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Abstract In this study we investigated the responsiveness

of near-infrared spectroscopy (NIRS) recordings measuring

regional cerebral tissue oxygenation (rSO2) during hypoxia

in apneic divers. The goal was to mimic dynamic hypoxia

as present during cardiopulmonary resuscitation, laryngo-

spasm, airway obstruction, or the ‘‘cannot ventilate cannot

intubate’’ situation. Ten experienced apneic divers per-

formed maximal breath hold maneuvers under dry condi-

tions. SpO2 was measured by MasimoTM pulse oximetry on

the forefinger of the left hand. NIRS was measured by

NONIN Medical’s EQUANOXTM on the forehead or

above the musculus quadriceps femoris. Following apnea

median cerebral rSO2 and SpO2 values decreased signifi-

cantly from 71 to 54 and from 100 to 65 %, respectively.

As soon as cerebral rSO2 and SpO2 values decreased

monotonically the correlation between normalized cerebral

rSO2 and SpO2 values was highly significant (Pearson

correlation coefficient = 0.893). Prior to correlation anal-

yses, the values were normalized by dividing them by the

individual means of stable pre-apneic measurements.

Cerebral rSO2 measured re-saturation after termination of

apnea significantly earlier (10 s, SD = 3.6 s) compared to

SpO2 monitoring (21 s, SD = 4.4 s) [t(9) = 7.703,

p\ 0.001, r2 = 0.868]. Our data demonstrate that NIRS

monitoring reliably measures dynamic changes in cerebral

tissue oxygen saturation, and identifies successful re-satu-

ration faster than SpO2. Measuring cerebral rSO2 may

prove beneficial in case of respiratory emergencies and

during pulseless situations where SpO2 monitoring is

impossible.
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1 Introduction

Since the first report of near-infrared spectroscopy (NIRS)

as a noninvasive measurement for cerebral tissue oxygen-

ation in 1977 [1], the clinical use has been constantly

growing [2]. Currently NIRS is used mainly to evaluate

cerebral tissue oxygen saturation (rSO2) in real-time during

cardiovascular procedures, during hemorrhagic shock or in

patients with subarachnoid hemorrhage [3–9]. Besides,

NIRS has also become a prospective tool in terms of

patient progress and outcome, development of organ dys-

function and resuscitation [10–13].

Peripheral oxygen saturation (SpO2) measured by finger

pulse oximetry is an approved tool in pre-hospital and

hospital settings [14]. The method is based on the light

absorption of hemoglobin—non-oxygenated hemoglobin

absorbs red light to a higher extent than oxygenated. In the

near infrared range the effect of oxygenation on light

absorption is converse. The ratio of the transmitted light at

both wave-lengths [660 nm (red) and 940 nm (near infra-

red] provides real-time and non-invasive monitoring of
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arterial oxygen saturation. In contrast to SpO2, rSO2

depends mainly on venous blood [14]. In previous meth-

odological studies a clear positive correlation between

SpO2 and rSO2 has already been demonstrated [16–18].

This correlation was shown in experiments where the

participants inhaled hypoxic gas mixtures consisting of

reduced O2 substituted with N2 during normocapnia. Such

conditions are representative for high altitude surround-

ings, but do not simulate clinical situations such as resus-

citation, laryngospasm, bronchospasm or the ‘‘cannot

ventilate cannot intubate’’ situation. Clinically caused

hypoxia is in general accompanied by hypercapnia which is

able to induce an autoregulatory blood shift into the central

nervous system [19]. In these situations controlled simul-

taneous SpO2 and cerebral rSO2 recordings have so far

only been performed in animals and not in humans due to

ethical restrictions [20].

We hypothesized that voluntary apnea performed by

apneic divers leads to a significant decrease of cerebral

rSO2 and therefore is able to mimic clinical situations

such as cardiopulmonary resuscitation, laryngospasm,

bronchospasm, or the ‘‘cannot ventilate cannot intubate’’

situation where dynamic changes of hypoxia and hyper-

capnia may occur. Furthermore we hypothesized that

cerebral rSO2 is better suited to identify successful re-

saturation following hypoxia compared to peripheral SpO2

monitoring.

