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Abstract With the motivation of providing safety for a

patient under anesthesia, this paper suggests conditions for

evaluating the correctness of an available user interface for

systems under shared control based on observability and

predictability requirements. Situation awareness is neces-

sary for the user to make correct decisions about the inputs.

In this article, we develop a technique to investigate the

conditions under which an anesthetists can attain situation

awareness about a limited but important aspect of anes-

thesia, namely depth of hypnosis (DOH). Furthermore, we

consider that, in practice, to attain situation awareness, the

estimation of the task states does not necessarily need to be

precise but can be bounded within certain margins. Hence,

attaining situation awareness about DOH is modeled as a

bounded-error delayed functional observation/prediction.

Unless such an observer/predictor exists for a system with

a given user-interface, the safety of the operation may be

compromised. The suggested technique proves that, in

order to provide safety for the patient under anesthesia, it is

necessary for the anesthetist to have access to the predic-

tive information from a clinical decision support system.

Keywords Bounded-error � Functional estimator � Delayed
estimator � User-modeling � Situation-awareness

1 Introduction

We consider an anesthetist trying to monitor and control

the depth of hypnosis (DOH) of a patient during an oper-

ation. For such an example, obviously, misunderstanding

about the DOH and its evolution in time can result in

wrong administration of the anesthetic drug, putting the

patient at risk of becoming conscious and aware in the

middle of the operation or going into a state of too deep

hypnosis. Hence, designing a comprehensive display with

carefully selected information, to provide the user with

adequate understanding about the situation, is a critical step

when designing an anesthesia clinical decision support

system (CDSS). In fact, for any system, designing an

effective display is of critical importance.

Many researchers have discussed the efficient presen-

tation of displayed information [4, 43], however, not

enough effort has been put on determining what the dis-

played information should be in the first place. In our

previous papers, we suggested techniques based on sub-

space analysis [14, 16] and modeling the user [15, 18] to

analyze and to design the displayed information. As in our

previous papers, our approach here is based on the neces-

sity of having situation awareness (SA) for safety of task

accomplishment [10, 12, 13]. As has been mentioned by

several researchers, the user of any system has to be cap-

able of understanding the situation before processing the

information, attempting to make a decision and applying a

control action to the system [3, 38].

Clearly, during a surgical procedure, it is extremely

important for the anesthesiologist to attain SA about the

depth of hypnosis of the patient. However, precise com-

prehension and prediction of the information is too

restrictive. In the majority of the systems in the real world

the users do not require to precisely comprehend and
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exactly predict the task. It is generally enough, for them to

make these estimations within a specific bound. Consider a

driver trying to maintain the speed of a car within the speed

limits. This speed limit prevents the user from exceeding a

specific speed while the user should also not drive too

slowly. Hence, it is important for the driver to be capable of

keeping the speed within the pre-specified bounds. Similar

to the example of the driver, the anesthetist also needs to

make estimations and predictions of the DOH, while, these

estimations/prediction do not need to be precise. In other

words, it is enough for the anesthetist to make estimations

within a safe bound around the actual value of DOH, e.g.

assessing whether the patient is in an acceptable range of

DOH for general anesthesia.

In our previous paper [15], we investigated the cor-

rectness of and then designed the displayed information for

safety critical systems.The technique developed in [15] was

particularly designed to verify the displays which allowed

the user precisely estimate and predict the desired task,

hence, it could be too restrictive to be used for the design of

displays of most systems (i.e. non safety-critical systems).

However, here, we model the process of attaining SA by

the user as a ‘‘bounded-error’’ delayed functional estimator

and design a tool that can be used to evaluate the displays

without being too conservative.

A functional observer is an observer designed to recon-

struct a specific functional of the states of the system. Several

researchers have investigated different aspects of these types

of observers and have designed functional observers for

systems with known inputs [7, 9, 20, 21, 34, 46] and with

fully or partially unknown inputs [9, 17, 19, 29, 45]. In

addition, eigenspace analysis is also used to assess the

existence of functional observers [30]. It is worthmentioning

that the technical result in this work is an extension to our

previous papers on functional observers [15, 17] which were

highly inspired by [7, 21].

