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Abstract High-grade aneurysmal subarachnoid hemorrhage

patients are monitored in the ICU for up to 21 days, as they are

at risk for complications such as vasospasm of cerebral arteries,

cardiac arrhythmias and neurogenic stress cardiomyopathy.

The diagnosis of these treatable complications is often delayed

by the limitations of monitoring capabilities. We applied

computational analysis to a cohort of 24 aneurysmal sub-

arachnoid hemorrhage patients, to identify heart rate variability

and ECG frequency profiles that may be potential biomarkers of

severe vasospasm, reversible cardiomyopathy and death.

Keywords Computational analysis of heart rate

variability � Heart rate variability � Intensive care

monitoring

1 Background

High-grade aneurysmal subarachnoid hemorrhage (SAH)

patients are at risk for neurologic and cardiovascular com-

plications. They warrant ICU monitoring for between 14

and 21 days as irreversible secondary brain injury can occur

over a short period of time. These complications include

delayed cerebral ischemia, vasospasm of cerebral arteries,

cardiac arrhythmias, and neurogenic stress cardiomyopathy.

The peak period for vasospasm (VSP) is 3–14 days after

aneurysmal rupture, resolving usually by 14 and almost all

by 21 days. Reversible stress cardiomyopathy (RCM)

occurs early but is often delayed in its diagnosis (requiring a

transthoracic echocardiogram). Treatment interventions

include avoiding secondary brain injury from hypotension

(as a result of low cardiac output states) using enlightened

choices of vasopressors, amplification of blood pressure in

impending delayed cerebral ischemia, and endovascular

intervention for targeted vessel dilation. The challenges in

timely detection and intervention lie in the insidious and

subtle features of these complications at onset. The devel-

opment of non-invasive indices for early detection of these

complications is likely to improve patient outcomes.

There is a large body of literature that suggests that

changes in heart rate variability (HRV) measures are

associated with untoward clinical events and can be pre-

dictive of outcome [1–3]; the literature prior to 2011 is

nicely reviewed by Mazzeo et al. [4]. ECG can reflect

important characteristics of complex autonomic control.

Indices reflecting sympatho-vagal imbalance (shifted

adjustment between sympathetic and vagal activity) pro-

vides predictive value after stroke [5]. In a study of non-

neurologic patients with RCM, HRV was decreased during

the acute phase [6] relative to the chronic phase. Specifi-

cally in SAH, the acute (Day 1) phase has both increased

sympathetic (catecholamines) and parasympathetic activity

(perhaps associated with increased intracranial pressure

after SAH onset) relative to the chronic phase (Day 30) that

can be quantified using spectral analysis of HRV [7].

If the predictive value of a HRV measure depends on the

relative comparison of acute vs chronic values, this would
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limit its online application in identifying treatable events

with insidious or subtle clinical onset. Su et al. [8] showed

that standalone intra-individual acute measures may have

value in prediction of clinical events after SAH. An

increasing slope of the ratio of low frequency/high fre-

quency spectral power (LF/HF ratio) in the first 3 days

after SAH ictus was a predictor of secondary complications

(neurogenic pulmonary edema, symptomatic vasospasm,

cerebral infarction, or death); interestingly, this pattern is

also seen in myocardial infarction [8].

The present study is hypothesis generating, with the

overall goal to identify biomarkers to facilitate early

detection (as opposed to prediction) of post-SAH compli-

cations. Specifically, we evaluate intra-individual HRV

features in a clinically annotated dataset of consecutive

SAH patients.

2 Methods

2.1 Monitoring and clinical data

Digital acquisition and storage of physiologic signals was

protocolized in the Neurocritical Care Unit at the Hospital of

the University of Pennsylvania in 2011. The clinical protocol

includes severely brain injured patients who meet specific

criteria (traumatic brain injury, subarachnoid hemorrhage,

coma, and/or intracranial pressure monitoring). Data from 24

consecutively admitted SAH patients from 2011 to 2012

were analysed retrospectively for the purpose of this study,

which was approved by the Institutional Review Board.

Physiological signals were sampled at a frequency of

200 Hz. ECG was monitored continuously, and data was

recorded using ICM ? software (Cambridge Enterprise,

Cambridge, UK, http://www.neurosurg.cam.ac.uk/icmplus/)

or Component Neuromonitoring System (CNS Technology

LLC, Ambler, PA), based on resource availability.