2 Materials and methods

To investigate a clinical situation of an acute decrease of

SpO2 or rSO2 in volunteers, these have to be deprived of

oxygen supply. This cannot be done due to ethical

restrictions. Another possibility is to perform voluntary

breath-hold maneuvers. Non-trained volunteers are not

capable to perform breath-hold maneuvers lowering SpO2

or rSO2 [31] sufficiently to mimic dynamic hypoxia as

present during cardiopulmonary resuscitation, laryngo-

spasm, airway obstruction, or the ‘‘cannot ventilate cannot

intubate’’ situation. Therefore experienced apneic-divers

were selected for this study. The design of this study was

approved by the local ethics committee of Bonn

(No. 072/13).

Ten experienced apneic divers were included into the

study. Participants were asked to perform their usual

mental exercises (yoga and breathing exercises) for a

maximum of 10 min prior to our measurements. To rule

out that subsequent measurements were influenced by low

carbon dioxide, hyperventilation was not allowed. Three

minutes before final apnea participants stopped personal

breathing exercises and were only allowed to breathe

normally. Apnea was performed as long as the individual

subjects were able to withstand the breathing reflex. Goal

of the apneic maneuvers was to hold breath as long as

possible. Measurements were performed in a lying position

under dry conditions to avoid influence of hydrostatic

pressure on assumed reactive peripheral vasoconstriction

mediated by hypoxia.

Before, during and after apnea heart rate was measured

by a continuous five-lead electrocardiogram (ECG) (Dräger

monitor system: Infinity� M540 Monitor and Infinity

M500 Docking Station, Lübeck, Germany). SpO2 was

measured on the left forefinger by a Dräger-integrated

Masimo monitoring system (SHP ACC MCABLE-Masimo

Set, OEM partners of Dräger Medical AG&Co.KG,

Lübeck, Germany). Cerebral oxygen saturation (cerebral

rSO2) was measured by a stand-alone NONIN monitor

through NIRS technology (NONIN Medical’s

EQUANOXTM, Model 7600 Regional Oximeter System,

Plymouth, USA). NIRS diodes (EQUANOX AdvanceTM

Sensor, Model 8004CA, suited for measuring cerebral and

somatic oxygen-saturation) were placed on the right fore-

head above the eyebrow and to the right of the midsaggital

sulcus (locus frontopolar 2). EQUANOX Advance utilizes

four wavelengths (between 720 nm and 880 nm) of light to

measure the balance of oxygenated and deoxygenated

hemoglobin. ECG, SpO2 and cerebral rSO2 were continu-

ously recorded, digitalized and stored on a hard drive of a

laptop computer for offline analysis. SpO2 and cerebral

rSO2 recording systems were set to their normal clinical

sampling rates (SpO2 1 s-1 and cerebral rSO2 1 s-1).

Monitors displaying vital parameters were invisible for all

volunteers.

The internal clocks of the EQUANOX and M540

monitors were reset to exactly the same time prior to each

experiment (accuracy 1 s). Synchronization between the

EQUANOX and M540 signals was then performed offline.

To evaluate methodological differences between cerebral

rSO2 and SpO2 measurements peripheral NIRS measure-

ments were investigated in a new set of experiments as well

(n = 7). The second set of experiments was performed

1 month later to warrant independent experimental condi-

tions. As SpO2 recordings were performed on the left fore-

finger tip it would have been optimal to measure NIRS

signals from a neighboring finger. This however is techni-

cally infeasible. Alternatively, the NIRS sensor could be

placed on the forearm. However, preliminary tests showed

that NIRS recordings displayed high variability in case of

small local alterations. This may be caused by the dense

subcutaneous venous plexus in this area. Therefore periph-

eral diodes were finally placed above the middle of the

musculus quadriceps femoris (NIRSperipheral). We recorded

SpO2 from the left forefinger, which is behind the branching

of aorta and brachiocephalic trunk. If changes in blood flow

following hypoxia lead to differential vasoconstriction and
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vasodilatation with preferential blood supply of the CNS

(cerebral autoregulation), the assumed peripheral vasocon-

striction should influence the perfusion of the left fingers and

the legs in a comparable manner. In this second set of

experiments (n = 7) blood pressure was recorded continu-

ously from the tips of finger 3 and 4 by the Infinity� CNAPTM

SmartPod� system (Dräger Medical AG&Co.KG, Lübeck,

Germany) in addition to NIRSperipheral.