We consider a pharmacokinetics pharmacodynamics

(PKPD) [25, 26] model of patients and our goal is to model

the anesthetist as a bounded-error estimator for such a

system. In general, the designed estimator is a valid one for

any linear time-invariant (LTI) system with no noise and

uncertainty. Since, for the systems with no uncertainty it is

usually straightforward to design an observer to precisely

reconstruct the states of the system [32], so far in the lit-

erature, estimators with bounded error have only been

defined and designed for systems with uncertainty and/or

noise [31, 36, 42, 47]. However, here our goal is to model

the human rather than designing an automated observer.

Further, as explained above, we believe that in many sys-

tems the human does not require to perform precise esti-

mation of the desired states. We, therefore, need to come

up with an estimator’s model that makes bounded estima-

tions of the desired states of a deterministic LTI system.

More related to our objective, authors of [35, 37] have

determined sufficient conditions for �-convergence of

functional observers, but again, the focus of these papers is

on the systems affected by known or bounded unknown

disturbances.

As the main contribution of this paper, we suggest a

novel technique to check the boundedness of the estimation

and the prediction errors of a desired functional with an

estimator whose dynamics are delayed; the delay corre-

sponding to the user processing delay. We then use this

estimator to evaluate the correctness of the information

available to the anesthesiologists to monitor and control

DOH.

In Sect. 2 of this paper, we discuss the PKPD model—

that is, the structure of the plant, and the observer/anes-

thetist analytically. In Sect. 3 we will introduce a Theo-

rem and Corollary on the existence of and the type of

estimator that we are looking for.

2 Problem statement

Several researchers, [23, 33, 40], have investigated the

importance of attaining SA for an anesthetist to maintain

the safety of the anesthetized patient. In a recent paper,

[22], Fioratou et al. mention that after perceiving the

available displayed information and the information from

the environment, the anesthetist has to integrate all the

available data for the identification of the current and the

future desired patient states. The estimation of the current

states of the system is important for goal accomplishment

and for fault detection. In addition, according to [22], task

prediction is also extremely important for the anesthetist to

be proactive rather than just being reactive.

2.1 Model description

With the goal to analyze the correctness of the displayed

information based on SA requirements, we model a patient

under anesthesia as a delay-free system whose evolution is

described by a noise-free LTI dynamics.

The first step for modeling a patient under anesthesia is

to understand the relationship between the dose of the drug

and its pharmacological effect. A well known model,

named the PKPD model, consists of two sub-models, the

pharmacokinetic (PK) and the pharmacodynamic (PD)

models. The PK model, describes the effect of the

administered drug on the drug plasma concentration while

the PD model, describes the relationship between the drug

concentration at the effect site (i.e. the brain for DOH) and

the observed effect of the drug (DOH).

To model the effect of propofol administration on the

depth of hypnosis we consider a simplified PKPD model
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described in [25, 26]. The PK model that we use is the

3-compartment model developed in [41] to evaluate the

effect of propofol infusion on the drug concentration in

different compartments. With a compartment being a group

of tissues which have similar kinetic characteristics, a

3-compartment model has three states, i.e. concentrations

in i) the blood and highly perfused tissues (e.g. the liver),

ii) the muscles and viscera, and iii) fat and bones. To create

the PD model, we consider the effect site concentration of

the drug and linearize the Hill equation to obtain the depth

of hypnosis based on this state of the system [15].

Assuming no transport delay, we use the following model

for the system,

_xðtÞ ¼ AxðtÞ þ BuhðtÞ þ Fra: ð1Þ

with

A ¼
Apk 0

kd 0 0 � kd

� �
;

B ¼
Bpk

0

� �
;

ð2Þ

where

Apk ¼
�ðk10 þ k12 þ k13Þ k12 k13

k21 � k21 0

k31 0 � k31

2
64

3
75;

Bpk ¼
V�1
1

0

0

2
64

3
75:

ð3Þ

In (1), uhðtÞ 2 Rmb is the low-level human input, con-

trolled by the user, and ra 2 Rmf is the reference trajectory,

tracked by the automation. In this paper we consider

operating conditions in which the reference trajectory is

time-invariant, e.g. corresponding to the maintenance

phase of anesthesia. The matrix F can be designed to make

the output follow the reference trajectory. In (2) and (3), kij
and kd are rate constants and V1 is the volume of the

plasma compartment.

In real applications, the anesthetist has access to various

information about each patient, including DOH, heart rate,

blood pressure, SpO2 and ECG. However, to our best

knowledge, nobody has developed a patient model that can

capture all these parameters. Hence, we mathematically

model the output

y1ðtÞ ¼ CxðtÞ;
y2ðtÞ ¼ Dra;

ð4Þ

such that it consists of two sets of measurements, (1)

y1 2 Rpx , the measured states of the system, including the

DOH and probably the plasma concentration and (2) y2 2
Rpr the measured reference trajectory, including the desired

goal of the automation. In (4), C and D matrices are of

compatible sized.