VSP-Rx was defined as angiographic vasospasm that

was treated with targeted intra-arterial vasodilator therapy.

RCM was identified by attending cardiologist clinical read

of transthoracic echocardiograms, and diagnosis confirmed

by observation of resolution of wall motion abnormalities.

2.2 Data analysis

Various time and frequency domain methods can be used

to quantify HRV. An in-depth description of these methods

can be found in a consensus guideline for the measurement

and physiologic interpretation of ECG for clinical use [9].

We calculated HRV using both the time domain and

frequency domain measures. Time domain measures

included standard deviation of interbeat intervals (SDNN),

root mean square of successive differences of interbeat

intervals (RMSSD), coefficient of variation of interbeat

intervals (CV of HR) and the Poincaré plot statistics SD1,

SD2 and their ratio. Frequency domain measures included

normalized LF power, normalized HF power, and LF/HF

ratio (see Table 1).

To facilitate analysis of the ECG data, a custom GUI

(Graphical User Interface) was developed in MatlabTM.

The GUI (Fig. 1a) allows users to view the raw time series

data, to identify and remove outliers based on a statistical

analysis of the data, automatically detect and confirm

Table 1 Description of HRV measures used in analysis

HRV in time domain

SDNN Mean of the standard

deviations for all

normal to normal (NN)

R–R intervals

Reflects the overall

variability of HR where

slower rhythms

contribute more due to

their larger amplitudes

RMSSD Square root of the mean

squared differences of

successive NN intervals

This measure reflects

faster rhythms which

are usually assigned to

the influence of vagal

rhythms on HRV

SD1 Quantitative

interpretation of

Poincaré plot; standard

deviation of the minor

axis

A marker of short-term

beat-to-beat variability

SD2 Quantitative

interpretation of

Poincaré plot; standard

deviation of the major

axis

A marker of long-term

heart rate fluctuations

Poincaré

ratio

SD1/SD2 Index of the balance of

short term to long term

variability in heart rate

quantified by standard

Poincaré statistics

CV of HR Coefficient of variation

(CV) of the R–R

interval time series. CV

is standard deviation

divided by the mean

SDNN normalized for

mean R–R interval

HRV in frequency domain

Normalized

LF power

(LF power: low-

frequency component,

from 0.04 to 0.15 Hz);

Normalized LF power:

LF/[TP-VLF), where

TP is total power and

VLF is very low

frequency power

(LF power reflects vagal

and sympathetical

mediated control);

Emphasizes the relative

contribution of LF

Normalized

HF power

(HF power: high-

frequency component,

from 0.15 to 0.40);

Normalized HF power:

HF/(TP-VLF)

(Predominantly reflecting

vagal mediated control);

Emphasizes the relative

contribution of HF

LF/HF ratio LF/HF Ratio interpreted as

sympatho-vagal balance
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Fig. 1 a Screen shot of GUI with functionality for loading patient

data, selecting epoch size, automated R-wave detection with the

ability to remove outliers and real-time visualization of HRV statistics

for the epoch under consideration; b Change point detection was

incorporated into the GUI to facilitate correlation of patterns in HRV

statistics. GUI contained functionality for selecting patient for

analysis, HRV statistic and average window size, as well as

displaying the timing of clinical events
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R-waves, compute HRV measures, and visualize the results

of the HRV analysis. The design and implementation of the

GUI was accomplished through an iterative process

involving the engineering and clinical team members, and

the final form of the GUI was customized to conveniently

allow users to correlate the data and results to clinical

meaningful findings. The GUI is capable of loading and

automatically processing several days of recorded ECG

data, and the results of the HRV analysis are saved to a

single file for review and statistical analysis. HRV analysis

was restricted to non-overlapping 300-s (5-min) epochs of

ECG data, as is standard practice [9]. To correlate HRV

analysis with time-stamped clinical data, a 60-min non-

overlapping moving average filter was used to smooth the

HRV results. To assist in correlating HRV analysis results

with clinical data, a change point detection algorithm [10]

was used to detect statistically significant changes in the

HRV measures (Fig. 1b). The goal of change-point detec-

tion is to segment the time-series into epochs with sta-

tionary or statistically invariant properties. Then, the

nonparametric statistical method developed by Brodsky

[10], based on the model of the Brownian bridge process, is

used to detect changes in the statistical characteristics of

the signal.