2.1 Data analysis methods

Total decrease of cerebral rSO2 and SpO2 measurements

during apnea was tested for significance. Because the dis-

tribution of measurement differences in NIRS values dif-

fered significantly from a normal distribution (Shapiro–

Wilk W = 0.834, p = 0.038), the total decrease was tested

using two-tailed Wilcoxon signed rank tests. The Shapiro–

Wilk test was preferred over alternative formal tests of

normality because of its higher statistical power in samples

smaller than n = 50.

The start point of rSO2 and SpO2 decrease during apnea

was defined as a drop of [2 % compared to stable pre-

apneic measurements followed by a monotonic decreasing

time-course. The start of increasing cerebral rSO2 and

SpO2 was defined by a change of monotonically decreasing

to steadily increasing values after onset of breathing. Mean

differences of time delays for cerebral rSO2 versus SpO2

decrease following apnea and the corresponding increases

following restart of respiration were investigated using

two-tailed paired t tests. There were no indications of

violations of distributional assumptions underlying the

t test. As before, the Shapiro–Wilk normality test was

applied to test for Gaussian distribution of the data

(decrease: W = 0.987, p = 0.990; increase: W = 0.958,

p = 0.757).

In a consecutive experiment we investigated time delays

in NIRSperipheral compared to SpO2 decrease following

apnea and the corresponding increases following restart of

respiration. Again, Shapiro–Wilk normality test did not

indicate significant violations of the assumptions underly-

ing two-tailed paired t tests (decrease: W = 0.832,

p = 0.084; increase: W = 0.828, p = 0.077). Further-

more, the differences in SpO2 time delays between the first

and second experiment were tested for significance using

two-tailed t tests. Shapiro–Wilk normality tests and Fish-

er’s F tests did not indicate significant violations of the

assumptions underlying two-tailed t tests.

In addition, we compared the mean blood pressure at the

beginning and end of apnea. This difference was investi-

gated using two-tailed paired t tests after checking for

violation of the distributional assumptions (Shapiro–Wilk

W = 0.976, p = 0.936).

The correlation analyses were performed for the pooled

SpO2 and cerebral rSO2 values of all participants. Prior to

correlation analyses, the values were normalized by

dividing them by the individual means of stable pre-apneic

measurements. This normalization was carried out to

control for inter-individual baseline differences of rSO2

values before pooling the data for analysis.

To prevent spurious correlations due to deep breath

exercises (although hyperventilation was not allowed, deep

breath exercises influenced cerebral saturation by increas-

ing the intrathoracic pressure at the beginning of apnea),

the correlation analysis was only based on normalized rSO2

and SpO2 values unaffected by these influences.

The statistical association between cerebral rSO2 and

SpO2 measurements during apnea were assessed using both

Pearson’s correlation and Spearman’s rank correlation

coefficient. The corresponding confidence intervals were

evaluated using nonparametric bootstrapping (10,000

bootstrap samples per confidence interval).

In order to correlate SpO2, cerebral rSO2 and

NIRSperipheral from different subjects and from two sets of

experiments we normalised the individual apnoea duration

to 100 % and standardised the respective SpO2, cerebral

rSO2 and NIRSperipheral to the baseline value (set to 100 %)

of each subject before start of breath hold (Fig. 4).

3 Results

The participants age ranged between 29 and 61 years

(mean age of 44 years). Nine men and one woman (par-

ticipant 3) were studied (see Table 1).

Following apnea, median cerebral rSO2 values

decreased from a baseline level of 71 % (range 85–55) to

54 % (range 74–24) at the end of apnea (U = -2.807,

exact p = 0.002). There was also a significant decrease in

median SpO2 measurements from 100 % (range 100–98) to

65 % (range 90–52) at the end of apnea (U = -2.807,

exact p = 0.002). In this set of experiments the average

apnea time was 284.5 s (SD = 45) and minimal heart rate

was 49 (SD = 14).