Based on the theory of SA, it is necessary for the

anesthetist to be able to comprehend and predict the

information regarding DOH, otherwise it might not be

possible for them to safely control its value [10]. In our

previous paper [15], we investigated the possibility that the

anesthetist could estimate the current and future DOH with

complete precision and could show that by only measuring

the depth of hypnosis, it would not be possible for the

anesthetist to precisely predict DOH. This states that the

SA cannot be precisely achieved by the anesthetist to

perform a task on DOH while only having access to

information about DOH. However, intuitively, the anes-

thetist does not require to precisely reconstruct and predict

the task (i.e. reconstruction and prediction of the DOH

within acceptable bound of error, e1 and e2, would be

sufficient).

We, thus, model the anesthetist as a bounded-error

delayed observer/predictor to reconstruct the functional

z0ðt þ sÞ ¼ Txðt þ sÞ; 0� s; ð5Þ

where s defines the prediction horizon. Our desired task

which is controlling the depth of hypnosis can be defined as

Tx ¼ 0 0 0 chð4EC50Þ�1
� �

x; where EC50 is the 50%

effect concentration and ch is the cooperativity coefficient.

For more details on EC50 and ch see [25–27].

We assume that c derivatives of the measured states and

k derivatives of the inputs are known by the anesthetist and

they use these values to make correct estimations about the

task. For the sake of clarity and to omit unnecessary

complications, we simply assume c& k 2 f0; 1g [15].

Using a similar procedure as in Sect. 3, the reader can

easily obtain the results for larger values of c and k. In
addition, reconstruction and prediction of the desired states

of the system are considered to be delayed [6, 14, 15].

According to the concepts on the data-driven (bottom-

up) and goal-directed (top-down) information processing

[11, 13] and also since a good user need to be capable of

focusing on the task-relevant information [2, 5, 39] we

consider the anesthetist to be a functional estimator rather

than a full-state estimator. Hence, we assume that in order

to reconstruct depth of hypnosis, the anesthetist does not

put effort in estimating all observable states. Instead, they

only focus on the combinations of the states whose

reconstruction and prediction are necessary for the esti-

mation of DOH. Hence, mathematically we consider the

anesthetist to be a functional estimator with the goal of

reconstructing and predicting the depth of hypnosis. More

discussion on the reasons behind modeling the SA process

as a functional estimator is provided in our previous paper

[15].
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2.2 Data selection

In the previous work, we assumed the anesthetist knew the

precise dynamics of each patient. This, however, does not

sound like a reasonable assumption. The internal estimator

of the anesthetist can be considered to be formed based on

a model of a nominal patient. This nominal model is the

understanding of the anesthetist about an average patient in

a specific category (e.g. children or adults) and is created

from the real responses of various patients. In this paper,

we model the human as an estimator designed based on a

nominal system, we then evaluate whether the obtained

model can be used to reconstruct and predict the DOH of

each patient within the desired bounds.

For the patients with average response to the administered

drug, the PKPD coefficients are presented in Table 1. The PK

parameters are estimated from [1] and the PDvalues are from

[28]. We randomly select two sets of coefficients in Table 1

to form the nominal model of an average-patient that the

anesthetist knows internally. We then investigate the chan-

ces that with such an internal understanding about an average

patient, the anesthetist can attain SA regarding the desired

task within the acceptable bounds for each patient.

For our analysis, we consider two type of measurements

which include (1) only the DOH [rankðCÞ ¼ 1 and

rankðDÞ ¼ 0], (2) the DOH, the plasma concentration;

although measuring the plasma concentration is beyond

current state of technology; and the automation’s desired

trajectory [rankðCÞ ¼ 2 and rankðDÞ ¼ 1]. In addition, we

consider three values for the prediction horizon, s, to

analyze the capability of the anesthetist to perform shorter

and longer term predictions.

2.3 Generalization to LTI systems

Although, we have formulated the problem based on the

requirements of our application, all the results that we

obtain are valid for LTI systems of form (1) with outputs

formulated in (4) and task as in (6).

As it is straightforward to design a simple feedback

controller to manipulate the poles of the system, to gen-

eralize our equations we need to impose the following

assumption.