Clinically meaningful outcomes were the following:

severe vasospasm warranting endovascular intervention

(VSP-Rx), RCM, and death. Because the highest risk for

onset of VSP-Rx or RCM was in the relative time interval

up to 1 week after aneurysm rupture, we focused our

analyses on post bleed days (PBD) 0-7.

Our first goal was to determine if there were any visually

apparent temporal relationships between changes in HRV

measures and clinical outcomes that might support the

future use of graphically displayed analyses in enhancing

early detection. HRV measures for each subject were

graphed against PBD and annotated for clinical events.

They were individually inspected by 2 independent inves-

tigators (SP and FJ).

Our second goal was to determine if the absolute values

of these analyses were correlated with clinical outcomes.

Standard HRV measures were calculated using the program

described above. HRV analyses for each patient resulted in

data with non-normal distribution (ranging from 860 to

1,636 data points per patient); medians were calculated and

taken as a distilled proxy for Absolute Value for PBD 0-7

(see Table 2). These single Absolute Values per patient

were categorized by events including any event (7)/no

event (6), VSP-Rx (3)/No VSP-Rx (10), RCM (5)/No RCM

(8), and death (4)/no death (9). The category values were

compared using unpaired t test.

Our last goal was to determine if there were any

meaningful intra-subject patterns in HRV measures asso-

ciated with the clinical outcomes. Change point analysis

was used to determine the number of times the mean of a

particular HRV statistic changed significantly over the time

period of PBD 0-7. The results of HRV analyses on the

smoothed measures were evaluated for change points that

exceeded a set threshold. The average number of changes

per data day in the mean of each HRV statistic was

quantified in all patients. The number of change points

were tallied for subject categories of Any event vs. No

event, as well as Individual Specified event vs. No Indi-

vidual Specified event (RCM, VSP-Rx, death). Differences

between groups were compared using an unpaired t test.

For both Absolute Values and Change Point Analyses,

the possibility of type 1 error was increased by the multiple

comparisons made on a single data set. However, as this

was hypothesis-generating work with the goal of identify-

ing biomarkers for future study, we minimized false

negatives by not statistically accounting for multiple

comparisons.

3 Results

From a consecutive cohort of 24 high-grade SAH patients

in a single neurointensive care unit, 11 were excluded from

the final analysis because they did not have continuous data

segments available for analysis for the majority of the time

frame PBD 0-7. The remaining 13 patients were examined

to determine if indices of HRV correlated with the occur-

rence of clinical events. Five patients experienced RCM

(on PBD 0-7), and 3 were treated for VSP (on PBD 4-6).

Two of the patients in these categories experienced both

VSP-Rx and RCM. Four patients died between PBD 6-13

(including 2 of the RCM patients and 1 VSP-Rx patient).

3.1 Graphical display

Representative results that met subjective criteria of a

meaningful trend or non-random pattern are displayed

below.

In a SAH patient with RCM, we found a decrease in

HRV that predated the discovery of cardiomyopathy as

well as the onset of respiratory distress by several hours

(see Fig. 2).

It was noted that the presence of events may correlate

with a subjectively more non-random pattern, for example

in CV of HR analyses of these SAH patients (see Fig. 3).

3.2 Absolute values

The only comparison that reached significance was

RMSSD analysis; patients with RCM had a lower mean

RMSSD over PBD 0-7 than those that did not experience

RCM (p = 0.03) (see Table 3).

388 J Clin Monit Comput (2013) 27:385–393

123



T
a

b
le

2
P

at
ie

n
t

an
d

d
at

a
ch

ar
ac

te
ri

st
ic

s

A
g

e

g
en

d
er

E
v

en
ts

#
D

at
a

D
ay

s
in

P
B

D
0

-7

#
o

f
3

0
0

s
ep

o
ch

s

an
al

y
se

d

S
D

N
N

(m
ed

ia
n

)

IQ
R

R
M

S
S

D

(m
ed

ia
n

)

IQ
R

C
V

o
f

H
R

(m
ed

ia
n

)

IQ
R

5
3

F
V

S
P

-R
x

,
R

C
M

6
1

,6
2

4
0

.0
3

3
(0

.0
2

4
–

0
.0

4
5

)
0

.0
1

0
(0

.0
0

7
–

0
.0

1
5

)
0

.0
5

6
(0

.0
4

2
–

0
.0

7
6

)

