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Abstract Detection of hypovolemia prior to overt

hemodynamic decompensation remains an elusive goal in

the treatment of critically injured patients in both civilian

and combat settings. Monitoring of heart rate variability

has been advocated as a potential means to monitor the

rapid changes in the physiological state of hemorrhaging

patients, with the most popular methods involving calcu-

lation of the R–R interval signal’s power spectral density

(PSD) or use of fractal dimensions (FD). However, the

latter method poses technical challenges, while the former

is best suited to stationary signals rather than the non-sta-

tionary R–R interval. Both approaches are also limited by

high inter- and intra-individual variability, a serious issue

when applying these indices to the clinical setting. We

propose an approach which applies the discrete wavelet

transform (DWT) to the R–R interval signal to extract

information at both 500 and 125 Hz sampling rates. The

utility of machine learning models based on these features

were tested in assessing electrocardiogram signals from

volunteers subjected to lower body negative pressure

induced central hypovolemia as a surrogate of hemorrhage.

These machine learning models based on DWT features

were compared against those based on the traditional PSD

and FD, at both sampling rates and their performance was

evaluated based on leave-one-subject-out fold cross-vali-

dation. Results demonstrate that the proposed DWT-based

model outperforms individual PSD and FD methods as well

as the combination of these two traditional methods at both

sample rates of 500 Hz (p value \0.0001) and 125 Hz

(p value\0.0001) in detecting the degree of hypovolemia.

These findings indicate the potential of the proposed DWT

approach in monitoring the physiological changes caused

by hemorrhage. The speed and relatively low computa-

tional costs in deriving these features may make it partic-

ularly suited for implementation in portable devices for

remote monitoring.

Keywords Heart rate variability (HRV) � RR interval �
Discrete wavelet transformation � Power spectral density �
Higuchi fractal dimension � Lower body negative pressure

(LBNP)

1 Introduction

Hemorrhage resulting from major trauma remains the most

prevalent cause of potentially preventable death in both

civilian and combat related trauma [1, 2]. In the latter

setting, approximately 20 % of casualties die prior to

reaching a treatment facility, and 50 % of these deaths are

due to blood loss [3, 4]. Survival depends on a number of

factors; among the most crucial are the types of treatment

received and how quickly they are provided. It is therefore

vital that trauma victims with undiagnosed hemorrhage be
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rapidly assessed and that accurate triage decisions are

made. However, evaluating a hypovolemic patient’s con-

dition can be challenging, particularly in a high-paced

environment such as a combat setting. Standard vital signs

such as arterial blood pressure, heart rate and arterial

hemoglobin oxygen saturation can remain stable until the

onset of cardiovascular decompensation [5]. Consequently,

any advance warning of changes in blood volume status is

important for early and successful intervention [5]. Ideally,

such an advanced warning system needs to provide pre-

dictions about the physiological status of individual

patients. This requirement calls for the design of novel

combinations of signal processing and machine learning

methods to process physiological signals and to learn how

to map the characteristics of these signals into early

warnings for each patient.

One potentially useful source of such information is the

heart rate variability (HRV) time series, i.e., the variation in

the beat-to-beat intervals of the heart. Over the past few

decades, multiple investigators have emphasized the con-

nection between HRV and cardiovascular mortality [6, 7],

and there has recently been intense interest in the use of HRV

analysis as a means to detect the severity of both hemorrhage

and general trauma in civilian casualties [8–12]. Models of

sepsis and other critical illnesses have demonstrated that as a

patient’s state worsens, HRV is either decreased or lost

entirely [13]. High frequency components in the ECG signal

contain information on parasympathetic nervous system

activity, while low frequency components contain informa-

tion on both parasympathetic and sympathetic activity

[7, 14]. A patient’s condition can therefore potentially be

evaluated by analyzing the changes in the balance between

these two frequency domains. Several studies have explored

this approach for hemorrhage [5, 15–17], some of which

were conducted using lower body negative pressure (LBNP)