Assumption 1 No poles of matrix A are placed on the

imaginary axis.

In addition, in (5), the task matrix T 2 Rl�n consists of

l linear combinations of the states. As in our previous

papers [15, 16, 18], we formulate the task as a function

f : Rl ! Rs with s subtasks:

F ¼ fx j f ðTxÞ� 0g: ð6Þ

In some cases, the direct estimation of the functional

z0ðt þ sÞ is not feasible and in order to estimate that

functional, the user requires to also estimate the functional

Rxðt þ sÞ where R 2 RX�n. Hence, we introduce the

extended functional as

zðt þ sÞ ¼ T

R

� �
xðt þ sÞ; ð7Þ

where R is selected such that L ¼ ½TT ;RT �T is of full row

rank.

In generalization of the assumption we made about the

anesthetist focusing on DOH rather than estimating all

observable states, we impose the following assumption.

Assumption 2 In order to reconstruct the desired func-

tional, the user does not estimate all observable states

unless reconstructing all observable states is feasible and

necessary for the estimation of the desired functional.

Detailed discussion on the human specifications and the

assumptions of Sect. 2 can be found in our other paper,

[15], and is thus omitted here.

2.4 Problem formulation

Now, consider the same structure for the estimator/anes-

thetist as in [15],

Table 1 Patients’ parameters

from [1, 28]
Patient k10 k12 k13 k21 k31 V1 kd EC50 E0 c

1 0.0068 0.0019 0.0007 0.0009 0.0001 20.164 1.15 3.95 93.11 1.74

2 0.0062 0.0019 0.0007 0.0009 0.0001 11.5058 1.34 4.24 92.46 1.90

3 0.0062 0.0019 0.0007 0.0009 0.0001 10.0848 10.71 5.77 91.47 1.56

4 0.0061 0.0019 0.0007 0.0009 0.0001 12.331 1.12 4.84 91.6 1.55

5 0.0065 0.0019 0.0007 0.0009 0.0001 28.0782 3.84 3.97 92.91 1.62

6 0.0062 0.0019 0.0007 0.0009 0.0001 10.7266 1.89 3.57 94.58 1.57

7 0.0062 0.0019 0.0007 0.0009 0.0001 10.5432 4.55 4.81 92.89 1.55

8 0.0059 0.0019 0.0007 0.0009 0.0001 26.8164 1.46 3.71 91.68 1.75

9 0.0062 0.0019 0.0007 0.0009 0.0001 11.5975 1.16 5.44 90.30 1.52

10 0.0063 0.0019 0.0007 0.0009 0.0001 22.44 7.41 3.60 91.38 1.82

1046 J Clin Monit Comput (2017) 31:1043–1052

123



_xðtÞ ¼ NxðtÞ þ J1Y0:cðtÞ þ J2y2ðtÞ þ HU0:kðtÞ
ẑðtÞ ¼ xðt � s1Þ þ EY0:cðtÞ

ð8Þ

where Y0:cðtÞ is the extended measured states and U0:kðtÞ is
the extended inputs. The estimator in (8) produces delayed

and non-delayed estimations of current and upcoming

values of a desired functional of states. In (8), xðtÞ 2 RlþX

is the state of the estimator and s1 is the estimation delay.

Note that in our application, ẑ shows the understanding

of the anesthetist about the states of the system, Y0:c shows

the knowledge of the anesthetist about the measured values

and their derivatives, and U0:k presents their knowledge of

their own input to the system.

Analytically, the extended output vector can be written

as

Y0:cðtÞ ¼ OcxðtÞ þM1;0:cU0:cðtÞ þM2;cra; ð9Þ

where for c 2 f0; 1g, the observability matrix Oc 2
Rðcþ1Þpx�n , a Toeplitz matrix M1;0:c 2 Rðcþ1Þpx�ðcþ1Þpx , and

matrices M2;c 2 Rðcþ1Þpx�pr and U0:cðtÞ 2 Rðcþ1Þpx are

defined as follows,

O0 ¼ C; O1 ¼ ½CT ;ATCT �T

M1;0:0 ¼ 0; M1;0:1 ¼
0 0

CB 0

� �

M2;0 ¼ 0; M2;1 ¼
0

CF

� �

U0:0ðtÞ ¼ uh; U0:1ðtÞ ¼ ½uhTðtÞ; _uhTðtÞ�T :

ð10Þ

It is desirable to determine a stable matrix N and

matrices J1, J2, H, and E with compatible dimensions to

make the estimation error remain bounded within a pre-

specified bounds, e1 and e2.