6
4

F
R

C
M

7
1

,6
3

3
0

.0
3

1
(0

.0
1

9
–

0
.0

4
7

)
0

.0
2

0
(0

.0
1

2
–

0
.0

3
2

)
0

.0
3

7
(0

.0
2

4
–

0
.0

5
6

)

7
1

F
V

S
P

-R
x

,
R

C
M

6
1

,5
5

2
0

.0
2

7
(0

.0
0

6
–

0
.0

4
7

)
0

.0
1

5
(0

.0
0

3
–

0
.0

2
8

)
0

.0
3

6
(0

.0
1

1
–

0
.0

6
4

)

7
2

F
R

C
M

,
d

ea
th

5
1

,2
5

1
0

.0
2

0
(0

.0
1

2
–

0
.0

3
0

)
0

.0
0

8
(0

.0
0

5
–

0
.0

1
1

)
0

.0
3

6
(0

.0
2

1
–

0
.0

5
2

)

4
9

F
D

ea
th

5
1

,3
9

8
0

.0
0

8
(0

.0
0

5
–

0
.0

1
6

)
0

.0
0

4
(0

.0
0

3
–

0
.0

0
9

)
0

.0
0

8
(0

.0
0

6
–

0
.0

2
0

)

5
6

F
R

C
M

,
d

ea
th

4
8

6
0

0
.0

2
1

(0
.0

1
2

–
0

.0
4

3
)

0
.0

1
3

(0
.0

0
7

–
0

.0
2

4
)

0
.0

2
7

(0
.0

1
7

–
0

.0
5

3
)

4
4

F
V

S
P

-R
x

,
d

ea
th

7
1

,3
9

6
0

.0
5

2
(0

.0
2

9
–

0
.0

9
1

)
0

.0
4

1
(0

.0
2

8
–

0
.0

5
8

)
0

.0
5

6
(0

.0
2

7
–

0
.1

2
4

)

6
3

M
6

1
,5

0
4

0
.0

2
0

(0
.0

1
4

–
0

.0
3

0
)

0
.0

0
9

(0
.0

0
6

–
0

.0
1

3
)

0
.0

3
0

(0
.0

2
2

–
0

.0
4

3
)

5
0

M
6

1
,6

3
6

0
.0

4
1

(0
.0

3
1

–
0

.0
5

7
)

0
.0

2
3

(0
.0

1
7

–
0

.0
3

0
)

0
.0

5
0

(0
.0

3
8

–
0

.0
7

0
)

4
5

F
5

1
,3

5
5

0
.0

6
2

(0
.0

4
9

–
0

.0
7

8
)

0
.0

5
2

(0
.0

3
3

–
0

.0
8

0
)

0
.0

8
4

(0
.0

6
7

–
0

.1
0

6
)

4
6

M
7

1
,6

2
6

0
.0

6
6

(0
.0

4
6

–
0

.0
8

9
)

0
.0

3
5

(0
.0

2
–

0
.0

5
8

)
0

.0
7

2
(0

.0
5

2
–

0
.0

9
4

)

5
8

F
5

1
,0

9
6

0
.0

1
4

(0
.0

1
1

–
0

.0
2

2
)

0
.0

0
8

(0
.0

0
6

–
0

.0
1

0
)

0
.0

1
8

(0
.0

1
4

–
0

.0
3

0
)

4
3

F
7

1
,5

1
5

0
.0

4
4

(0
.0

3
1

–
0

.0
6

4
)

0
.0

2
7

(0
.0

1
8

–
0

.0
4

3
)

0
.0

5
7

(0
.0

4
2

–
0

.0
8

0
)

A
g

e

g
en

d
er

S
D

1
C

(m
ed

ia
n

)

IQ
R

S
D

2
C

(m
ed

ia
n

)

IQ
R

N
o

rm
al

iz
ed

L
F

(m
ed

ia
n

)

IQ
R

N
o

rm
al

iz
ed

H
F

(m
ed

ia
n

)

IQ
R

L
F

/H
F

ra
ti

o

(m
ed

ia
n

)

IQ
R

5
3

F
1

.2
1

4
(0

.9
0

8
–

1
.5

8
5

)
7

.9
5

0
(5

.9
2

9
–

1
0

.7
4

8
)