as an experimental model of simulating hemorrhage in

humans [18–21]. The previous studies have shown that while

the aggregate group mean values of the conventional mea-

sures based on the HRV are well correlated with stroke

volume changes during central hypovolemia, such metrics

are not reliable measures for tracking individual reductions

in central volume during LBNP [17]. Hence, the conven-

tional HRV metrics, such as simple statistical means as well

as power spectral density (PSD) [14, 22] and fractal dimen-

sion (FD) [23] based measures may not be useful for hemor-

rhage detection and quantification in individual patients. The

potential disadvantages of PSD and FD resulting in a need for

a new approach are briefly discussed below.

Extracting features based on the PSD [7] requires use of

the Fourier transform (FT), which has two major disad-

vantages when applied to R–R interval signals. First, the

FT assumes that the input signal is stationary, when in

fact, the R–R interval signal is clearly non-stationary,

particularly as the physiological status of the patient

deteriorates. This results in FT ignoring the very same

changes, i.e. non-stationary variations, that would allow the

detection of deterioration in individual physiological state.

The second disadvantage is that while FT is able to extract

frequency information from a signal via it examination of

the signal’s amplitude, the timing information of the events

is lost. This information may be crucial in monitoring the

changes in the condition of hypovolemic patients.

Fractal dimension (FD), on the other hand, is a non-linear

dynamical technique, which defines a large family of tech-

niques actively explored as methods of analyzing ECG and

HRV in tracking changes in volume status [24]. This tech-

nique is based on the concept of fractal theory and has been

applied in many areas, including medicine and biology [25].

Fractal properties have been found suitable for characteriz-

ing HRV in several disease states. For example, Acharya

et al. [26] were able to identify patients with heart disease by

the decreasing fractal complexity of ECG. Another study

indicates that measures of FD may be more effective in

assessing HRV than the approach using PSD by showing that

the FD of high frequency (0.2–0.5 Hz) of the heart rate time

series is highly correlated with the sympathetic activities

[27]. Furthermore, instead of presenting only the local

information as in the PSD, the FD analysis is focusing on the

self-similarity of the events repeated in different scales,

therefore providing a multi-resolution description of signal

that allows capturing the variations in HRV that occur over

periods of time with relatively-arbitrarily length. However,

this performance comes at a high computational cost and also

requires a large number of samples to achieve sufficient

reliability [28, 29]. This means that in order for the FD to

provide reliable information, one needs to have a sufficient

window of measurements of ECG (or HRV) to capture the

targeted variations. In additions, some important patterns

associated with variations in HRV that may not be captured

by the FD features as FD does not allow directly capturing

particular ‘‘expected’’ patterns/variations associated with

ceratin states (e.g. severe hemorrhage). This is due to the fact

that the FD is always calculated according to a fixed meth-

odology that disregards the nature of the signal that is being

processed. Additionally, new evidence suggests that FD

metrics, similar to metrics from PSD analyses, display high

inter- and intra-individual variability during progressive

reductions in central blood volume, which may limit their

usefulness for application to individual patients [17].

The use of Discrete Wavelet Transform (DWT) as

reported in this paper is an attempt to overcome the above

potential limitations of using the traditional methods (PSD

and FD). DWT has proven promising in applications suit-

able for time-frequency analysis [30–32] and therefore

rivaling PSD in frequency analysis. It is also capable of

conducting advanced multi-resolution analysis of signals,
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and as such may extracting information often extracted by

FD. More importantly, unlike FD, DWT does not require

very long windows of signal acquisition, or high sampling

rates, in order to provide reliable results. Moreover, in

contrast to the FD, the DWT allows customizing the

method towards the particular problem/signal that is being

analyzed, as discussed later.

DWT was developed as an alternative to the Short Time

Fourier Transform (STFT) as a method that could not only

capture the frequency content of a signal, but also the times

at which particular frequencies occurred. This ability to

preserve both time and frequency resolution has led to

widespread use of DWT in many practical applications in

biology and medicine [33]. It is particularly well suited to

local analysis of fast time varying and non-stationary sig-

nals such as the R–R interval signal. Stiles et al. [34]

advocate that applying wavelet transform to ECG signals

can assist in detecting clinically significant features that

may be missed by traditional HRV analysis methods.