Figure 1a, b displays original recordings of simulta-

neous cerebral rSO2 and SpO2 measurements during apnea

in 2 different participants. In both participants’ cerebral

rSO2 and SpO2 revealed comparable kinetics of decreasing

values during apnea. To further support these individual

observations a correlation analysis between cerebral rSO2

and SpO2 was performed for the data of all participants

(n = 10; Fig. 2). Normalized cerebral rSO2 and SpO2

values revealed a high positive correlation during apnea,

indicating an almost perfect linear relationship between

both parameters even in dynamic circumstances.
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The Pearson correlation of 0.893 (95 % CI 0.882–0.902)

revealed a strong linear relationship between norma-

lised cerebral rSO2 and SpO2. Correspondingly, Spear-

man’s rank correlation coefficient was 0.741 (95 % CI

0.716–0.765). Due to high inter-individual variability of

baseline cerebral rSO2 values ranging from 85 to 55 %, the

correlation coefficients of raw (i.e., non-normalized) cere-

bral rSO2 and SpO2 values were only 0.589 (95 % CI

Table 1 Demographic and physical data of all participants

Subject Age Weight (kg) Height (cm) BMI Minimal heart rate (bpm) Total apnea time (s) Gender

1 46 54 176 17.43 34 375 Male

2 61 62 182 18.72 33 197 Male

3 33 54 168 19.13 45 248 Female

4 46 93 187 26.59 50 272 Male

5 38 74 181 22.59 51 270 Male

6 55 88 185 25.71 56 269 Male

7 50 62 170 21.45 56 316 Male

8 44 72 180 22.22 33 278 Male

9 29 84 186 24.28 81 301 Male

10 35 70 189 19.59 47 319 Male

Ø 43.7 71.3 180.4 21.77 48.6 284.5

SEM 9.57 13.01 6.74 2.93 13.72 45.04

Fig. 1 Raw data of two

participants. a Total apnea-time

was 316 s. Subject exhibited an

earlier decrease in SpO2 than in

cerebral rSO2. b Total apnea-

time was 349 s. This subject

developed the lowest HR (\40

beats/min for over 1 min) and

the longest time-delay between

rSO2 and SpO2 signal increase

following re-saturation (23 s)
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0.552–0.622) and 0.413 (95 % CI 0.375–0.449) for the

Pearson and the Spearman correlation analysis, respectively.

Figure 3a displays the mean time delay between

beginning of apnea and decrease in cerebral rSO2 versus

SpO2 values. Cerebral rSO2 values decreased after a mean

time delay of 175 s (SD = 50 s) whereas SpO2 values

decreased significantly earlier after a mean time delay of

134 s [SD = 29 s; t(9) = 2.865, p = 0.019, r2 = 0.477].

After restart of respiration, cerebral rSO2 values

increased after a mean delay of only 10 s (SD = 4 s),

whereas SpO2 values increased significantly later with a

mean latency of 21 s [SD = 4 s; t(9) = 7.703, p\ 0.001,

r2 = 0.868] (Fig. 3c).

In a second independent experiment performed 1 month

later we investigated the differences in time delays (de- and

re-saturation) of peripheral NIRS values measured above the

musculus quadriceps femoris (NIRSperipheral) and SpO2

values during apnea. In this set of experiments the average

apnea time was 186.6 s (SD = 31), median SpO2 decreased

from 98 % (range 100–98) to 81 % (range 94–67).

(U = -2.366, exact p = 0.016) and the average minimal

heart rate was 69 bpm (SD = 13).

NIRSperipheral values decreased after a mean time delay

of 39 s (SD = 13 s) whereas SpO2 values decreased after a

mean time delay of 125 s (SD = 36 s) (data displayed in

Fig. 3b) [t(6) = 4.869, p = 0.003, r2 = 0.798]. Figure 3d

displays the mean time delays between restart of respira-

tion and increase of NIRSperipheral and SpO2. The

NIRSperipheral values increased after a mean time delay of

30 s (SD = 16 s) and SpO2 values increased after a mean

delay of 27 s (SD 7 s) [t(6) = 0.631, p = 0.551,

r2 = 0.062].

