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Abstract Quantitative features derived from the time-

based and volumetric capnogram such as respiratory rate,

end-tidal PCO2, dead space, carbon dioxide production,

and qualitative features such as the shape of capnogram are

clinical metrics recognized as important for assessing res-

piratory function. Researchers are increasingly exploring

these and other known physiologically relevant quantita-

tive features, as well as new features derived from the time

and volumetric capnogram or transformations of these

waveforms, for: (a) real-time waveform classification/

anomaly detection, (b) classification of a candidate

capnogram into one of several disease classes, (c) estima-

tion of the value of an inaccessible or invasively deter-

mined physiologic parameter, (d) prediction of the

presence or absence of disease condition, (e) guiding the

administration of therapy, and (f) prediction of the likely

future morbidity or mortality of a patient with a presenting

condition. The work to date with respect to these applica-

tions will be reviewed, the underlying algorithms and

performance highlighted, and opportunities for the future

noted.

Keywords Capnography � Prediction � Classification �
Detection � Screening � Feature extraction

1 Introduction

The measurement of carbon dioxide in the breath using

chemical absorption and infrared methods dates to the mid-

nineteenth century [1, 2]. These early methods provided

mixed expired estimates from the collected expiratory gas,

and their potential applicability to clinical care was rec-

ognized in the ‘‘popular’’ scientific literature of the time

[3]. In the early twentieth century, researchers explored the

nature of the expiratory carbon dioxide curve, including the

physiologic components (e.g. dead space, alveolar gas

etc.), and the shape of the time and volumetric waveform

with methods such as rapid sequential gas volume sam-

pling [4]. However, it was not until the widespread com-

mercial availability of rapid infrared analyzers that the

determination of the partial pressure of carbon dioxide in

the breath was able to move from the physiology research

lab to the ‘‘bedside’’ [5]. This technology initially found

application in anesthesia and later in critical care for a

limited number of uses, and only recently has its applica-

tion spread to other clinical environments and evolved to

new clinical uses [6].

It was in the mid to late 1950s that investigators began

to apply manual and electronic computational approaches

to the fitting of the carbon dioxide and flow curves (i.e.

time and volumetric capnogram) and estimation of

parameters, such as alveolar PCO2 and ventilation [7]. This

was initially undertaken with manual time-consuming

methods (e.g. [8]) that were soon supplemented by analog

computers [7], combined analog/digital computers [9]

(Fig. 1), and, later, with expensive and complex digital

computers [10].

The early capnographs relied on analog electronic

methods to determine the parameters of respiratory rate

(RR) and end-tidal partial pressure of CO2 (PETCO2). The
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introduction of the microprocessor in the early 1970s led to

software-based measurements of respiratory rate and

PETCO2, with one manufacturer integrating CO2 and vol-

ume to calculate alveolar ventilation and carbon dioxide

elimination [11]. However, despite the application by

investigators of computing technology to identify and

classify real-time changes in the capnogram in the late

1980s (e.g. [12–14]), the software algorithms in currently

available commercial devices still do not offer this capa-

bility, and remain focused on robust estimation of respi-

ratory rate, end-tidal measurements, and novel indices.

With PETCO2 and RR typically computed for clinical use

from the time-based carbon dioxide waveform (capnogram),

it was widely understood that the shape of the waveform and

trend data conveyed important clinical information about the

state of the patient and equipment. Despite descriptions in the

literature of the shape of normal and obstructive capnograms

dating back to the early 1960s [15], there remains no widely

accepted standard methodology or library of waveforms to

differentiate between normal and abnormal capnograms as

currently exists for some of the other physiologic signals

(e.g. MIT database for ECG). Prof. Bob Smalhout, an early

proponent of capnography1 published the classic, Atlas of

Capnography [16]. This atlas consisted of over 20 sections of

annotated waveforms of CO2 versus time strip chart tracings

that were derived from his collection of about 6000manually

annotated capnograms. Later publications added to this work

with annotated waveforms from neonates [17] and

mechanically ventilated children [18]. For the last 50 years,

the clinical identification of abnormal waveforms, and

changes of those waveforms, was primarily based on the

visual skill of the observer and, if available, the use of paper

waveformwall charts (e.g. NovametrixMedical Systems) or

monitor-embedded waveform libraries (Teach Mode in

Model 1260 & 7000, Novametrix Medical Systems) [19].

With the growing clinical use of capnography driven in

part by clinical standards and guidelines in anesthesia and

critical care, researchers began to study the capnogram’s

value for screening for disease, detecting abnormal con-

ditions, predicting mortality or values of invasively deter-

mined parameters, and classifying patients into groupings,

such as normal, CHF or COPD, based on features from the

capnogram alone and in combination with other measure-

ments. Those studies included using single or averaged

values of the PETCO2 values as a surrogate for arterial CO2

[20] and as a predictor of survival during CPR [21], as well

as changes in end-tidal CO2 to determine changes in clin-

ical condition (e.g. sudden pulmonary embolism) [22].

New metrics have been defined using the shape or statis-

tical properties of the waveform to distinguish between

different disease states [23, 24]. However, leveraging

information on the shape of the waveform, with or without

contextual information, or in conjunction with a physio-

logic model to allow easier interpretation, as with the

volumetric capnogram, has been limited. Researchers and

companies have been exploring the use of capnographic

features and learning methods for applications such as

classifying patients into one of several classes (e.g. asthma,

CHF, normal), predicting success of an action (e.g. extu-

bation, defibrillation during CPR), and classifying wave-

forms on a real-time basis to detect abnormalities.

In conjunction with the growth of capnography has been

the proliferation of supervised learning methods and their

Fig. 1 Computation of time and volumetric capnographic features

using a combined analog/digital computer with the digital output of

the analog system transferred to the digital computer (CDC 160A

12-bit minicomputer, Control Data Corporation) with a punched

paper tape (�ACM. Reprinted with permission from AFIPS-

FJCC’65. Murphy [9])

1 The continuous graphical time tracing of carbon dioxide from the

breath.
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application to the capnogram for prediction and classifi-

cation. The features of the capnogram that investigators

have explored for use in prediction and classification, and

the clinical applications that have leveraged these features

and learning methods will be reviewed.

2 The signal and its features

The term, capnogram (i.e. the time-based capnogram),

usually refers to the tracing of carbon dioxide over time

rather than the volumetric capnogram, which is the tracing

of carbon dioxide over volume in which the inspiratory

portion of the waveform is usually not shown. Both

waveforms are subdivided into three phases (with a fourth

for inspiration with the time capnogram) associated with

the source of the expiratory gases: (1) gas from the dead

space; (2) gas from the transition between dead space and

alveolar gas; and (3) gas from sequential emptying of the

alveolar volumes (Fig. 2) [26]. From these waveforms and

the respective phases, time- or volume-based features,

usually with a direct physiologic or clinical basis such as

various angles, slopes, normalized slopes, peak values,

durations, or volumes of each phase, areas and derived

values are commonly computed (Table 1). Note that the

terminology used for the phases, the phase transitions,

angles, and slopes, is similar for the time and volumetric

capnogram; it is important to be careful with their usage, as

they are not equivalent.

From the time–based capnogram, estimates of respira-

tory rate, end-tidal CO2, and inspiratory levels of CO2 are

usually reported. The most well-known capnographic

parameter, the end-tidal carbon dioxide value (PETCO2), is

actually one of the least understood. It is often expected to

equate to the arterial value; however, the estimated value

depends on how it is measured and calculated, and on the

patient’s physiology (diffusion, ventilation, cardiac out-

put), with an end-tidal arterial gradient usually present. As

the name suggests, end-tidal value refers to the carbon

dioxide value at end-expiration. However, in practice, the

intent is to provide a value as close as possible to the actual

alveolar partial pressure, and other values, such as the

highest CO2 sample value during expiration, are often

reported.

The respiratory rate derived from the capnogram is

generally determined from the time between the transitions

between expiration and inspiration of each breath. On face

value, the determination of these transitions seems simple,

but, in practice, it can be quite complicated, and obtaining

appropriate breath criteria is dependent on the clinical

environment and application [27, 28]. Note, however, that

to help improve specificity and sensitivity, many manu-

facturers will apply additional ‘‘screening’’ using

algorithms with names such as SARATM [29] and RENETM

[30].

Inspiratory CO2 values or the presence of an elevated

level of inspiratory CO2 is typically reported by commer-

cial instruments and used to indicate the presence of

rebreathing. Of greater use is the inspired CO2 volume, a

quantitative measure of the amount of rebreathing [31].