Wavelet transform has been applied to HRV analysis in the

past for tasks such as the study of ischemic heart disease,

assessment of the nervous system’s response to epidural

analgesia, and diagnosis of sleep apnea syndrome [35–37].

However, it has not previously been applied to the pre-

diction and assessment of hemorrhage, a particularly time-

sensitive application requiring a fine level of sensitivity to

fluctuations in patient state. As such, DWT seems to be

only more accurate in extracting and representing the

physiological changes due to volumetric variations, it can

approximately represent the information extracted by both

PSD and FD. Consequently, in this study we hypothesized

that DWT features extracted from HRV can be used to

accurately detect the severity of hypovolemia. We tested

DWT against a combination of PSD and FD methods in

order to investigate the potential of the proposed approach

over these traditional methods in determining the severity

of central hypovolemia. Specifically, the performance of

the two traditional approaches (PSD and FD), both indi-

vidually and combined, was compared with the proposed

DWT-based method using leave-one-subject-out cross-

validation methodology. Additionally, this analyses was

performed at both 500 and 125 Hz sampling rates to

determine whether a lower sampling rate affects the

accuracy of prediction.

2 Methodology

2.1 Study design, dataset and experimental procedure

This was a retrospective study using a database of ECG

signals collected from subjects undergoing LBNP, housed

at the U.S. Army Institute of Surgical Research (USAISR)

in San Antonio, TX. Subsequent analysis of the data took

place at both the USAISR and Virginia Commonwealth

University (VCU) in Richmond, VA. The protocol

described in this report was approved by the Institutional

Review Boards of both institutions. The database consisted

of eighty-seven subjects, all of whom were healthy vol-

unteers recruited by the USAISR and none of whom had

undergone any special conditioning prior to the study. Due

to the potential effects on cardiovascular function, subjects

were asked to refrain from alcohol, exercise, and stimulants

such as caffeine and other non-prescription drugs for the

24 h prior to testing.

Central hypovolemia was simulated in the subjects by

application of increasing negative pressure to the lower

body, performed using a LBNP chamber as shown in

Fig. 1. Each subject was positioned such that the lower half

of their body was inside the chamber. The LBNP protocol

began with an initial 5-min rest period, used to obtain

baseline recordings. The subject was then exposed to four

successive levels of decompression (-15, -30, -45 and

-60 mmHg), each maintained for 5 min. This was fol-

lowed by further decreases of -10 mmHg applied every

5 min until the subject either completed 5 min at

-100 mmHg or reached a state of cardiovascular collapse.

The latter stage was defined as the subject experiencing any

one of the following: (a) a drop of [15 mmHg in systolic

blood pressure (SBP); (b) a decrease of [15 bpm in heart

rate; (c) SBP measured as\80 mmHg; or (d) pre-syncopal

symptoms (such as sweating, nausea or dizziness). No

subject completed the -100 mmHg LBNP level.

Subjects were monitored using a standard four-lead

ECG, which was recorded to a computer equipped with

commercial hardware and software (WINDAQ, Dataq

instruments, Akron OH). The ECG signals were originally

recorded and analyzed at a sampling rate of 500 Hz. The

signal was subsequently down sampled to 125 Hz using

Matlab (2010a, MathWorks) for additional analysis.

A summary of the dataset is presented in Table 1 demon-

strating the stage at which subjects ‘‘collapsed’’ as defined

above.