0
.2

0
3

(0
.1

3
5

–
0

.2
8

3
)

0
.0

4
1

(0
.0

2
4

–
0

.0
6

4
)

4
.9

7
0

(3
.6

3
8

–
6

.7
8

0
)

6
4

F
1

.2
9

3
(0

.9
2

0
–

1
.8

3
7

)
3

.5
5

1
(2

.3
7

4
–

5
.4

6
6

)
0

.2
2

6
(0

.1
3

1
–

0
.3

0
8

)
0

.1
3

3
(0

.0
6

9
–

0
.2

6
5

)
1

.5
5

7
(0

.8
8

3
-2

.5
1

5
)

7
1

F
0

.9
9

2
(0

.3
7

4
–

1
.8

2
4

)
3

.8
2

1
(1

.4
7

7
–

7
.2

8
2

)
0

.1
8

8
(0

.1
1

7
–

0
.2

6
3

)
0

.1
3

2
(0

.0
6

2
–

0
.2

8
4

)
1

.3
4

8
(0

.6
8

6
-2

.5
1

0
)

7
2

F
0

.9
5

9
(0

.7
0

9
–

1
.2

2
9

)
5

.3
1

2
(3

.1
2

2
–

7
.5

3
3

)
0

.0
8

5
(0

.0
4

6
–

0
.1

6
6

)
0

.0
2

6
(0

.0
1

2
–

0
.0

9
0

)
3

.0
8

1
(1

.6
0

3
–

4
.6

5
2

)

4
9

F
0

.2
5

2
(0

.1
9

6
–

0
.5

0
2

)
0

.8
0

6
(0

.5
7

7
–

1
.8

1
1

)
0

.1
4

7
(0

.0
9

8
–

0
.2

0
4

)
0

.2
0

9
(0

.0
9

5
–

0
.5

3
1

)
0

.6
6

4
(0

.2
9

6
–

1
.4

1
9

)

5
6

F
1

.0
1

0
(0

.6
0

6
–

1
.7

7
0

)
2

.9
2

5
(1

.9
2

8
–

4
.7

4
3

)
0

.3
1

7
(0

.2
4

0
–

0
.4

0
0

)
0

.1
9

6
(0

.1
1

8
–

0
.3

7
4

)
1

.6
9

2
(0

.8
2

5
–

2
.9

4
4

)

4
4

F
2

.0
6

6
(1

.0
5

2
–

3
.5

0
8

)
4

.2
0

5
(1

.8
3

5
–

1
3

.1
2

!)
0

.2
1

4
(0

.1
5

3
–

0
.2

7
5

)
0

.2
1

2
(0

.1
0

4
–

0
.4

1
5

)
1

.0
3

3
(0

.5
1

1
-1

.9
2

3
)

6
3

M
0

.7
4

1
(0

.5
5

3
–

1
.0

5
5

)
3

.6
1

6
(2

.6
4

4
–

5
.1

0
9

)
0

.2
1

5
(0

.1
4

6
–

0
.3

0
3

)
0

.0
4

7
(0

.0
3

0
–

0
.0

8
0

)
4

.3
1

5
(2

.5
4

3
-6

.6
9

4
)

5
0

M
1

.3
3

0
(1

.0
7

3
–

1
.7

5
0

)
4

.9
1

1
(3

.5
5

6
–

7
.8

5
6

)
0

.2
1

3
(0

.1
4

5
–

0
.2

8
5

)
0

.1
6

6
(0

.0
8

6
–

0
.2

8
8

)
1

.2
0

1
(0

.7
5

8
–

2
.1

7
6

)

4
5

F
3

.6
2

3
(2

.3
1

0
–

6
.0

4
9

)
8

.6
6

6
(6

.8
5

3
–

1
0

.5
4

1
)

0
.1

7
6

(0
.1

3
2

–
0

.2
2

9
)

0
.1

7
2

(0
.0

8
4

–
0

.3
7

3
)

1
.1

2
4

(0
.4

8
7

–
2

.0
9

5
)

4
6

M
1

.7
6

5
(1

.3
2

7
–

2
.2

9
2

)
6

.3
9

2
(4

.5
8

4
–

8
.1

9
7

)
0

.1
6

0
(0

.1
1

6
–

0
.2

1
8

)
0

.1
0

2
(0

.0
6

4
–

0
.1

7
6

)
1

.4
9

8
(1

.0
1

3
–

2
.2

4
9

)

