is a non-linear time-variant 
system, and EEG is a quasi-periodic and non-stationary sig-
nal. Thus, a single EEG feature may only provide limited 
information about the status of such a complicated system. 
On the other hand, combining EEG features may improve 
the accuracy of CA prognostication. The original cerebral 
recovery index and its enhanced version were developed 
based on this premise [10, 54]. Although these two indices 
have demonstrated some promising results in CA outcome 
prediction, their further enhancement in terms of prediction 
sensitivity is needed to be clinically acceptable.

Currently, there are few commercially available prod-
ucts to extract the EEG features. For example, the entropy 
module of Datex-Ohmeda (GE Healthcare, Helsinki, Fin-
land) can be used to extract state entropy, relative entropy, 
and BSR. BIS monitors by ASPECT medical systems, 
MA, USA can also extract BSR and BIS values. These 
commercially available monitors are simple to use by cli-
nicians. However, some degree of variability among dif-
ferent monitors/models and consequently the extracted fea-
ture values should be expected, especially because some 
of these products (e.g., BIS monitors) have undergone 
various software/hardware updates throughout the years. 
In general, significantly lower BIS values have been asso-
ciated with poor outcome (CPC of 1 and 2) in CA patients 

[48, 60–67], and a BIS cutoff-point in the range of 35–45 
has shown an accuracy of above 0.85 in prediction of the 
poor outcome in patients treated with hypothermia [60, 
61, 63, 65, 67].

One potential approach to design a highly accurate CA 
outcome classification system is to apply advanced machine 
learning algorithms (e.g., support vector machines, decision 
trees) to a large vector of various EEG features (including 
those measured by commercially available products). Recent 
advancements in data mining techniques have enabled the 
efficient handling of the inherent variability in the extracted 
features (such as those due to employment of different BIS 
monitors). Inclusion of quantitative features from other 
modalities (e.g., biochemical markers or neuroimaging) 
could further enhance the classification accuracy [9, 21, 
64]. For example, in [21], Wennervirta et al. showed that 
the accuracy of CA outcome prediction can be consider-
ably improved by combining a biochemical marker (protein 
100B) and an EEG feature (wavelet subband entropy). How-
ever, their small cohort study prevented them from perform-
ing statistically reliable techniques such as cross-validation 
to validate their prediction accuracy on an independent data-
set. In a larger study cohort (75 patients), Stammet et al. 
were able to enhance the accuracy of CA outcome prediction 
by more than 5% (statistically significant) with combining 
the S100B and BIS information [64] .

In general, the reliable implementation of machine learn-
ing approaches requires a large dataset of CA subjects with 
clear documentation of physiological and clinical data fol-
lowing CA. A potential solution to overcome this challenge 
is the conduct of multi-institution research collaborations 
where the multimodality data is consistently and uniformly 
collected and shared among researchers to facilitate the 
development of reliable methods to predict the CA outcome.
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