Measurements of the angles at the transitions during

expiration from phase I to phase II (i.e. take-off angle),

from phase II to phase III (i.e. a angle), and from phase III

to start of the next inspiration (i.e. b angle) have been

determined from the capnogram and used as features for

classification. For example, the slopes and volume-nor-

malized slopes of phase II and phase III of the volumetric

capnogram have been widely used to determine classifi-

cation, with a central portion of each phase fitted with a

line to represent the respective slope. Additionally, the

volumetric capnogram has been further subdivided by

volume within each phase [32] and fitted with functions

[33] to better and more reliably characterize the waveform

and produce derived estimates with greater reproducibility.

Coupling capnography with flow (and volume) mea-

surements allows the estimation of a number of physio-

logically based and clinically interpretable measures of

respiratory function, such as anatomic and physiologic

dead space and the associated normalized ratios, CO2

elimination, and pulmonary capillary blood flow (Table 1).

These measures allow insight into many cardiopulmonary

disorders, including adult (acute) respiratory distress syn-

drome, chronic obstructive pulmonary disease, asthma, and

pulmonary embolism. Viewing the changes in carbon

dioxide as a function of volume, rather than time, allows

for interpretation of the reported values, and changes in

those values, in a context consistent with known physio-

logic concepts. This unified physiologic framework, which

divides the volumetric capnogram into phases I–III [34],

allows for enhanced characterization and interpretation of

the volumetric capnogram using a number of derived fea-

tures (Fig. 2b). One of the features from this framework is

a noninvasive surrogate for anatomic dead space, airway

dead space, estimated by the equal area Fowler method

[35] which uses the fitted ‘‘linear’’ central portions in Phase

III (e.g. 40–80 % of expired volume) and Phase II. This

measure allows airway dead space to be computed on a

breath-to-breath basis for each patient rather than relying

on the problematic rule-of-thumb of 1 mL of dead spa-

ce for every pound of body weight. Brewer et al. [36]

found that this rule, derived from population averages,

when compared to measured airway dead space, showed no

correlation (r2 = 0.0002). Over time, researchers became

concerned about the effect of measurement noise on dead

space volume estimates from the Fowler method and the

resulting variation in these calculated parameters. This led
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to the development of methods with lower dispersion,

which included fitting the expiratory volume of CO2 versus

expiratory volume curve between 40 and 80 % of the

expired volume using first, second, and third order poly-

nomials [37]. More recently, it involved fitting the expi-

ratory volumetric capnogram using a functional

approximation determined with a non-linear least squares

algorithm [33] resulting in decreased intra-patient breath-

to-breath variability and dispersion of the calculated

parameters.

The features discussed in this section are intended to

be interpretable using known physiologic or clinical

concepts. Researchers have also explored the unique

features of the capnogram for use (Table 2) (Fig. 3) in

their learning algorithms that are often more challenging

to interpret in a clinical context. These features include

Fig. 2 a Time-based capnogram. Inspiratory segment (Phase 0) and

expiratory segment (divided into Phases I, II, III,IV) a = angle

between Phase II and Phase III (normal range 100� to 110�),
b = angle between Phase III and descending limb of Phase 0

(inspiration) (normal approx. 90�), T.O. angle = takeoff angle.

(Adapted from Herry et al. [25] � Institute of Physics and

Engineering in Medicine. Reproduced by permission of IOP Publish-

ing. All rights reserved.) b Volumetric capnogram (CO2/Volume Plot)

(inspiratory portion not shown) divided in 3 phases with volumes and

slopes shown (note areas p, q are used to determine airway deadspace

via the Fowlers equal area method)

22 J Clin Monit Comput (2017) 31:19–41
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(a) measures from subdivisions of and derivations of the

volumetric capnogram, (b) measures from the transfor-

mations of the capnogram (e.g. frequency and wavelet

transforms), (c) traditional and non-traditional measures

of time and volume domain statistical properties (e.g.

skew, kurtosis, Hjorth parameters) [38], and (d) mea-

sures from transformations of the derived data and

features.

• You et al. [23] examined new features based on slopes

and area ratios to better characterize the nature of the

transition from phase II to phase III in the time

capnogram, and related those changes to conventional

spirometric measures. Other new parameters have been

derived from the volumetric capnogram to provide

additional physiologic insight, including efficiency [39]

and alveolar ejection volume (analogous to stroke

Table 1 Comparison of known features available in volumetric and time-based capnography

Features Available? Comment(s)

Time Volumetric

End-tidal CO2 Yes Yes Time-based average—method manufacturer dependent; rebreathing

and artifacts complicate calculation

Breathing frequency Yes Yes Upper limit dependent on gas sampling method and technology and

clinical situation

Inspiratory/expiratory times Yes (see

comment)

Yes Time: inspiratory to expiratory transition difficult to reliably measure;

Expiratory to inspiratory transition changes with rebreathing

Volumetric: determined from flow waveform

Inspired CO2 Yes Yes Time: Minimum value often used

Volumetric: Volume of inspired CO2 can be determined

Mixed expired CO2 (PeCO2 or

FeCO2)

N/A Yes Volume-weighted average of CO2

CO2 elimination (VCO2) N/A Yes Net volume of CO2 measured at the mouth or airway, and calculated

as the difference between expired and inspired CO2

Efficiency N/A Yes Ratio of CO2 volume contained in the breath and the volume of CO2

that would have been eliminated by an ideal lung at the same

effective volume and end-tidal fractional CO2

Phase I delineation and duration Yesa Yes Time from start of expiration to increase in PCO2

Volume N/A Yes Volume from start of expiration to increase in PCO2

Phase II delineation and duration Yesa Yes Time: approximate measure available

Volumetric: time from end of phase I to intersection of extrapolated

slopes of phase II and III

Volume N/A Yes Volume during phase II

Slope Yesa Yes Curve fit of central portion of phase II

Phase III delineation and duration Yesa Yes Time: approximate measure available

Volumetric: Time from end of phase II to end of expiration

Volume N/A Yes Volume during phase III

Slope Yesa Yes Curve fit of central portion of phase III

Angles: alpha angle. beta angle Yesa Yes Angle between phase II and III and phase III and start of inspiration

(for time …ranges between 100 and 110 degrees)

Dead spaces airway (‘‘anatomic’’) N/A Yes Volume of the conducting airways at the ‘midpoint’ of the transition

from dead space

Physiologic N/A Yes Total dead space includes alveolar, airway and apparatus dead spaces

Alveolar N/A Yes Dead space that is not airway dead space volume and is calculated by

subtracting the airway dead space volume from the physiologic dead

space

Dead space ratios airway N/A Yes Functional anatomic dead space calculated via Fowler’s method

divided by expired tidal volume

Physiologic N/A Yes Total dead space calculated graphically with Enghoff-modified Bohr

equation or alternate methods

Alveolar N/A Yes Alveolar dead space volume divided by expired tidal volume

a Different context for time and volume
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volume) [40]. Romero et al. [40] computed slopes

normalized by PETCO2 (in mm Hg L-1) of two partially

overlapping regions of phase III of the volumetric

capnogram (50 and 75 % to end tidal PCO2 point of

expired volume) since this is expected to be closer to

the spread of ventilation/perfusion ratios.

• The height and width of the peaks from Fourier

analysis [41], model parameters determined from

autoregressive modeling [41], and coefficients from

wavelet analysis [42] have been used as features to

classify capnograms.

• The Hjorth parameters of activity, mobility, and com-

plexity—normalized slope descriptors used for extract-

ing features from the electroencephalogram—have been

applied by one research group to the capnogram [24].

• Other transformations of the waveform and features,

including the natural log [43], have been explored.

The list of potential candidate features is quite large, and

only features discussed in themedical literature are referenced

in this paper. Bravi et al. [44] provides a thorough list of

techniques, including listing the categories of derived features

(e.g. statistical, geometric, energetic, time-invariant) in the

context of variability analysis that should make it translat-

able to the analysis of waveforms such as the capnogram.

3 Overview of supervised learning methods

The earliest known applications of classification using

features from the capnogram dates to the 1980s and earlier.

For those interested, it is suggested that the reader consult

accessible introductions to machine learning [e.g. 45, 46]

and overviews of techniques potentially useful for clinical

application [44].