Our aim in this paper is to solve the following problem.

Problem Determine the required information for the

anesthetist in order to safely anesthetize a patient.

Hence, analytically we first need to determine the

following.

Subproblem Evaluate the existence of a bounded-error

delayed functional observer/predictor based on the avail-

able displayed information.

3 Methodology and analytical results

Considering the anesthetists/users to be a bounded-error

delayed functional estimator, we come up with a Theo-

rem to determine the information which is necessary for

them to perform their desired task safely.

From (1), (7), and (8), we have the prediction error

eðtÞ ¼ ẑðtÞ � zðt þ sÞ
¼ xðt � s1Þ þ EY0:cðtÞ � Lxðt þ sÞ
¼ xðt � s1Þ þ EOcxðtÞ þ EM1;0:cU0:cðtÞ þ EM2;cra � Lxðt þ sÞ:

ð11Þ

Since in general the delay is small, for the cases that the

value of prediction horizon is infinitesimal or when, in the

window of prediction, the rate of changes of the input is

constant with time, we can write

uhðtÞ ¼ uhðt� s1Þ þ s1 _uhðt� s1Þ;
uhðtþ sÞ ¼ uhðt� s1Þ þ ðsþ s1Þ _uhðt� s1Þ þ ss1€uðt� s1Þ:

ð12Þ

In [15] we showed that

xðtÞ ¼ eAs1xðt � s1Þ þ h1uðt � s1Þ þ h2 _uðt � s1Þ þ h3ra;

xðt þ sÞ ¼ g1xðt � s1Þ þ g2uðt � s1Þ þ g3 _uðt � s1Þ
þ g4€uðt � s1Þ þ g5ra;

ð13Þ

where

d1, ðeAs � IÞA�1B;

d2, ððeAs � IÞA�1 � sIÞA�1B;

d3, ðeAs � IÞA�1F;

h1, ðeAs1 � IÞA�1B;

h2, ððeAs1 � IÞA�1 � s1IÞA�1B;

h3, ðeAs1 � IÞA�1F;

g1, eAðsþs1Þ;

g2, d3 þ eAsh3;

g3, d1 þ eAsh1;

g4, d2 þ s1d1 þ eAsh2;

g5, s1d2:

ð14Þ

Hence, under the assumption that c and k are selected

from f0; 1g, the error dynamics can be written as

_eðtÞ ¼ NeðtÞ þ ðNLgþ ½E J1 K J2 H�Q1 � Q2Þ

xðt � s1Þ
ra

uðt � s1Þ
_uðt � s1Þ
€uðt � s1Þ

2
6666664

3
7777775
;

ð15Þ

where g ¼ ½g1 g2 g3 g4 g5�, K,J1 � NE and for

i 2 f1; � � � ; 5g, Q1;i and Q2;i are defined in (16) and (17)

respectively.

In (16), M1;0 ¼ 0px�mb
and M1;1 ¼

0

CB

� �
.
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Remark Having the error dynamics (15), our goal is to

design the estimator matrices in (8) such that the steady-

state error remains bounded for all feasible combinations of

the inputs and the initial states.

We define a matrix XU 2 Rn�i which columns are

selected to be all i feasible combinations of states, inputs,

and input derivatives of a system, and formulate

C1, �e1 þ LgXU

C2, �e2 þ LgXU

T1,Q1XU

T2,Q2XU:

with �e1 ¼ fe1; e1; � � � e1g and �e2 ¼ fe2; e2; � � � e2g have

i columns.

Proposition 1 For a system of form (1) with a given

feasible combinations of state-input, XU, there exists a

bounded error estimator of form (8) to reconstruct the

functional zðt þ sÞ iff there exists a random vector V, a

stable N, and a matrix Z, to satisfy

• T2� NC2 �VT1 � T2� NC1: ð18Þ

• when s1 6¼ 0,

NðZTa;1 þ VTb;1Þ þ ZðTa;2 � Ta;3Þ þ VðTb;2 � Tb;3Þ ¼ 0

ð19Þ

where

Ta;1 Ta;2 Ta;3 Ta;4
� �

, ðI � T1T1
þÞ;

Tb;1 Tb;2 Tb;3 Tb;4
� �

, T1T1
þ:

and Ta;i and Tb;i are of compatible dimensions.