In order to compare the predictive performance of the

model based on the DWT features with that of the PSD and

FD features in differentiating and identifying hypovolemia

severity, LBNP stages were mapped to the severity of

hypovolemia in individual subjects. For this task, we used

two different approaches because while sometimes it is

important only to separate between severe and non-severe

cases of volume loss, in other cases it is important to know

more on the extent of volume loss, i.e. it is mild, moderate,

or severe. As a results, first the LBNP stages were grouped

into three classes: mild, moderate and severe, as defined in

Table 2. Since subjects do not uniformly collapse at the

same LBNP stage, we considered the stage of collapse and
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the stage before it as severe (if at least 4 stages were used),

the first 2 stages as mild (if 5 stages were used) and all

other stages in between as moderate.

We also used the approach of mapping LBNP stages

into two classes (i.e. severe vs. non-severe) for the two-

class-classification scenario. As shown in Table 2, the

baseline and the first stage were always considered non-

severe, and the collapse stage and the stage before it were

always considered severe. For subjects collapsing at LBNP

stages 7 or higher, the middle LBNP stages were mapped to

the closest severity group. The severe/non-severe states can

also be used in medical monitors to assist clinical personnel

as a decision support indicator.

These two classification scenarios not only more closely

match the clinical labels and reality of blood volume loss

but also allow for a more individualized approach in

detection which is commensurate with symptoms of

hypovolemia.

2.2 Computational methods

Figure 2 presents an overview of the ECG analysis

approach used in this study.

2.2.1 ECG segmentation

The raw ECG signal was segmented into sub-signals, each

covering one stage as defined in Table 1. Although the

signal for each completed stage was 5 min in length, this

study considered only the steady state portion when

extracting HRV features, i.e., the last 4 min. In earlier

work, we chose to use only the last 3 min of the 5 min

period within each LBNP stage (ref). In this study, how-

ever, with the assumption that almost subjects achieve

steady within the first minute of each LBNP stage, we have

decided to use 4 min of each stage.

2.2.2 Pre-processing and QRS detection

Prior to any analysis, the ECG signal was filtered to remove

motion artifacts, baseline drift, and interference from the

60 Hz power-line interface. This was performed using a

band-pass filter with cut-off frequencies of 1 and 55 Hz.

The next step was to detect the QRS complex in order to

identify the R waves. For this, non-overlapping sliding

windows (20 s in length) were used to detect R waves.

Fig. 1 A subject placed in a

LBNP chamber (a) and a time

plot of the LBNP protocol (b)

Table 1 Summary of dataset of LBNP subjects

LBNP level (mmHg) Stage information Number of subjects

[n collapsed and (%)]

0 Baseline –

-15 Stage 1 –

-30 Stage 2 1

-45 Stage 3 7

-60 Stage 4 27

-70 Stage 5 25

-80 Stage 6 22

-90 Stage 7 4

-100 Stage 8 1

Total 87 subjects

Table 2 Classification of LBNP stages by volume status

Actual collapse stage Mild Moderate Severe Non-severe Severe

7 Baseline, Stage 1, and 2 Stage 3, 4, and 5 Stage 6 and 7 Baseline, Stage 1, 2, and 3 Stage 4, 5, 6, and 7

6 Baseline, Stage 1, and 2 Stage 3 and 4 Stage 5 and 6 Baseline, Stage 1, 2, and 3 Stage 4, 5 and 6

5 Baseline, Stage 1, and 2 Stage 3 Stage 4 and 5 Baseline, Stage 1, and 2 Stage 4 and 5

4 Baseline and Stage 1 Stage 2 Stage 3 and 4 Baseline, Stage 1, and 2 Stage 3 and 4

3 Baseline and Stage 1 Stage 2 Stage 3 Baseline and Stage 1 Stage 2 and 3
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A detailed description of the QRS detection process is

provided in ‘‘Appendix 1’’. Once each R-wave was iden-

tified, the RR signal was formed as follows:

RRi ¼ ðRi1 � Ri�1Þ ð1Þ

2.2.3 Feature extraction

After the RR signal (¼ RRiseries) was generated, feature

extraction was performed via DWT, PSD, and FD methods.

This was done using transformation analysis as described

below.