Table 2 Selected novel features in volumetric and time-based capnography

Feature category Feature Comments References

Indices Index of Ventilatory Efficiency

(IVE)

Index of Airways Heterogeneity

(IAH)

PE Index

IVE = VAE/(VT - VDaw)

IAH = 1 - [(VT - VD Bohr)/(VT - VD aw)]

(PaCO2 - PetCO2)/slope phase III

[132]

[132]

[82]

Slopes and angles Take off angle

Residuals

SR1

InspSlope

ExpSlope

Angle between baseline and extrapolated phase II slope

Residuals remaining from linear fit over plateau (phase III)

Ratio of expiratory and alveolar plateau slopes

Downward slope at onset on inspiration,

Upward slope at onset of expiration

[25]

[25]

[23]

[25]

[25]

CO2 waveform measures and

statistics

MinPlateau

Width

Sharpness

MinCO2

Skew

Kurtosis

Mean and median

STD

RMS

Minimum CO2 value over plateau

CO2 pulse duration

Ratio of mean to standard deviation of CO2 pulse

Minimum CO2 value over pulse

Ratio between left and right CO2 segments

Kurtosis of CO2 pulse

Mean and median values of CO2 values over expiration

Standard deviation of mean CO2 value over expiration

Root mean square of CO2 values over expiration

[25]

[25]

[25]

[25]

[25]

[25]

[123]

[123]

[123]

Frequency transformations Power spectra

Wavelet

Width and frequency location of fundamental and other

components

Wavelet coefficients

[63]

[42]

Hjorth parameters Activity

Mobility

Complexity

Signal power, the variance of a time function

Proportion of standard deviation of the power spectrum

Change in frequency—similarity to sinusoidal wave

[38]

[38]

[38]

Areas Total_AUC

AUC3

Area under curve

Cross sectional area under the detectable CO2 curve

Area under the alveolar phase

Area under time capnogram (expiratory portion) (Not equal

to VCO2exp)

[123]

[123]

[77]

The features in this table are intended to illustrate the range of features used by the investigators cited in this paper and is not a complete list

VDaw airway dead space, VDBohr physiologic dead space (Bohr method), CO2 pulse duration width of capnogram (see Fig. 2a)
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The approach followed by most of the investigators is

to:

1. Define the problem (establish the hypothesis)

2. Acquire a set of waveforms (e.g. capnograms),

3. Preprocess the data and extract features of interest,

4. Partition the data into a training and test data set,

5. Train the classifier(s) or predictor(s) with the training

data set while assessing performance with model

validation methods (e.g. cross-validation),

6. Evaluate its performance using the test data set,

summarizing with various metrics, such as accuracy,

correlation (e.g. r, r2), bias and precision with Bland–

Altman plots, and the area under the ROC curve

(AUC) and,

7. If possible, prospectively collect additional data for

evaluation with the model.

The AUC, a single-number ‘‘summary’’ of classifica-

tion algorithm performance that is independent of deci-

sion thresholds and invariant to a priori class probability

distributions [47], will be preferentially presented in this

paper if available from the cited studies. The tradeoffs

and a very brief description of the different methods

employed by the researchers cited in this review are

included in Table 3 with the respective references.

4 Clinical applications

The time and volumetric capnographic features that have

been used by investigators have been summarized, and

aspects of the algorithms used to date for classification,

prediction, screening, and detection have been highlighted

(Table 4). A number of the studies exploring selected

diagnostic and therapeutic applications will be reviewed,

with a focus on the features used and the respective

learning algorithms applied. This section, divided into

classification and prediction, is further subdivided by

specific application categories of each, with aspects of

screening and detection included within.

4.1 Classification

Classification as discussed in this paper refers to using

features derived from the capnogram to classify the can-

didate capnogram into one of the predefined classes. This

may consist of (a) real-time waveform classification/

anomaly detection during monitoring (e.g. anesthesia) or

(b) classification of a candidate capnogram into one of

several disease classes, such as normal, COPD, or CHF.

Artifact removal (e.g. cardiogenic oscillations) and/or

anomaly identification (e.g. equipment malfunction),

although not discussed in detail, is important to both reduce

artifact related false alarms and the incidence of recording

corrupted data in the patient’s electronic health record [48],

and serves as a key component of a real-time comprehen-

sive intelligent cardiorespiratory analysis system.

4.1.1 Real-time waveform classification/anomaly detection

The earliest applications of automated real-time methods

for classifying capnograms to detect patient and breathing

circuit abnormalities were used in anesthesia practice

implemented as rule-based expert systems [12, 14, 49, 50],

Fig. 3 Novel features from the

capnogram including (a) area
ratio (AR) using the areas

bounded as shown describing

degree of curvature of the time

capnogram (Reproduced with

permission of the European

Respiratory Society from You

et al. [23]), (b) differences in the
curves and values at 15 % TLC

for normal/obstructive disease

(top-i and ii respectively) and

pulmonary embolism (bottom)

used for determining fdlate.

(Adapted from Anderson [85].

Reprinted with the permission

of Cambridge University Press.)
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template matching with rules [13], and artificial neural

network classification systems [51–53]. These systems

were intended to provide the clinician with actionable

information, using the analysis of breath-to-breath wave-

forms and the presentation of clinically relevant messages

(e.g. airway obstruction); and, in some cases, were inclu-

ded as part of a more comprehensive, intelligent, multi-

parameter monitoring/alarm system [53, 54, 55], such as

using the features of the capnogram with other signals (e.g.

flow and pressure) in ANN-based anesthesia alarm systems

[55, 56].

Bao [12] constructed a real-time expert system dubbed,

the Capnogram Analyzer Expert System (CAES) with

development data collected on patients undergoing anes-

thesia and rules based on the classic Atlas of Capnography

[16] and the expertise of a local clinician. The CAES

analysis used a heuristic rule-based ‘‘expert’’ system,

which comprised segmentation with piece-wise linear

approximation, breath identification based on these lin-

earized segments, and classification into one of 73 capno-

graphic patterns (e.g. normal, cardiac oscillations, curare

cleft). An agreement of 95 % was reported between the

manual visual and the automated classification on about

3000 capnograms.

Ventzas [14] developed an ‘‘If–Then’’ rule-based expert

system (CAPNEX) intended for both medical diagnostic

(e.g. normal, pathological, artifact) and hardware fault

detection using time and frequency measures from the

capnogram and available pulmonary tests as inputs along

with pattern recognition using shape approximations and

heuristics. A plot of the preliminary performance of 5

classification rules for a number of situations (e.g. apnea,

cardiogenic oscillations) using these measures suggested

accuracy as high as 80 %.

Van Genderingen et al. [13], working with Nik (JS)

Gravenstein in the anesthesia department at the University

of Florida, took a different approach. They had observed

many clinicians wonder how to interpret these waveforms.

They decided to take on the challenge and implement a

classification system, and used this opportunity to display

several waveforms side-by-side for comparative purposes.

The development capnogram data set, collected on patients

undergoing anesthesia, was used with template matching

based on a ‘‘normal’’ learned waveform and rules to detect

typical/atypical waveforms and certain characteristic

waveforms associated with unacceptable ventilator condi-

tions (e.g. airway obstruction and valve malfunction) or

physiologic conditions (e.g. patient fighting ventilator).

The authors reported successful recognition of spontaneous

breathing, circuit disconnection, valve dysfunction and ET

obstructions on 28 mechanically ventilated adults over a

total of 65 h of testing during general anesthesia.

Navabi [53], as part of his doctoral dissertation on a

smart alarm system, developed a two-stage ANN-based

classifier using the leading and trailing edges of the

capnograms to determine breathing mode (e.g. mechanical

or spontaneous) during anesthesia. It was reported that the

use of this classifier contributed to a 42 % reduction in low

end-tidal-CO2 false alarms [53].

Goldman [52] applied a PC-based multi-ANN approach

to capnograms recorded from mechanically ventilated

anesthetized patients to detect patient and breathing circuit

abnormalities. The ANN-based system for capnogram

analysis includes ANNs for detection of the start and end

of a breath, waveform normalization, an ANN for classi-

fication into one of seven classes (e.g. normal, sponta-

neous, inspiratory and expiratory valve defect, patient

effort), and an arbitration ANN that considered contextual

interpretation and expert input with output of the classi-

fication ANN. The classification ANNs were trained with

a mechanical lung simulator and tested on patient data

collected in the operating room. The arbitration ANN was

trained by the outputs of the classifier ANNs, human

expert input, and other physiological inputs for the breath

(e.g. respiratory rate). A recognition accuracy for normal

breaths and breaths with single abnormalities of 96 % was

reported.

More recently, Ahmad [57] describes the use of a soft-

ware tool for capnogram analysis (InCAP-Intelligent

Capnography) that includes an embedded clustering

(k-Means) algorithm to assign classes and additional rou-

tines for identifying end-tidal CO2 and waveform features

(e.g. angles). To evaluate performance, the InCAP-derived

parameter estimate from spontaneously breathing patients

was compared to monitor-displayed end-tidal PCO2 values.