Proof We need to find the estimator matrices to always

keep the steady-state error bounded within the desired

values. With the error dynamics provided in (15) and since

we consider the state-input vector to be constant, the error

evolves as

eðtÞ ¼ eNteð0Þ þ Fr ð20Þ

where the forced response, Fr, is

Fr ¼ ðeNt � IÞN�1ðNLgþ ½E J1 K J2 H�Q1

� Q2Þ

xðt � s1Þ
ra

uðt � s1Þ
_uðt � s1Þ
€uðt � s1Þ

2
66664

3
77775:

Mathematically, we want the steady-state error to be

bounded within pre-specified values e1 and e2 all the time.

Considering that N will be designed to be stable, the

boundedness can be formulated as

Ne1 �ðQ2 � ½E J1 K J2 H�Q1 � NLgÞ

xðt � s1Þ
ra

uðt � s1Þ
_uðt � s1Þ
€uðt � s1Þ

2
66664

3
77775�Ne2;

ð21Þ

where � shows the element-wise inequality.

From (21) we can write
NC1 � CT � NC2 ð22Þ

where

CT,T2 � ½E J1 K J2 H�T1: ð23Þ

• Proof of (18) Based on the methods in [8, 15, 21], since

½E J1 K J2 H�T1 ¼ T2 � CT , the solution exists for

½E J1 K J2 H� if and only if

Q1 Q1,1 Q1,2 Q1,3 Q1,4 Q1,5
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

OγAeAτ1 Oγ(Aθ3 + F ) Oγ(Aθ1 + B) Oγ(Aθ2 + τ1B) + M1,γ τ1M1,γ

Oγ(I − eAτ1) −Oγθ3 −Oγθ1 −Oγθ2 − τ1M1,γ 0
OγeAτ1 Oγθ3 + M2,γ Oγθ1 + M1,γ Oγθ2 + τ1 M1,γ 0

0 D 0 0 0
0 0 I 0 0
0 0 0 λI 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ð16Þ

Q2, Q2;1 Q2;2 Q2;3 Q2;4 Q2;5½ �
, LAg1 LðAg2 þ FÞ LðAg3 þ BÞ LðAg4 þ Bðsþ s1ÞÞ LðAg5 þ Bss1Þ½ �

ð17Þ
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rank½T1� ¼ rank
T2 � CT

T1

� �
; ð24Þ

which is equivalent to saying that for the existence of a

solution to ½E J1 K J2 H� it is necessary and sufficient

that there exist a CT such that T2 � CT be a linear

combination of the rows of T1. Hence, ½E J1 K J2 H�
has infinite number of solutions for arbitrary values of

V where

CT ¼ T2 � VT1: ð25Þ

From (22) and (25), Condition (18) is proved and for

the stability of the observer, a stable N have to exist.

• Proof of (19) In addition to satisfaction of (18) and

stability of matrix N, it is required to choose N to satisfy

J1,K þ NE.

When s1 ¼ 0, J1 can be selected arbitrarily. However,

when s1 6¼ 0, J1 is not an arbitrary matrix and we need

to select the triplet (N, Z, V) such that N is stable and

J1 ¼ K þ NE. For more discussion, see [15]. The

solution to ½E J1 K J2 H� is as follows
½E J1 K J2 H� ¼ ðT2 � CTÞT1þ þ ZðI � T1T1

þÞ
¼ ZðI � T1T1

þÞ þ VT1T1
þ: ð26Þ

From (26) and the condition J1 ¼ K þ NE, (19) can be

achieved.

The steady-state error of the estimator will be maxi-

mized when the forced response of the error is maximum.

This happens at a specific combination of N,

½E J1 K J2 H�, states, inputs, and input derivatives. The

goal here is to keep the maximum steady state error

bounded.

Definition 1 The direction of xumax—that is, the (in-

put,state) vector that maximizes the error, is that of the

singular-vector corresponding to the maximum singular-

value of G, where G is the input-output transfer matrix of

the error dynamics at a desired frequency [44].

From (15), we introduce

Ae,N�

Be,N�Lgþ ½E� J�1 K� J�2 H��Q1 � Q2

Ce, I;

ð27Þ

where N� and ½E� J�1 K� J�2 H�� are a feasible solution of

the estimator matrices. Define G to be the transfer matrix

representation of ðAe;Be;Ce; 0Þ at a desired frequency.