The additionally measured blood pressure showed an

increase of mean arterial pressure (MAP) during apnea.

Preapneic MAP values increased from 98 mmHg (SD =

9 mmHg) to 121 mmHg (SD = 12 mmHg) at the end of

apnea [t(6) = 05.442, p = 0.002, r2 = 0.832].

While cerebral hemoglobin index [HBI = volume of

hemoglobin (oxyhemoglobin ? deoxyhemoglobin)] as

measured by the EQUANOX 7600 stayed nearly constant

during apnea (1.03 SD = 0.19 pre-apneic vs. 1.00

SD = 0.17 post-apneic), HBIperipheral decreased from 1.07

(SD = 0.22) pre-apneic to 0.94 (SD = 0.15) at the end of

apnea.

4 Discussion

We could demonstrate that voluntary apnea performed by

apneic divers mimicking respiratory emergencies or car-

diopulmonary resuscitation leads to a significant decrease

of cerebral rSO2 and was highly correlated with decreasing

SpO2 values. Furthermore we could show that cerebral

rSO2 is better suited to identify successful re-saturation

following hypoxia compared to peripheral SpO2

monitoring.

To explore whether the observed time delays of mea-

sured de- or resaturation between cerebral rSO2 and SpO2

were caused by the different techniques of signal pro-

cessing (instead of physiological processes), we performed

additional experiments to investigate NIRS recordings

above peripheral tissue. As mentioned in Sect. 2, the

EQUANOX 7600 was equipped with specific diodes,

allowing to measure somatic as well as cerebral rSO2.

Interestingly, NIRSperipheral dropped significantly earlier

than SpO2. This may be regarded as a sign for reduced

blood perfusion in the monitored tissue. We speculate that

peripheral vasoconstriction occurs before a decrease in

arterial oxygen saturation—visualized by SpO2—is mea-

sureable. We believe that peripheral vasoconstriction

leading to a decrease in oxygen delivery may result in

decreased tissue oxygenation as measured by NIRSperipheral.

Fig. 2 Scattergram of normalized SpO2 and rSO2 parameters during

apnea of all participants (n = 10). Best-fitting least-squares linear

regression line is superimposed on the data
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This may explain why NIRSperipheral demonstrates desatu-

ration prior to SpO2 as can be seen in Fig. 4.

From the NIRS signal a hint for vasoconstriction may be

deduced by taking the hemoglobin index [HBI = volume

of hemoglobin (oxyhemoglobin ? deoxyhemoglobin)] as

measured by the EQUANOX 7600 device into account.

While cerebral HBI stayed nearly constant during apnea

HBIperipheral decreased from 1.07 pre-apneic to 0.94 at the

end of apnea.

During re-saturation significant differences in time

delays between both measurements (NIRSperipheral vs.

SpO2) could not be seen. It is therefore unlikely that the

observed time delay differences in de- or re-saturation are

due to the underlying signal processing techniques (tem-

poral resolution, artifact algorithm etc.). The time delay

between rSO2 and SpO2 values may rather be attributed to

different measurement sites in the body (finger vs. cerebral)

asking for physiological explanations. Physiological

explanations may be seen in differential local perfusion

pressure or peripheral resistance and differential local

blood flow.

In general, cerebral blood flow (CBF) varies to a lower

degree than that of muscle tissue. CBF is kept high even in

case of low end-tidal pO2, low central venous saturation

and increasing age [21–23]. Increased CBF due to cerebral

autoregulation protecting the brain tissue against hypoxia

may also serve as one possible explanation for the inves-

tigated time delay seen in Fig. 4 between cerebral rSO2 and

SpO2 decline following apnea [24]. The effect of cerebral

autoregulation has already been shown in neonates during

short periods of apnea. Watkin et al. [25] have investigated

cerebral rSO2 and SpO2 measurements during apnea in

neonates with apnea defined as a pause in nasal flow of

[4 s. The authors found that small changes in SpO2 or

cerebral rSO2 showed no correlation. A close association

between the two indices existed only in case of large

changes in SpO2. It is tempting to speculate that cerebral

autoregulation was responsible for the non-existing corre-

lation of SpO2 and rSO2 in case of minor hypoxia and that

hypoxic cerebral autoregulation is even more effective in

neonates as compared to adults investigated in our study,

since changes in neonatal cerebral rSO2 were only asso-

ciated with SpO2 changes as high as 12 %.