For those with the availability of PaCO2 reference values,

InCAP estimates were deemed more accurate.

Bleil [51, 58] implemented on a mobile device two

algorithms, a simple cluster-by-correlation using resam-

pled and amplitude-normalized same-time length

capnograms, and a ANN algorithm to classify these

resampled capnograms into one of four ventilatory cat-

egories (controlled ventilation intubated, spontaneous

breathing intubated, spontaneous breathing extubated,

sleepy). The reported classification category accuracy,

typically greater than 66 %, varied as a function of

ventilation category.

Real-time waveform-based classification and anomaly

detection systems that utilize features from the capnogram

have demonstrated high levels of performance, but have yet

to see widespread clinical application. With increased

interest in paradigms, such as remote monitoring, it is

expected that the approaches reviewed will find greater

acceptance and use in clinical practice.
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Table 4 Summary of selected investigators work using the capnogram for classification, and prediction

Lead author

affiliation/

location

Pub.

Year

Purpose Approach Groupings

(training:test

sets)

Selected features—

Capnograma
Performanceb

(Accuracy %/

AUC (0.xx))

References

Real-time waveform classification/anomaly detection

W. Bao (MS),

Vanderbilt

Univ.

1987 Monitoring 3 stage Expert

System

n/a PETCO2, rate, shape

descriptors

95 % with visual

class

[12]

Van

Genderingen,

Gainesville, FL

1987 Monitoring Template matching

and rules

n/a Waveform, and times of

phases

n/a [13]

Navabi (PhD), U

Arizona

1990 Monitoring Two-stage ANNs

(breath type)

(5:12) Samples in time window of

capnogram

85 % mech

breaths

[53]

Goldman,

Denver, CO

1991 Monitoring ANNs—start/end

breath,

classification

(Simulator:OR

data)

Input- one complete

capnogram cycle

96 % [52]

Ventzas, Athens,

Greece

1994 Monitoring Expert systems with

FFT and pattern

matching

n/a Frequency content, plateau

level, timing

n/a [14]

Smith, England 1994 Cardiogenic

oscillations

Rules 1698 breaths PETCO2, insp/exp times &

min. inspired

99.2 % [50]

Rader, Pomona,

CA

1994 Monitoring Rules based expert

system

n/a 14 features database n/a [49]

Bleil (MS), U

Lubeck

2008 Monitoring Cluster by

correlation/ANN

32 patients

(2/3:1/3)

Resampled capnogram (all) varies [51]

[58]

Classification of a candidate capnogram into one of several disease classes (with one of the classes normal)

You, France 1994 Asthma Correlation of

features with

spirometry

n/a Slope, areas, ratios, angles Sign. Corr. with

spiro. features

[23]

Yaron/Druck

Y/D, Colorado,

USA

1996

2007

Asthma Correlation of

features with PEFR

Y: 20?/28-D:

13 adults

Y: Slope PIII

D: VCAP slope PIII

Y: r = 0.84,

p\ .001

D: r = 0.7,

p\ 0.2

[62]

[61]

Kean, Malaysia 2010 Asthma ROC analysis 34 patients 16?/

18-

You [23] and Hjorth params

(activity)

SR 0.92

Activity 0.90

[24]

Kazemi (PhD),

Malaysia

2012 Asthma ANN (1–5 to asthma

severity)

73?/23- LPC coefficients and PSD

freq components

DR/ER

90.15/9.85 %,

[63]

Pomares, Cuba 2014 Asthma

severity

Support vector

machine

22 asthmatics Wavelet coefficients sens/specif.

100/91.43 %

[42]

Mielosyzk (MS),

MIT,

Cambridge,

MA

2014 COPD/CHF/

Normal

quadratic

discriminant

analysis (QDA)

N, CHF, COPD

(20,31,33:

10,22, 23)

breath duration, peak

PETCO2, exp slope, time at

peak PETCO2

0.89 COPD/CHF

0.98 normal/

COPD

[66]

Estimation of the value of an inaccessible or invasively determined physiologic parameter

Rayburn,

Washington,

DC

1997 Estimate

PaCO2

ANN 23 patients VCAP slopes, indices,

intercept, angles

Claims ± 2 mm

Hg of PaCO2

[74]

Chuang, Taiwan 2012 Estimate

PaCO2

Linear regression 41 patients PETCO2, DLCO, VT, SVC,

MEP

AIC 1.099 [75]

Prediction for the presence or absence of disease condition

Kline (Patel etc.),

S Carolina

1999 Pulmonary

embolism

Linear regression

ANN (Patel)

Several studies Area, VDalv/VT, D-dimer,

VCAP params

P- sens/spec

100/48 %

[77–80]

Verschuren,

Brussels,

Belgium

2010 Pulmonary

embolism

ROC analysis 239 patients w

capno.

VDalv/VT, PE index, fdlate All VCAP corr.

degree obstruct

[82]
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4.1.2 Classification of a candidate capnogram into one

of several disease classes

The differences in the shape of the capnogram between

normal subjects and those with obstructive (e.g. asthma,

COPD) and restrictive lung diseases have been known

since the 1960s. Investigators have explored the viability

of using a number of different features to quantify those

differences in both time and volumetric capnograms (e.g.

[59, 60]) and correlate with spirometric measurements

[23]. These differences are often apparent in the tracings

of subjects with these obstructive and restrictive lung

diseases (e.g. asthma, COPD, CHF) (Fig. 4). The leading

end of the expiratory portion of the time capnograms

from subjects with obstructive disease rises slower than in

normal subjects with a shape described as a shark’s fin

and significantly different frequency content than a nor-

mal capnogram (Fig. 5). The features researched have

included the slope of the alveolar plateau, the radius of

the minimal curvature of the angle Q (i.e. approx. the

alpha angle), the time required for the capnogram to

transition from 25 to 75 % of the end-tidal PCO2 value,

and the angle formed by the intersection of the lines fit-

ting to the alveolar plateau and central portion of phase II

(i.e. alpha angle) [23] The literature describing changes in

the capnogram due to restrictive diseases, such as con-

gestive heart failure and the associated lung edema, is

relatively limited.

With respect to asthma, researchers have explored uti-

lizing shape measures of the time capnogram [23] and

volumetric capnogram [61] to:

a. classify subjects as normal or asthmatic;

b. estimate asthma severity; and,

c. serve as a surrogate measurement for effort-dependent

pulmonary function tests, such as peak expiratory flow

rate (PEFR) [61].

You et al. [23] assessed the reproducibility of the

capnogram and its correlation with standard measures of

airway obstruction using computed features from the time

capnogram in healthy and asthmatic patients including

various slopes, areas, and ratios of slopes and areas. In 10

control subjects and 30 asthmatic subjects, all of the

computed capnographic indices were found to strongly

correlate with the spirometric parameters of FEV1% pred,

PEFR and FEV25–75) (p\ 0.001).

Yaron et al. [62] performed a small prospective study in

adults in the emergency department of a hospital (20

asthmatics, 28 normals) to assess whether the slope of the

alveolar plateau (i.e. slope of phase III or dCO2/dt) from

the time capnogram can serve as an effort-independent

non-invasive measure of bronchospasm. Values for PEFR,

the standard approach for assessing airway obstruction in

this patient population, and dCO2/dt were measured for

each subject and for the asthmatic both pre- and post-

bronchodilator administration. They concluded that dCO2/

Table 4 continued

Lead author

affiliation/

location

Pub.