From Definition 1, xumax can be obtained as the singular-

vector corresponding to the maximum-singular value of

G. We can then define the following Theorem.

Theorem 1 For a system of the form (1), if there exists an

estimator of form (8) to make bounded-error estimations of

the current and/or upcoming desired functionals of the

states, then the conditions in Proposition 1 are satisfied

and for the calculated N�, ½E� J1
� K� J2

� H��, and xumax, a

pair ðCT ; ZÞ exist to satisfy the following conditions

1. ZðI � T1;�T1;�
þÞ � CTT1;�

þ þ T2;�T1;�
þ

� E� J1
� K� J2

� H�½ �
¼ 0 ð28Þ

2. N�C1;� �CT �N�C2;� ð29Þ

In (28) and (29)

C1;�, e1 þ Lgxumax

C2;�, e2 þ Lgxumax

T1;�,Q1xumax

T2;�,Q2xumax:

Proof As we obtained xumax to be the error-maximizing

vector of a system with ½E J1 K J2 H� ¼
½E� J1

� K� J2
� H�� and N ¼ N�, Theorem 1 shows that

with the obtained ½E J1 K J2 H� and N and with xumax, still

the estimation error can remain bounded (within the pre-

specified values e1 and e2).

Note that satisfaction of (28) and (29) are not necessary

for the existence of the bounded error observer due to the

fact that the designed estimator from Proposition 1 is not

unique. Hence, if the designed estimator in Proposition 1

does not satisfy the conditions in Theorem 1, still several

other estimators may exist which can bound the maximum

error of estimation.

The sufficient condition in Theorem 1 will become a

necessary and sufficient condition by applying recursion,

such that the calculated xumax be added to the vector XU at

each stage and a new estimator be designed till all condi-

tions in Theorem 1 are satisfied. The convergence of such a

recursion however remains an open issue. It is, therefore,

easier to solve the conditions in the Proposition 1 and

Theorem 1 simultaneously to obtain the necessary and

sufficient condition.

Corollary 1 Having matrix XUr with columns randomly

selected to be feasible (input,state) vectors of the process,

there exist a bounded error estimator of form (8) to keep

the estimation error within the pre-specified bounds iff the

following conditions are simultaneously satisfied.

• There exist a random vector V, a stable N, and a matrix

Z, to satisfy (18) and (19) for XU ¼ XUr.

• For the corresponding N�, ½E� J1
� K� J2

� H��, and the

bounded xumax, there exists a pair ðCT ; ZnÞ to satisfy

(28) and (29), for Z ¼ Zn.
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If the conditions in Corollary 1 are all satisfied, the

estimator that gives bounded delayed estimations and

predictions of the desired task exists and is not necessarily

unique. Hence, among all estimators that may exist based

on the nominal model, some may let the anesthetist attain

SA about DOH of other patients and some may not. It is,

however, not clear which of the many estimators that exist

is the closest model to the internal estimator of the anes-

thetist. We, therefore, perform a statistical analysis to

determine the chances that the anesthetist can attain SA

about various patients based on different internal

estimators.

4 Results and discussion

For each nominal model and each combination of the

measurements and s, we design fifty estimators; if there

exists any; and then evaluate whether the designed esti-

mator is effective to attain SA about other patients. The

results are provided in Tables 2 and 3. Each table shows the

chances (percentage) that the estimators designed based on

a given nominal model are effective to make bounded-error

estimations for other patients. As expected, the estimators

designed to perform bounded error estimations for the

nominal models 2 and 7 are effective to perform correct

estimations for Patients 2 and 7 (respectively) all the times.

To discuss the results of Tables 2 and 3 in detail, we first

clarify the difference between the selected values of the

prediction horizon, s ¼ 0:5, s ¼ 5, and s ¼ 20. The very

short prediction horizon, s ¼ 0:5, means that predicting a

very short step ahead is desired and the explicit prediction

of the states is not required for attaining SA. On the other

hand, by s ¼ 5 and s ¼ 20 we mean that in order to

attain situation awareness, the anesthetist is required to

make explicit predictions 5 and 20 s in advance,

respectively.

From the results obtained for s ¼ 0:5, we can see that

the estimator designed based on the nominal internal model

of the anesthetist, is not necessarily capable of recon-

structing and predicting the task for each individual.

However, we need to notice that the possibility of making

correct bounded estimations depends on the similarity

between the actual and the nominal PKPD models. In

addition, it can be seen that when the amount of measured

information in the display is increased, it becomes less

possible for the anesthetist to make correct estimations on

various individuals based on the internal model. This might

be due to the fact that by introducing additional measure-

ments the internal estimator of the anesthetist is designed

more specifically for the available internal nominal model.