Cerebral autoregulation has also been investigated in

adult patients with obstructive sleep apnea (OSA) [26].

However, in case of more than 30 episodes of apnea/h,

Fig. 3 a Mean time delay

between beginning of apnea and

decrease of cerebral rSO2 versus

SpO2 values [n = 10,

t(9) = 2.865, p = 0.019,

r2 = 0.477]. b Mean time delay

between beginning of apnea and

decrease of NIRSperipheral versus

SpO2 values [n = 7,

t(6) = 4.869, p = 0.003,

r2 = 0.798]. c Mean time delay

between restart of respiration

and an increase of cerebral rSO2

versus SpO2 values [n = 10,

t(9) = 7.703, p\ 0.001,

r2 = 0.868]. d Mean time delay

between restart of respiration

and an increase of NIRSperipheral

versus SpO2 values [n = 7,

t(6) = 0.631, p = 0.551,

r2 = 0.062]. Error bars indicate

standard error of the mean.

a–d Time delays in SpO2

decrease and increase between

the first and the second

experiment were not

significantly different

[desaturation: t(15) = 0.574,

p = 0.574, r2 = 0.022; re-

saturation: t(15) = 2.028,

p = 0.061, r2 = 0.215]
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severe decreases of cerebral rSO2 were reported by NIRS

recordings. It may be argued that cerebral autoregulation

reached a physiological limit in these patients, resulting in

cerebral desaturation. Interestingly, OSA has been reported

to be accompanied by a steady increase in arterial blood

pressure [27]. This is in line with our finding, that apnea in

our investigations was accompanied with an increase in

arterial blood pressure.

A raised total peripheral resistance (TPR) and an

increased mean arterial pressure (MAP) during apnea has

been reported in case of divers [28–32]. We could also

measure significantly elevated MAP in the course of apnea

in a subset of measurements. In addition, an increased CBF

caused by an elevation of TPR and MAP combined with an

increase in PCO2
leading to cerebral vasodilatation may

serve as a physiological explanation of the observed time

delay between decreasing cerebral rSO2 and SpO2 values

following apnea. The influence of increased arterial PCO2
is

further supported by experiments under hyperoxic condi-

tions with increased inspiratory PCO2
(7.5 mmHg) leading

to elevated CBF in test subjects [33]. Increased CBF should

in theory lead to a lower arterial-venous oxygen saturation

difference (avDO2), visible as higher cerebral rSO2 values.

In the present study we observed that cerebral rSO2 values

started to decline as soon as SpO2 levels fell below 93 %

(±3 %), suggesting that a further decrease in arterial

oxygen saturation cannot be compensated by the above

mentioned physiological mechanisms. In this context it

seems worth mentioning that cerebral autoregulation

induced in breath hold divers can be demonstrated by

cerebral rSO2 recordings and not by peripheral

SpO2-measurements.

In a previous study by Nishiyasu et al. [28] the authors

describe two groups with different physiological reactions

following apnea. Subjects of the first group developed

lower heart rates (\65 beats/min) and exhibited greater

changes in MAP and TPR compared to a second group

maintaining a minimum heart rate above 75 beats/min.

Most of our participants reacted to apnea with instanta-

neous bradycardia (Fig. 1b). It remains unclear if a

humoral response leads to the combination of TPR increase

and bradycardia, or if stimulation of baroreceptors due to

increased intrathoracic pressure induces reflexbradycardia.

In any case, we believe that measured bradycardia seen in

our participants was accompanied by elevated TPR and

thereby increased CBF leading to the time delay between

decreasing cerebral rSO2 and SpO2 values following apnea.