Year

Purpose Approach Groupings

(training:test

sets)

Selected features—

Capnograma
Performanceb

(Accuracy %/

AUC (0.xx))

References

Guide the administration of therapy (in OHCA)

Krizmaric,

Slovenia

2009 Outcome of

CPR

Decision trees (and

other methods)

477 adults Arrival time, witness,

bystand. CPR, PETCO2

87 % accuracy [95]

Shandilya (PhD),

VCU, Virginia

2012 Defib success Support vector

machine

57 adults Time/wavelet features ECG

& CO2

AUC/accuracy

0.94 83.3 %

[96]

Prediction of the future morbidity or mortality of a patient with a condition

Hubble, Durham,

NC

2000 Extubation

predictor

Logistic regression 45 children VD/VT phys, p\ 0.0001 [69]

Nuckton, San

Francisco, CA

2002 Predict Risk

of dying

Logistic regression 179 ARDS

patients

VD/VT phys (and other

clinical parameters)

VD/VT phys

p\ 0.001

[68]

Kartal, Turkey 2011 Metabolic

disturbance

Logistic regression

(low bicarbonate)

240 adults PetCO2 AUC 0.734 [101]

Rasera, Brazil 2015 Extubation ROC analysis 82 infants SR, alpha angle, PaCO2 AUCs * 0.92 [100]

MS for Masters, PhD for doctorate, AIC akaike information criterion, ANN artificial neural network, AUC area under ROC curve, FFT fast

Fourier transform, LPC linear predictive coding, OHCA out of hospital cardiac arrest, PEFR peak expiratory flow rate, PSD power spectral

density, VCAP volumetric capnogram, insp inspiratory, exp expiratory, Defib defibrillation, mech mechanical, DR/ER detection rate/error rate, ±

= with/without disease
a See Tables 1 and 2 for parameter definitions
b Accuracy or AUC shown unless otherwise noted
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dt (a) serves as an effort-independent measure of bron-

chospasm in patients with asthma and (b) correlates with

PEFR (dCO2/dt to log(PEFR) r = 0.84, p\ 0.001), Druck

et al. [61], working with Yaron, looked to extend their prior

work of effort-independent surrogates by examining the

relationship between the change in PEFR and change in the

slope of phase III from the volumetric capnogram for

measurements recorded pre- and post-bronchodilator ther-

apy. The percent changes between PEFR and its surrogate

were found be correlated (r = 0.7, p\ 0.2, n = 13).

Kean et al. [24] studied the classification performance of

novel statistical features computed from the capnograms of

18 non-asthmatic and 16 asthmatic emergency room sub-

jects. The features extracted included those defined by You

[23] and included the Hjorth parameters of activity,

mobility, and complexity [38] computed over the complete

breath cycle, and from the time 4 mm Hg is reached in

phase II to the time of the end-tidal maximum value. They

found that when the slope ratio (i.e. phase III slope/phase II

slope) of the capnogram and the Hjorth parameter activity

was computed over a complete cycle, AUCs of 0.9167

(p\ 0.0001) and 0.8958 (p\ 0.0001) were produced,

respectively, the highest two values of those tested.

Kazemi [41, 63] collected 23 non-asthmatic and 73

asthmatic capnogram data sets from emergency department

patients with breathing complaints using a nasal cannula

connected to a sidestream capnometer. Significant inter-

breath variability of the first order statistics such as the

mean and variance was found, as might be expected,

leading the author to characterize the capnogram as

nonstationary—that is, the statistical properties of the sig-

nal changes over time. From the capnogram, features were

extracted using different ways of representing non-sta-

tionary signals in both the time domain, with linear pre-

dictive coding (LPC), and the frequency domain, with an

autoregressive model for representing the power spectral

density (PSD). From extracted features, five features (all

with individual AUCs[ 0.7) were selected for classifica-

tion, including 2 LPC coefficients, and, from the PSD, the

first component frequency and magnitude and total number

of frequency components were selected. Using the five

features from the asthmatic and non-asthmatic capnograms,

classification with a ANN, with an integer output directly

related to asthma severity, reported detection and error

rates of 90.15 and 9.85 %, respectively.

Pomares [42] describes a method for assessing asthma

severity using feature extraction from the capnogram based

on wavelet decomposition [64]. The features were deter-

mined by the decomposition of waveform segments (e.g.

upslope, plateau and downslope) of the time capnogram

using high and low pass filtering of each segment, down-

sampling, and determination of the Haar wavelet coeffi-

cients (i.e. sequence of rescaled ‘‘square-shaped’’ func-

tions), with multi-resolution analysis by segments based on

wavelet transformation. Using a support vector machine

(SVM) classifier with a Gaussian Radial Basis function

kernel, the input coefficients for each capnogram were

classified into one of six severity classes. The highest

performing feature vector comprised segments consisting

of the leading and trailing edges of the time capnogram

Fig. 4 Representative tracings

of the time capnogram from

CHF, asthma, COPD and

normal subjects (Reprinted from

Asher R. Capnographic analysis

for disease classification

[Masters of Science].

Massachusetts Institute of

Technology; 2010 with

permission from Massachusetts

Institute of Technology) (Also

see Mieloszyk [66])
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with a sensitivity and specificity of 100 and 91.43 %,

respectively using the full dataset for testing thereby

biasing the reported results.

The studies described so far in this section have sought

to differentiate normal from asthmatic patients, assess

asthma severity or assess the viability of a surrogate

measurement for a forced maneuver. Investigators using

features from the capnogram, have also sought as well to

differentiate capnograms from normal subjects and those

with obstructive (i.e. asthma and COPD), and restrictive

diseases.

In a prospective observational study of 49 emergency

department (ED) adult patients with moderate-to-severe

dyspnea, Brown [65] concluded that no single level of

end-tidal PCO2 could reliably differentiate between car-

diac and obstructive causes of respiratory distress

(p = 0.038). The study also examined the differences

between the two groups using demographic (e.g. age) and

other clinical parameters, including the presence of cer-

tain lung sounds, and found significant differences

between the groups for a number of these parameters,

suggesting that a model, including context and some of

these parameters, should have a greater ability to differ-

entiate the two groups.

Mielosyzk [66] used a quadratic discriminant analysis

(QDA) with bootstrapping to differentiate between time-

Fig. 5 Selected a normal and b obstructive disease time capnograms

from mechanically ventilated patients on pressure support ventilation

with frequency spectrum (Normalized Magnitude) shown (analyzed

1 min of 100 Hz waveform data, Hanning windowed prior to FFT,

plots and data analysis using R Studio) Note: largest peak at

respiratory rates of approx. 15 and 30 breaths/min; spectral difference

due in part to slower rise of obstructive waveforms. (Waveform data

courtesy of Convergent Engineering, Gainesville, FL)
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based capnograms in spontaneously breathing subjects

classified as normal, chronic obstructive pulmonary disease

(COPD), and congestive heart failure (CHF). The capno-

grams, obtained using a nasal cannula connected to a side-

stream gas analyzer, were collected from several institutions,

and included 30 normal subjects, 56 COPD patients, and 53

CHF patients. After preprocessing, features from each breath

were computed for the first 80 valid preprocessed exhala-

tions for each subject including the exhalation duration,

maximum PCO2 value during exhalation (i.e. typically the

PETCO2), time spent at the PETCO2 value within a window of

±0.5 mm Hg, and the end-exhalation slope (linear regres-

sion of last 5 PCO2 values representing the last 100 ms).

Using an ensemble approach, with 50 random partitions of

data for each patient grouping (i.e. normal, CHF, COPD) for

the training data, multiple base classifiers (i.e. QDA

boundaries) determined, using a voting rule, the overall

classifier. The training of the classifier, consisting of 20

normal, 31 CHF, and 33 COPD patients, employed a 10-fold

cross-validation approach. For each fold, 50 datasets, each

created from a random 70 % of the subject records were

classified with QDA, with the remaining 30 % used for

tuning. A test set (10 normal, 22 CHF, 23 COPD), using an

ensemble approach with the training set overall classifier,

determined the final classification for each test record. This

approach was applied to differentiate COPD from CHF and

COPD against normal records using an approach based on

individual breaths and one based on the mean value of each

of the features for each subject record. With the test set,

AUCs of 0.89 (95 % CI 0.72–0.96) and 0.98 (95 % CI

0.82–1.0) were reported for the COPD/CHF and COPD/

normal classifications, respectively.

Research remains active and promising with respect to

classifying patients for the presence or degree of obstruc-

tive and restrictive lung disease based on features from the

time and volumetric capnogram, with a positive outlook for

possible inclusion in medical devices, middleware, or

mobile platforms, and integration into screening protocols

and treatment algorithms.

5 Prediction

Features from time and volumetric capnograms, often in

combination with other measures, have been utilized to

(a) estimate the value of an inaccessible or invasively deter-

mined physiologic parameter, (b) screen for the presence or

absence of a disease condition, (c) guide the administration of

therapy, or (d) predict the prospective morbidity or mortality

of a patient with a presenting condition. These clinical

applications will be reviewed with relevant examples.