The RR signal was treated as input to the DWT, PSD

and FD transformations. DWT decomposes a signal into

different scales by calculating its correlation with a set of

scaled and shifted versions of the chosen wavelet basis

function, a process implemented by passing the signal

through multiple levels of high-pass and low-pass filters

[30, 31]. This study used the db4 basis function, belonging

to the Daubechies family. Preliminary tests were performed

at a number of levels of DWT decomposition. Based on the

results, four levels were used for actual analysis. Several

different types of mother wavelets were tested to see which

one performs better for this study, including Harr, DB4,

DB16 and DB32 from the Daubechies family of wavelets.

For each of these, varying levels of decompositions were

also experimented with, such as 4, 8 and 16 levels. It was

noted that increasing the levels of decomposition, did not

provide any further information and only added further to

the computational complexity [38, 39]. Hence the mother

wavelet DB4 with 4 levels of decomposition was chosen

since it provided the most relevant amount of information

for feature extraction. For fractal feature extraction, the FD

was estimated using Higuchi’s method. This requires less

computational time and memory than other approaches and

provides reasonably reliable measures even with relatively

few samples. However, it makes an essential assumption

that the analyzed signal is stationary [40]. A detailed

explanation of how both FD and PSD were used in RR

analysis was provided in ‘‘Appendix 2’’.

The final step of the feature extraction process was

calculation of statistical and algebraic measures, as

follows:

a. Standard deviation of approximation coefficient and

detail coefficients at each DWT decomposition level,

i.e.rA; rD1; rD2; rD3; rD4, where A represents the

approximate level and Di the detail at level i.

b. Mean of approximation coefficient and detail coeffi-

cients at each DWT decomposition level, i.e.

lA; lD1; lD2; lD3; lD4.

c. Median of approximation and detail coefficients at

each level, i.e. medA;medD1;medD2;medD3;medD4.

d. Using the twenty highest approximation and detail

coefficients for each level sorted by size, the median

coefficient and the coefficients immediately preceding

and following it, i.e.AM;AM�1;AMþ1;D1M ;D1M�1;

D1Mþ1, etc.

e. Energy of approximation and detail coefficients at each

level, i.e. eA; eD1; eD2; eD3; eD4,

f. PSD-based features, HF, LF, very low frequency

(VLF), normalized LF (LFN), normalized HF (HFN),

LF-HF ratio and HF-LF ratio, as described in ‘‘Appen-

dix 2’’.

g. The Higuchi FD, calculated using the two parameters

as specified in ‘‘Appendix 2’’.

In summary, for the feature extraction after DWT

decomposition, four features are extracted at each of the

four levels of decomposition. Along with which four

Fig. 2 Schematic diagram for

filtering, QRS detection, and

feature extraction from ECG

signal
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features from the final level approximate coefficient is also

extracted.

2.2.4 Machine learning

The features extracted in the previous step (either the DWT

features or the PSD and/or FD features) were fed into a

machine learning method to estimate the severity of blood

loss during two class (severe and non-severe) as well as

three class (mild, moderate, and severe) classification tasks.

While a variety of machine learning methods such as

neural networks [41] and radial basis functions [42] have

been tested for this purpose, support vector machine

(SVM) [43] which is commonly considered as one of the

most powerful machine learning methods for medical

applications [44], was used. In comparison with SVM,

linear classifiers typically resulted in accuracies which

were 3–5 % below that of SVM in almost all cases.

The same process and classifier, i.e. leave-one-subject-

out and SVM, were used for training and testing of

machine learning models using PSD and FD features.

LibSVM was the method used for this study. In each case

of tenfold cross validation, a grid search on the parameters

sigma and C was performed. The best parameters were then

finally utilized for the study. The features used for PSD/FD

were: 7 PSD-based features and 2 FD features, i.e. HF, LF,

VLF, normalized LF (LFN), normalized HF (HFN), LF-HF

ratio and HF-LF ratio, as well as two Higuchi FDs calcu-

lated based on window sizes of 8 and 15 samples (see

‘‘Appendices 1 and 2’’ for details). The SVM models were

trained with the PSD features only, the FD features, and the

PSD/FD features combined (to include the capabilities of

both PSD and FD features). As such, the tests allowed a

direct comparison between our DWT model and the com-

bined capabilities of PSD and FD.