5
8

F
0

.5
6

1
(0

.4
7

9
–

0
.6

7
9

)
1

.8
3

9
(1

.4
0

5
–

3
.3

7
1

)
0

.2
1

7
(0

.1
3

7
–

0
.3

0
5

)
0

.0
7

9
(0

.0
4

0
–

0
.1

3
9

)
2

.9
2

1
(1

.6
5

8
–

4
.5

3
3

)

4
3

F
1

.8
9

1
(1

.3
1

2
–

2
.7

1
3

)
5

.8
2

0
(4

.2
6

3
–

8
.1

7
4

)
0

.2
1

1
(0

1
5

4
–

0
.2

8
0

)
0

.0
6

2
(0

.0
3

7
–

0
.1

0
9

)
3

.2
6

9
(2

.1
2

6
–

5
.0

7
3

)

J Clin Monit Comput (2013) 27:385–393 389

123



3.2.1 Mean change points (intra-subject patterns)

Patients with any clinically significant event (n = 7) had a

higher frequency of changes in the mean as compared to

patients without events (n = 6) for SDNN (1.3 ± 0.3 vs.

0.7 ± 0.4; p = 0.008) and CV (1.3 ± 0.3 vs. 0.7 ± 0.3;

p = 0.005) and SD2 (1.1 ± 0.4 vs. 0.6 ± 0.3; p = 0.026).

Statistically significant differences were not seen with

Fig. 2 RMSSD analysis for an aSAH patient with RCM, showing a decrease in HRV preceding discovery of cardiomyopathy as well as

respiratory distress by several hours

Fig. 3 a subjectively Non-Random pattern of CV of HR in patients with events; b subjectively Random pattern of CV of HR in patients without

events
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average HR (1.3 ± 0.2 vs. 0.9 ± 0.5; p = 0.093), or

RMSSD (1.0 ± 0.4 vs. 0.8 ± 0.3; p = 0.311).

In patients with VSP-Rx (n = 3), the frequency of mean

changes was higher than in those without VSP-Rx (n = 10)

for the following parameters: SDNN (1.5 ± 0.4 vs.

0.9 ± 0.4; p = 0.039), RMSSD (1.3 ± 0.2 vs. 0.8 ± 0.3;

p = 0.006), CV (1.4 ± 0.3 vs. 0.9 ± 0.4; p = 0.037), SD1

(1.3 ± 0.3 vs. 0.8 ± 0.3; p = 0.014) and SD2 (1.2 ± 0.3

vs. 0.7 ± 0.3; p = 0.049). The frequency of change points

differences in average HR was similar between the groups

(p = 0.373).

The number of mean changes per day was greater in

patients with RCM (n = 5) as compared to patients in this

cohort without evidence of RCM (n = 8) for SDNN

(1.4 ± 0.4 vs. 0.8 ± 0.4; p = 0.012), CV (1.4 ± 0.3 vs.

0.8 ± 0.3; p = 0.007) and SD2 (1.2 ± 0.3 vs. 0.6 ± 0.3;

p = 0.005). No differences were observed between these

groups for average HR (p = 0.093), RMSSD (p = 0.815)

and SD1 (p = 0.183).

No significant differences were seen in the occurrence

rate of mean changes in any of the HRV statistics examined

over PBD 0-7 in patients who died as compared to those who

survived. p values are as follows: average HR (p = 0.0359),

SDNN (p = 0.500), RMSSD (p = 0.782), CV (p = 0.621),

SD1 (p = 0.564) and SD2 (p = 0.752) (Table 4).

4 Discussion

The early clinical detection of untoward but treatable

events after aneurysmal subarachnoid hemorrhage

(including severe vasospasm and reversible cardiomyopa-

thy) would be of tremendous clinical value. Our results

suggest that there is promise in intra-individual ECG HRV

analysis for the early detection of clinically important

events.

We identified a decrease in the absolute value of

RMSSD in patients who develop reversible cardiomyopa-

thy after SAH. There is a physiologic rationale for moni-

toring RMSSD in patients at risk for RCM as this index

reflects the integrity of vagal control of the heart; inter-

estingly, lower values have been found to be associated

with high risk scores in predictive models in Sudden

Unexplained Death in People with Epilepsy [11]. Whether

the critical threshold that distinguishes patients with RCM

from those without exists between 0.01 and 0.03 needs to

be proven by a larger sample size in a prospective study.