Estimating inaccessible parameters, such as alveolar

PCO2, or invasively determined parameters, such as arterial

PCO2 by using features from the time or volumetric

capnogram has been undertaken by several groups over the

last two decades. The ability to estimate these parameters

has allowed the noninvasive calculation of physiologic and

alveolar-to-tidal volume dead space and the associated

ratios. Investigators have explored screening, primarily in

the emergency department setting, for the presence or

absence of pulmonary embolism (PE) to assess the need for

confirmatory imaging and the administration of throm-

bolytic agents. While end-tidal PCO2 changes have been

reported to be sufficient justification in the case of massive

PE, features from the volumetric capnogram, such as

alveolar or physiologic dead space ratio - alone and in

conjunction with blood tests (D-dimer)—have and continue

to be evaluated as screening tools. With the relationship of

end-tidal CO2 to cardiac output in low flow states (e.g.

cardiac arrest) established, the role of end-tidal PCO2 as a

predictor of survival and its use as real-time feedback on

the effectiveness of compressions is an ongoing topic of

research. [67] Investigators have used features from the

capnogram to assess the likely morbidity or mortality of a

patient with a condition such as ARDS [68] and predict

successful extubation [69].

5.1 Estimation of the value of an inaccessible

or invasively determined physiologic parameter:

arterial and alveolar PCO2

The benefits of managing arterial carbon dioxide, directly

or via surrogates, include the maintenance of cardiac out-

put, tissue oxygenation, perfusion, intracranial pressure,

and cerebrovascular reactivity [70]. With the current

technology, the estimate of arterial PCO2 requires blood

sampling and its analysis. On the other hand, alveolar dead

space and PCO2 are physiologic concepts and determined

indirectly. Surrogates and methods for assessing arterial

and alveolar PCO2 continue to be explored, including end-

tidal PCO2. A large number of studies over the past few

decades investigating the viability of using end-tidal CO2

as a surrogate for arterial CO2 in different patient groups

have reported a wide range of conclusions, with some even

questioning the value of capnography in the tested clinical

environment. In general, these studies have not considered

patient differences in physiologic dead space and the

interrelated gradient between end-tidal and arterial PCO2

[20] The physiologic (e.g. dead space and shunt, stability of

carbon dioxide stores in the blood and lung [71]), technical

(e.g. choice of measurement technology, patient interface

and positioning), and other complexities (e.g. types of

patients studied and their stability) complicate the com-

parison of arterial values to end-tidal PCO2 values, and

cloud how accurately and reliably measurements from the

breath can reflect arterial or alveolar measurements.
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Banner [72] and McSwain [20] studied mechanically

ventilated adults and children, respectively, and reported a

similar and significant statistical correlation between

PETCO2 and PaCO2, which decreased with increases in the

physiologic dead space ratio (VD/VT phys) (Table 5) and

showed predictable increases in the arterial-end-tidal gra-

dient with increases in VD/VT phys. [20] Although the

majority of the published studies have involved simple

correlation studies, other approaches for predicting arterial

PCO2, have included genetic algorithms [73], artificial

neural networks [74], and linear regression [75].

Chuang et al. [75] is included in this review, as this

study represents the application of both univariate and

multivariate models to predict arterial PCO2 in COPD

patients during a maximal exercise test on a cycle

ergometer. They conducted a brute force study evaluating

with regression all available data subsets, including

demographic, anthropological, and noninvasive clinical

measurements. They reported that, individually, PETCO2

and FECO2 showed the lowest Akaike information crite-

rion (AIC) values, respectively, and with multivariate

analysis, the best prediction equation for PaCO2, was found

to be a function of PETCO2, slow vital capacity, maximum

expiratory pressure, diffusing capacity for carbon monox-

ide, and tidal volume.

Research and clinical interest in reliable and validated

noninvasive surrogates for arterial and alveolar PCO2 for

use in the management of patients for a range of clinical

applications and environments remains. Improved analysis

methods and physiologic models, and the integration of

these models to enhance understanding can help increase

confidence in the use of these measures.

5.2 Prediction for the presence or absence of disease

condition: PE screening

Accurately distinguishing patients with a pulmonary

embolism (PE?) from patients without a pulmonary

embolism (PE-) on clinical presentation in the emergency

department remains a challenge. With the pre-test proba-

bility of a PE in the general emergency room population

being low, testing is performed erring on the side of false

positives. It is known that PE-associated ventilation/per-

fusion (V/Q) mismatch, and the related increase in the

physiologic dead space, is an indication of significant PE

by the quantitative changes of the end-tidal PCO2 value

over time [76] as well as in the general features of the

capnogram. As such, features from the time and volumetric

capnogram, alone and in conjunction with other measure-

ments such as the D-dimer assay, have been considered for

use in diagnostic algorithms to maximize the sensitivity of

this screening test prior to performing further confirmatory

tests such as the spiral CT or perfusion scan. Features of

capnogram studied have included area under the time

capnogram [77], CO2 (e.g. end-tidal PCO2), features (e.g.

flow, time and slope) from the volumetric capnogram [78],

alveolar dead space ratio [79], alveolar space ratio and

D-dimer [80], late dead space fraction (fdlate) [81], PE

index [82], D-dimer and PetCO2 [83], and D-dimer and

exhaled CO2 and O2 for segmental PE [84].

An early application of artificial neural networks (ANN)

for determining the presence of a pulmonary embolism

(PE), Patel [78] used features from a volumetric capnogram

collected from subjects breathing spontaneously through a

mouthpiece interfaced to mainstream CO2 and flow sen-

sors. A test set of 12 subjects (6 PE? and 6 PE-), with 17

variables from a volumetric capnogram served to train a

full connected back-propagating ANN, with an output

between 0 and 1 with 0 representing no PE and 1 PE

(0.2–0.8 considered undecided). Pulmonary embolism was

confirmed by lung scan or pulmonary angiogram. Of the 17

variables examined (Table 4 in [78]), the six variables

found to be significantly different between the groups were

end-tidal PCO2, slope of phase III, peak expiratory flow,

spontaneous and alveolar ventilation, and inspiratory time.

The derived model, evaluated with a test set of 53 subjects

(30 PE? and 23 PE-), reported a sensitivity and specificity

of 100 and 48 %, respectively.

Of particular interest, the derived parameter, fdlate [81]

—ratio of the difference between the arterial PCO2 and a

PCO2 value determined by extrapolating the phase III line

to a volume at about 15 % total lung capacity and arterial

PCO2 (Fig. 3)—was reported to more effectively detect PE

than other capnographic variables with AUCs from various

studies for fdlate, VDphys, VDalv, Pa-etCO2, and PETCO2 of

0.96, 0.73, 0.84, 0.86 and 0.83, respectively [85].

Despite the common sense physiologic basis for the use

of dead space ratios and related measures in the diagnostic

screening algorithm for PE, clinical studies to date have yet

to demonstrate a level of evidence significant enough to

permit inclusion in practice guidelines [86]. A recent meta-

analysis [87] of 14 trials with 2291 total subjects and a

Table 5 Relationship of PETCO2 and PaCO2 with physiologic dead

space

Childrena Adultsb

PETCO2 and PaCO2 PETCO2 and PaCO2

VD/VT r2 Mean gradient (mm Hg) VD/VT r2

B0.4 0.90 0.3 ± 2.1 \0.60 0.91

0.41–0.55 0.77 5.9 ± 4.3

0.55–0.7 0.74 13.6 ± 5.2 [0.60 0.54

[0.7 0.56 17.8 ± 6.7

Data excerpted from: a McSwain [20] (56 mechanically ventilated

pediatric patients), b Banner [71] (31 intubated adults)
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20 % overall prevalence of pulmonary embolism reported

pooled values for sensitivity and specificity of 0.80 and

0.49, respectively (AUC 0.84), and concluded a possible

role for capnography when PE pretest probability is 10 %

or less. Improvements in the computational methods of

curve fitting the volumetric capnogram and noninvasively

estimating alveolar PCO2 and dead space in combination

with advanced predictive algorithms may offer additional

life to this approach.

5.3 Guide the administration of therapy

Therapeutic interventions with features from the time or

volumetric capnogram can serve an important role and

dates back to the use of estimated alveolar carbon dioxide

levels for the management of iron lung-dependent polio

patients [88]. The role of these features for the manage-

ment of ventilation (invasive and noninvasive), including

optimal PEEP, weaning and delivery of gas therapies are

not discussed in depth other than the role of capnography

during CPR as follows.