Yet this reduced accuracy of the predictions while having

additional displayed information, may not hold for all

combinations of the information. So, further investigation

is required to examine the effect of providing the user with

extra information.

For s ¼ 5 and s ¼ 20, when only the DOH is measured

in the display, the conditions in Corollary 1 are not all

satisfied. So, irrespective of the internal model of the

anesthetist, the anesthetist cannot make correct bounded

estimations of the task. In other words, it is never possible

for the anesthetist to attain SA, even about the patient with

the model being that of the internal nominal model. By

increasing the information in the display, the internal

estimators for the anesthetist can be designed to make

correct estimations on the nominal model. For s ¼ 5, in the

majority of the cases, these internal estimators are not

capable to let the anesthetist attain SA about other patients.

When longer term prediction is required—that is, s ¼ 20,

the anesthetist can only attain SA about the DOH of the

patient if they know the precise model of the patient.

From the results obtained in Sect. 4, regardless of the

nominal model, the type of the measurements, or the def-

inition of the prediction for SA, there is always a chance

that the anesthetist cannot predict the task states within the

desired bounds. Hence, a hazardous situation may occur at

some point.

Because of the importance of the concept of SA in the

safety of operations, and based on the results that show the

existence of the cases that the anesthetist may have lack of

SA about the DOH, we need to seek a way that guarantees

the existence of SA for the anesthetist all the time. The

solution could be providing the anesthetist with SA through

a CDSS which presents predicted effect of the anesthetic

drug on the patients. Two such systems are Navigator

Applications Suite by GE or the SmartPilot View by

Table 2 Percentage

effectiveness of the estimator

designed for nominal model P2

on estimating the task for other

patients

s (s) Rank (C) Rank (D) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

0.5 1 0 100 100 24 100 62 90 70 98 100 30

2 1 5 100 2.5 52.5 5 70 25 7.5 42.5 7.5

5 1 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 1 6 100 6 4 0 4 0 6 4 0

20 1 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 1 0 100 0 0 0 0 0 0 0 0
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Drager [24]. It is still an open issue whether with the

existing uncertainties and with the differences between the

PKPD models used to build these devices and the actual

PKPD values of each patient, the final prediction remains

in the safe bound or not. We may investigate this issue in

the near future.

5 Conclusion

To evaluate the displayed information, we came up with a

technique based on the SA requirements. In this technique,

we considered the user as a bounded-error delayed func-

tional estimator. For accomplishing a desired task safely,

this estimator has to exist to reconstruct and predict a

specific functional of the states of the system within pre-

specified bounds.

We used our method to investigate an important prob-

lem of safety of an anesthetized patient. Considering the

anesthetist to have an internal nominal understanding about

the patients, we evaluated the chances that the anesthetist

will be able to attain SA about the DOH of each patient

during surgery. We could show that there always exists a

possibility that the anesthetist cannot attain SA about the

patient’s DOH—that is, the understanding of the anes-

thetists about the depth of hypnosis of the patient is not

necessarily correct. This led us to suggest incorporating

automated devices which could provide the current and the

predicted values of DOH directly to the doctor.

Due to the novelty of the approach presented here, there

are many directions that one can take to make the results

more reliable and relevant to practice. As an example, in

practice there will always be a noise introduced by the user

or the device. Hence, considering the noise, nominal-model

uncertainties, and uncertainties arising in the choice of

design parameters such as c and k are necessary additions

to our work. Additionally, while the PKPD model that we

use in this paper only considers the effect of anesthetic

drugs, it is known that the depth of anesthesia is also

affected by the use of analgesics. Furthermore, we cannot

ignore the effect of availability of physiological parameters

such as heart rate and blood pressure in predicting DOH.

Seeking a more detailed model that can capture all various

information which are presented to the user and also

incorporates the effect of different types of administered

drugs on DOH can extensively add to the value of the

results. After applying the developed technique on a more

complicated and reliable model, it would be worthwhile to

determine how different factors (e.g. the nominal internal

model of the anesthetist) may affect the accuracy of the

predictions.

In addition to the suggested future directions, deter-

mining the effect of eigenspace analysis (as in [30]) on the

results of Proposition 1 can be an interesting piece of future

work and may help to provide a better insight about current

mathematical results.
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