The ability of graphics to enhance human cognition in

recognizing patterns in large data sets is well-acknowl-

edged. Whether this could be superior to computational

decision models has been questioned across domains [12–

14]. Both independent investigators observed that the

Table 3 Absolute values analysis

SDNN (means) Any event 0.03 RCM 0.03 VSP-Rx 0.04 Death 0.02

No event 0.04 No RCM 0.04 No VSP-Rx 0.03 No death 0.04

p value 0.18 p value 0.26 p value 0.72 p value 0.27

RMSSD (means) Any event 0.02 RCM 0.01 VSP-Rx 0.02 Death 0.02

No event 0.03 No RCM 0.04 No VSP-Rx 0.03 No death 0.04

p value 0.24 p value 0.03 p value 0.42 p value 0.07

CV of HR (means) Any event 0.04 RCM 0.04 VSP-Rx 0.05 Death 0.03

Ha event 0.05 No RCM 0.05 No VSP-Rx 0.04 No death 0.05

p value 0.21 p value 0.51 p value 0.62 p value 0.20

SD1C (means) Any event 1.11 RCM 1.09 VSP-Rx 1.42 Death 1.07

No event 1.65 No RCM 1.53 No VSP-Rx 1.34 No death 1.49

p value 0.27 p value 0.40 p value 0.89 p value 0.44

SD2C (means) Any event 4.08 RCM 4.71 VSP-Rx 5.33 Death 3.31

No event 5.21 No RCM 4.53 No VSP-Rx 4.38 No death 5.17

p value 0.39 p value 0.90 p value 0.55 p value 0.18

Normalized LF (means) Any event 0.20 RCM 0.20 VSP-Rx 0.20 Death 0.19

No event 0.20 No RCM 0.20 No VSP-Rx 0.20 No death 0.20

p value 0.93 p value 0.80 p value 0.95 p value 0.78

Normalized HF (means) Any event 0.14 RCM 0.11 VSP-Rx 0.13 Death 0.16

No event 0.10 No RCM 0.13 No VSP-Rx 0.12 No death 0.10

p value 0.43 p value 0.52 p value 0.85 p value 0.16

LH/HF ratio Any event 2.05 RCM 2.53 VSP-Rx 2.45 Death 1.62

No event 2.39 No RCM 2.00 No VSP-Rx 2.13 No death 2.47

p value 0.68 p value 0.52 p value 0.74 p value 0.32
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presence of clinical events in subjects was associated with

a non-random appearance in the graphical representation of

HRV analyses. This observation was supported in our data

set by an increase in the frequency of change points that

quantify statistically significant changes in mean HRV

measures (a way of looking at the variability of variability)

in subjects with untoward clinical events. Thus, in some

cases it may be that the absolute value of a given parameter

is not the key, but rather changes in values from their

baseline levels that are associated with changes in clinical

status.

Our pilot study is limited by the retrospective nature of

our analyses, small sample size, multiple simultaneous

statistical tests, and an incompletely annotated dataset (for

confounders that may affect autonomic tone). This

hypothesis-generating work allows us to focus future study

on those HRV measures that suggest predictive value (i.e.

RMSSD for absolute value threshold; SDNN, CV, and SD2

for change point analysis in RCM; SDNN, RMSSD, CV,

SD1, and SD2 for change point analysis in VSP-Rx).

Furthermore, as the present study is underpowered and

subject to the possibility of additional type I error, vali-

dation of statistically significant differences will be eval-

uated in larger more appropriately powered future studies

on a selected subset of HRV measures. Confounders that

affect autonomic tone may pose a barrier for HRV indices

in providing additional informative value beyond conven-

tional clinical parameters. Whether this may be overcome

could be tested using a larger, more complete and pro-

spectively well-annotated dataset.

Baseline ECG visualization is universal in the ICU but

pragmatically unfeasible to have human oversight at all

times for all patients. Online computational analyses have

already made the detection of ectopy and other arrhythmias

feasible by linking such events to alarms, allowing inter-

mittent and goal-directed attention [15–17]. The universal

availability of cardiac telemetry in critical care units

positions it as a high-yield target for further investigation

of HRV analyses as the basis for clinical alarms.
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