5.4 CPR survival and guide to effectiveness

of compressions

The potential value of features of the capnogram, such as

utilizing end-tidal PCO2 as a guide to resuscitation, has been

known for several decades [89], with different end-tidal

PCO2 cut-off values (e.g. 10 mmHg) analyzed as predictors

of death after an extended period of life support without a

pulse (e.g. 20 min) [21]. A recent case report [90] highlights

the value of capnography during a prolonged period of car-

diac arrest (96 min) in which resuscitation was continued

solely on the basis of end-tidal PCO2 values at or near nor-

mal, resulting in a complete neurologic recovery by the

patient. A systematic review of the prognostic value of end-

tidal PCO2 during cardiac arrest [91] supports the view that

end-tidal PCO2 values during CPR does correlate with the

likelihood of the return of spontaneous circulation (ROSC)

and survival; however, the use of specific end-tidal PCO2

cut-off values during CPR to accurately predict the outcome

of resuscitation remains to be determined. In low cardiac

output states, as during cardiac arrest, it has been demon-

strated that end-tidal PCO2 values tend to bemore dependent

on compression-driven cardiac output and less dependent on

CO2 production and ventilation. This has led to the explo-

ration of other capnographic features to predict ROSC (e.g.

area under curve, slopes, cumulative max end-tidal PCO2)

[92] and the suggestion by researchers [67] and companies

[93, 94] to use the features of the capnogram (e.g. end-tidal

PCO2, VCO2) as inputs to algorithms for assessing the effi-

cacy of and controlling chest compressions.

In one study of particular interest, Krizmaric [95]

explored the application of several supervised learning

techniques, including decision trees, to predict the out-

comes of 477 adults with out-of-hospital cardiac arrest

using end-tidal PCO2 values and situational and contextual

data (e.g. witnessed cardiac arrest). The authors noted that

although the classification accuracy of decision trees was

generally not as high as other learning techniques for the

subset analysis, the decision trees, considered more inter-

pretable, were reported to perform better as a whole on the

dataset (87 % accuracy). This method also recorded arrival

time, witnessed arrest (yes/no), bystander CPR (yes/no),

and end-tidal PCO2 (both initial and final values) as sig-

nificant predictors of outcome.

Shandilya [96] applied non-linear signal processing and

learning algorithms to a dataset representing 57 out-of-

hospital cardiac arrests (OHCA) in order to predict defib-

rillation success based on the analysis of ventricular fib-

rillation waveform with and without features from the time

capnogram. Using time domain and complex wavelet-

derived features (e.g. energy, entropy) extracted from both

the ECG and capnogram and selected by a feature-ranking

algorithm, a support vector machine model, chosen given

the limited size of the training data set, was used for

classification. Evaluation of the models (with 6–10 fea-

tures) indicated that the inclusion of the capnogram fea-

tures increased the AUC and classification accuracy from

85 to 93.8 and 82.2–83.3 %, respectively, with the expec-

tation of further improvements with larger training sets.

With the advances in prediction and titration algorithms,

heightened focus on prehospital care, additional clinical

evidence of the positive correlation of increased compres-

sion rate and depth with end-tidal PCO2 [97, 98] and the

introduction of automated CPR devices (e.g. ZOLL�

AutoPulse�, Zoll Medical, Chelmsford, MA; LUCASTM

CPR, Physio-Control Inc. Lund, Sweden), the inclusion of

capnographic parameters reflecting ventilation and cardiac

output in the diagnostic and treatment algorithms for CPR

may not be far off.

5.5 Prediction of the future morbidity or mortality

of a patient with a condition

Features from the capnogram have been evaluated as tools

for decision-making, such as predictors of disease outcome

(e.g. ARDS), procedural outcome (e.g. extubation), and

exclusion of conditions. Due to the known increase in

pulmonary dead space associated with ARDS, a research

group at UCSF evaluated its use as a predictor of hospital

mortality [68]. Researchers have evaluated end-tidal PCO2

as a predictor of outcome and status of dead space to

predict successful extubation in children [69] and adults

[99] as well as simpler features such as end-tidal and
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arterial PCO2 [100]. End-tidal PCO2 as a widely available

parameter continues to find use in new applications, and

has been investigated as a possible tool to non-invasively

assess metabolic status (i.e. of low bicarbonate) [101].

Nuckton et al. [68] evaluated physiologic dead space

ratio measured early (within 10.9 ± 7.4 h) in the devel-

opment of ARDS, as well as a number of other variables

and used logistic regression to assess their possible asso-

ciation with a higher risk of dying, prior to discharge in 179

intubated patients. Several parameters (e.g. PaO2:FiO2,

pH, respiratory compliance) and scores (lung injury score,

oxygen index, SAPS II score), as well as dead space

fraction and weight-normalized dead space (ml/kg) showed

a significant difference between the survivor and non-sur-

vivor groups (p\ 0.001).

Hubble [69], using logistic regression, found that of the

20 pre-exubation demographic and clinical parameters

evaluated in 45 mechanically ventilated children, only the

mean values of VD/VT phys pre-extubation between the

successful and unsuccessful groups were highly significant

(p = 0.0001), with PaO2 being the only other variable

showing significance (p\ 0.05). A. It was also found that

of the 25 patients with VD/VT\ 0.50, 96 % (24/25) were

successfully extubated while only 20 % (2/10) of the

patients with VD/VT[ 0.65 were successfully extubated

with the intermediate range (0.51–0.65) less predictive.

Rasera et al. [100], in an observational study of 82

intubated infants, concluded that, individually, the mean

values of end-tidal and arterial PCO2 and six of 10 previ-

ously studied features could effectively separate the extu-

bation success and failure groups. The features with AUC

reported greater than 0.90 included slope ratio, alpha angle,

and arterial PCO2, with AUCs of 0.923, 0.919 and 0.924,

respectively, with end-tidal PCO2 just short of this value

with an AUC of 0.895.

Given the healthcare system’s pressure to provide a

higher quality of care at a lower cost is driving research to

develop measures that will help optimize the delivery of

care to the patient population as a whole and provide

guidance in clarifying whether interventions will likely

have an impact on an individual patient morbidity or

mortality.

6 Discussion

This paper has sought to highlight and summarize the

features derived from the time and volumetric capnogram,

the broad array of learning algorithms that can be applied

to it, and the breath of clinical applications of these features

and their role in various therapeutic interventions. The

division of clinical applications and the respective studies

between classification and prediction in this paper,

although may be of debate, is intended to highlight these

applications and the opportunities that remain to be pur-

sued. A significant number of these applications of time

and volumetric capnography, including some that have

been discussed herein, are highlighted in a chapter in a

recently published text on monitoring [6], along with their

status as accepted, in development, or speculative. For

additional detail on these applications, the reader is advised

to consult a review or text on the topics [102].

The performance of the algorithms highlighted in this

paper hinge on the fidelity of the data analyzed and how

well it reflects the underlying disease states. The choice of

measurement technology, patient interface and its posi-

tioning influences the fidelity of the measurement. The

required bandwidth and data sample rate necessary is

dependent on technical aspects of the capnograph and

physiological aspects of the patients, with mainstream

measurements providing greater fidelity. The minimum

sampling rate and data collection system bandwidth will

vary as a function of the spectral content of the waveform,

with higher sampling rates needed for smaller tidal vol-

umes and higher respiratory rates. It is important that the

effect of technology be understood given the limiting fac-

tors of design choices, such as side stream vs mainstream

measurement, sample cell configuration, detector response

time, and signal to noise ratio. Additional tools to assist the

testing and development of these smarter systems are

needed, including metrics for quality assessment, dynamic

physiologic models to permit easier interpretation, con-

sensus standards for devices that provide for external

querying of the device capabilities, and simulators for

robustly testing the front end and complete signal path.

Herry [25] notes that, to advance the field of respiratory

waveform analysis, a need exists for algorithms that assess

the capnogram signal quality; and discusses the use of a

composite quality index for respiratory analysis (e.g.

variability analysis) based on a combination of metrics,

such as the percentage of time breaths within physiological

limits, classified as normal, and consecutive normal breaths

present. To determine the quality of a breath, they per-

formed segmentation, feature extraction, and classification

of time capnograms into normal or abnormal classes. They

evaluated the performance of decision trees, K-nearest

neighbor (KNN) and Naı̈ve Bayes (NB) classifiers, using

an initial 15 characteristics extracted from the time

capnogram and a reference set of waveforms that were

visually annotated. Of interest, the feature selection resul-

ted in three features in common for the three algorithms—

residuals after linear fit over plateau, width of CO2 wave-

form, and minimum CO2 over the width. Evaluation with

the test set for the three classification algorithms resulted in

AUCs of 0.90, 0.88 and 0.89 reported for DT, NB and

KNN, respectively.
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The use of physiologic models (e.g. compartmental) in

automatically interpreting the capnogram has been limited

to research. The opportunities to use these models to help

make a difference in clinical care are becoming increas-

ingly apparent. Off-line modeling of the respiratory system

using compartmental models and the ‘‘capnigram’’, with an

expression containing two exponential functions [110], has

been in use since the 1960s. Buijs et al. [111] reported

using a recursive Bayesian filtering approach to reliably

track parameters in real-time with simulated waveforms,

which permitted the prediction of unobservable parameters,

such as alveolar CO2 tension, and enabled earlier alerts to

changes in the respiratory status. Such models that can

adapt, predict and display on a real-time basis ‘‘physio-

logically meaningful’’ parameters are an area of current

commercially funded research [112]. The model parame-

ters (e.g. cardiac output, VD/VT phys) should explicitly

include both measurable and observable parameters as well

those not directly observable with time and volumetric

capnography. These models should include context (e.g.

location and EMR data) and be embedded in an interop-

erable monitoring or therapeutic platform. The models can

assist the clinician at the point of care to (a) perceive the

current state of the patient, (b) simulate consequences to

the patient that would result from alternative interventions,

and (c) obtain insight that supports bedside clinical deci-

sion making.