Others have tested the feasibility of NIRS to record

changes in brain oxygenation induced by hypoxemia [15–

18, 34–36]. However, hypoxemia was induced by appli-

cation of artificial gas-mixtures simulating high altitude

hypoxia. Investigations were performed for up to 4 h

studying long term changes in rSO2 and SpO2 follows

hypoxia [37]. Such a time-course is not representative for

acute respiratory emergency situations and to the best of

our knowledge investigations on cerebral rSO2 and SpO2

during acute hypoxemia in the presence of hypercapnia

were still missing. Our chosen model of acute apnea cor-

responds to a much higher extend to the clinical situation of

for example laryngospasm or resuscitation compared to the

model investigating high altitude situations.

During restart of respiration, re-saturation appeared

significantly earlier in cerebral rSO2 compared to SpO2 in

contrast to desaturation where cerebral rSO2 values reacted

with delay. As mentioned before, there was no significant

delay between NIRSperipheral and SpO2 recording tech-

niques in measuring peripheral re-saturation (Fig. 3d).

Thus a delayed vasodilatation in the periphery in compar-

ison to the brain remains as a possible explanation for the

observed time delays between NIRSperipheral/SpO2 increa-

ses compared to cerebral rSO2 at the end of apnea.

Taken together, both devices (NIRS and SpO2) seem to

be suited to measure dynamic changes in O2 saturation.

However, NIRSperipheral appears favorable in demonstrating

the onset of hypoxia whereas cerebral rSO2 seems favor-

able to visualize successful re-saturation when compared to

traditionally measured SpO2.

The relevance of the results in the present study depends

on the range of rSO2 values measured during voluntary

apnea (average reduction from 71 to 54 %, however, the

Fig. 4 Displayed are normalised SpO2, cerebral rSO2 and

NIRSperipheral values. To equilibrate individual variations in apnea

time, all apnea times were standardised to 100 %. Thus the variations

in the three plotted parameters are assigned to the relative apnea

times. Baseline values measured prior to apnea were defined as 100 %
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lowest individual value reached was 24 %). Two recently

published studies [37, 38] on patients with cardiac arrest

and return of spontaneous circulation (ROSC) reported of

initial rSO2 values around 40 % (47.2 ± 10.7 [37]/

37.2 ± 17.0 % [38]). Although apneic divers in average

had higher rSO2 saturations than patients during cardiac

arrest the range of recorded rSO2 values was comparable.

We believe that apneic divers may serve as a model to

mimic clinical situations under hypoxia in a reproducible

setup.

It is worth discussing the suitability of both devices in

different clinical situations. It is nearly impossible to

measure O2 saturation by pulse oximetry in case of cen-

tralized minimal circulation or in case of pulseless elec-

trical activity (PEA) [38]. NIRS monitoring is therefore

well established and routinely applied during cardiac sur-

gery or extra corporal membrane oxygenation therapy.

Based on the results of our study, we believe that NIRS

monitoring may also be beneficial during cardiopulmonary

resuscitation or other clinical situations where dynamic

changes of hypoxia and hypercapnia may occur and SpO2

monitoring is sometimes impossible. Recently published

studies have favored NIRS technology for monitoring rSO2

during CPR and may perhaps also allow monitoring the

efficacy of CPR [39, 40]. In our study we could show that

de- and re-saturation can be monitored by NIRS in a

reproducible manner. In addition, one could argue that it

appears more reasonable to measure O2 saturation in the

most sensible human organ towards hypoxia—the brain—

compared to measuring O2 saturation in the fingertip.

5 Conclusion

During acute apnea we could reveal that NIRS is suitable to

measure dynamic changes of O2 saturation reliably and

quickly. NIRSperipheral appears favorable in demonstrating

onset of hypoxia whereas cerebral NIRS seems favorable in

measuring successful re-saturation when compared to tra-

ditionally measured SpO2. Measuring cerebral NIRS may

prove beneficial in case of respiratory emergencies and

during pulseless situations where SpO2 monitoring is

impossible.
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