Updates to relevant device standards (e.g. ISO 80601-2-

55: 2011), availability of waveform databases [113], and

improved test methods, including gas waveform simulators

[114] that can accurately play back pre-recorded carbon

dioxide waveforms, should allow for improved device and

derived model performance and greater interoperability, as

well as provide a means to more effectively and robustly

evaluate and compare systems.

With respect to volumetric capnography, a consensus

review by 16 of the leading European intensivists noted the

important potential of volumetric capnography, as in the

management of ARDS; however, its widespread use was

limited by complex analysis [115]. This has led to some

investigators exploring alternatives to measuring VD/VT

such as simpler ‘user-friendly’ indices including prediction

equations for VD/VT and new ratios to track changes in

ventilatory efficiency [116]. Sipmann et al. [117] note that

advances in gas measurement technologies and algorithms

have led to improvements in the reliability and clinical

utility of volumetric capnography and revival of earlier

paradigms, such as the breath-to-breath calculation of dead

space using an estimate of alveolar PCO2, as from the mid-

portion of phase III of the volumetric capnogram [118]. It

is also worth noting that although not yet called out

specifically, the ASA Basic Monitoring standards, in

addition to requiring the monitoring of carbon dioxide,

strongly encourages monitoring the other component of

volumetric capnography, that is, exhaled volume. With

greater integration and improvements in flow and CO2

technologies, it is likely that volumetric capnography will

become available from a larger number of vendors at a

lower cost point, allowing its integration into platforms that

have not seen it widely used. For example, the availability

of the volume of expired carbon dioxide and the other

volumetric capnographic features as inputs into smart

algorithms may lead to improved algorithms such as for the

optimization of compressions during CPR.

Early legacy commercial efforts have selected features

of the capnogram for classification or as part of a more

comprehensive analysis that include a prototype system for

respiratory monitoring and a software package for exercise

interpretation. Rader [46] described commercial efforts at

Perkin–Elmer to show proof of concept of an automated

monitoring system, established on a rule- based expert

system with 14 time based features per capnogram, to

reliably identify 12 different capnographic waveform pat-

terns. The A.I. Series Software Exercise Interpretation

Programs (Sensormedics, Yorba Linda, CA) [119] aggre-

gated data, including demographic, respiratory and cardiac

measurements from a metabolic cart (e.g. VCO2) and an

ECG stress monitor, and generated a report consisting of a

summary table that comprised percent predicted, expected

ranges, and annotations and included an if–then rule-based

interpretive narrative statement. Other than improved and

more robust algorithms described earlier, for both respi-

ratory rate and end-tidal measurements, manufacturer’s

application of features from the capnogram for prediction

and classification has been limited. With respect to com-

mercially available systems, capnographic features have

been used, often in combination with other clinical mea-

surements, for indices of pulmonary status, as inputs to an

open-loop advisor and a closed-loop system for the man-

agement of mechanically ventilated patients, and a com-

puter-assisted sedation system for the delivery of propofol

(Table 6). Although not yet available commercially, man-

ufacturers have also explored using features from the

capnogram as indicators relating to the effectiveness of the

weaning process [120], for classification of the respiratory

disorder of a patient [121], and to provide continuous

verification of correct placement of endotracheal or

supraglottic airway [122].

Researchers continue to expand the use of capnography

in novel ways in which classification and prediction can

play a part. For example, in a promising small proof of

concept study, Brown [43] evaluated the plateau phase

from a natural log-transformed capnogram from a main-

stream sensor during a forced exhalation maneuver as an

indicator of V/Q heterogeneity as measured by CT

(r2 = 0.49, p = 0.02). Lukic [123] explored features of the
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capnogram to characterize the cardiopulmonary effects

during controlled human air pollution exposure. Mayer

[124] analyzed the capnogram post intravenous delivery of

small volume of a sodium bicarbonate solution to detect

extravasation during infusion therapy. Studies have also

delved into sampling carbon dioxide from alternative sites,

such as the tracheal, nasotracheal, and pleural spaces and

from the lung via a port in the bronchoscope. Pinskiy [125]

described a real-time intubation guidance system consist-

ing of a gas-sampling via a hollow stylet that changes pitch

in proportion to the CO2 level. Other researchers are

exploring additional applications, including determining

optimal PEEP with the use of phase III slope from volu-

metric capnogram [126], screening for sleep apnea in acute

stroke patients [127], assessing heart failure patients during

exercise [128], in systolic heart failure patients, evaluating

the prognostic utility of PETCO2 during rest and exercise

[129], and tracking state changes during procedural seda-

tion with patient specific k-means clustering of capno-

graphic features [130].

7 Conclusion

The research, over the last few decades, highlighted in this

paper has encompassed the use of features from the time

and volumetric capnograms for classification and predic-

tion, and has laid the foundation for future research, new

innovations and future commercial implementations.

Research efforts should include (a) better leveraging the

information available in the capnogram alone and the

capnogram in conjunction with other physiological signals

(e.g. data fusion) to provide improved diagnosis and ther-

apy, as part of a larger system, (b) incorporating robust,

context aware models that can be tuned to specific patients

to better understand the current and future clinical state of

the patient and (c) leveraging the recent sensor and algo-

rithmic (e.g. machine learning) improvements to enable

improved remote monitoring and earlier detection of clin-

ically significant patient changes.

With the growth of electronic health records and the

leveraging of that information, the recording of capno-

graphic waveforms, its features and derived metrics,

already included in some systems, is anticipated to grow;

and use of algorithms with these features as inputs will

enhance the identification of artifact and non-physiolog-

ical data prior to its recording as a permanent record

[131]. Due to the revolution in healthcare being driven

by the widespread availability of smart phones, high

bandwidth cellular networks, and use of social media

together with improvements and innovations in sensor

technology and design and learning algorithms, applica-

tions that have previously been cost-prohibitive, or

unimagined are becoming possible and should be actively

pursued.
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Table 6 Selected recent commercial applications using capnographic features

Product name/company Description (510(k)/PMA #, decision date) Input features References

Indices

Integrated Pulmonary

Index (IPI) Covidien,

Boulder, CO

Index of ventilatory status between 1 and 10 (i.e.

worst to best) (K082268, 2/2009)

End-tidal CO2, respiration rate, oxygen saturation

and pulse rate

[103, 104]

Open-loop advisor

VentAssist, Philips-

Respironics,

Wallingford, CT

Fuzzy logic based pressure support and ventilation

advisor (K103578, 6/2011)

ANN based power of breathing, breathing

frequency, tidal volume, ideal body weight, and

end-tidal CO2

[105]

Closed-loop systems

SmartCare, Drager

Medical, Lubeck,

Germany

Automatic pressure support adjustment in Evita

XL ventilator (K051263, 7/2005)

Respiratory rate, tidal volume and end-tidal CO2 [106, 107]

INTELLiVENT-ASV

mode Hamilton

Medical, Bonaduz,

Switzerland

Adaptive support ventilation (ASV) with

automatic adjustment of oxygenation and

ventilation settings (G5 option and standard S1)

(not available in US at this time)

Minute volume, tidal volume, and respiratory rate

adjusted to reach target end-tidal CO2 in passive

patients and target RR in active patients

[106, 108]

SEDASYS� System,

Ethicon Endo-Surgery,

Cincinnati, Ohio

Monitors patient parameters and may restrict,

suspend, decrease, or stop the propofol infusion

based on those parameters. (P080009, 5/2013)

Respiratory rate, end-tidal CO2 SpO2, heart rate

and blood pressure

[109]

Sources: Respective company websites, FDA 510(k) summaries/PMA summary of safety and effectiveness and cited references
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