3 Results

A total of 32 DWT features, as defined above, were

extracted. Since we just have 87 subjects, reducing the

number of feature set can be helpful in removing redun-

dancy and increasing the overall accuracy. For this step

three options were considered;

1. Manually select only those DWT features, that are

conceptually known to be independent or uncorrelated.

However this is not a very practical approach since by

excluding certain features extracted from certain level,

it is difficult to verify the true non-correlation that

exists between the selected features.

2. Calculate all possible features and use a dimension

reduction method such as principal component

analysis (PCA), to eliminate redundancy and reduce

therefore, the number of features. Although this is a

popular choice for many signal processing applica-

tions, the resulting features typically do not possess

any meaning from a physiological stand point as they

are presented as a linear combination of features

extracted from DWT coefficients. Physicians and

physiologist might prefer to have a more intuitive

interpretation of the features used in decision making.

3. Calculate all possible features and use a constructive

(or destructive) method to create a sub-set of all

features whose members are least correlated. Methods

such as constructive and destructive logistic regression

are example methods of this category. The advantage

of the methods in this category is the fact that, unlike

PCA in which features are combination of the original

features, all surviving features in the final feature set

belong to the original feature set too. This means that

all physical, physiological and signal processing

concepts still apply to the surviving features.

The third option is the most relevant option for the

objective of this study hence the third option has been used

to reduce the feature space for the DWT feature set. Using

ANOVA, we tested the statistical significance of these 32

DWT-based features across the three classes (mild, mod-

erate, and severe) as well as the two classes (severe and

non-severe). We found that all but five of these 32 DWT

features are statistically significant for (p value \0.05) for

the tests described above. The PSD method, on the other

hand, produced only seven features that were statistically

significant. Similarly, assuming two different sizes of

windows for calculating FD, the FD method generates only

2 features. Since the DWT method has many features,

multiple combinations of the statistically significant DWT

features were tested against the traditional method. As

mentioned earlier, the extracted features for each of the

methods were also tested to investigate the impact of

lowering the signal sampling rate (down to 125 Hz) on the

quality and usefulness of the approach in assessing volume

loss.

Before applying machine learning to the extracted fea-

tures on the two feature groups (DWT vs. PSD and/or FD),

we investigated group and individual variations of the

resulting features.

3.1 Group and individual variations

Figures 3a–j present the group responses from baseline

until stage four since the majority of subjects reached stage

4 (79 out of 87). The DWT, PSD, and FD features were

extracted from the ECG sampled at 500 Hz as well as

125 Hz; all DWT features, PSD HF and both FD features at
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125 Hz demonstrated a visually similar pattern to those

obtained at 500 Hz. Some of the feature patterns for

500 Hz are presented here (e.g., four features: the median

DWT detail coefficient at level 1 and 4, as well as the HF

and LF features of PSD) .

Figure 3a–j show the values of the DWT, HF and FD

features in each stage and the standard errors as error bars.

The figures demonstrate the differentiation among the

LBNP stages at the group mean level (Fig. 3a, c, e, g, i).

Visual inspection of the individual trajectories indicates a

more consistent pattern for the DWT features than the PSD

and FD features (Fig. 3b, d, f, h, j). It can also be seen that

the performance of the FD measure is comparable with

those of the DWT features.

Figure 3k shows the computed HRV during each stage of

the LBNP (only stages 0–4 shown) for 5 subjects as an

example to visualize the information provided purely from

HRV. From Fig. 3k it is evident that using raw HRV alone is

not very useful, since there is a lot of overlap between the

different stages/classes. There is very little visual difference

in the first few stages of the LBMP. Only in the severe stages

more evident changes in the HRV become visible.

3.2 Classification results

The final test explored the ability of our DWT based method

for detecting the severity of hypovolemia, and compared its

results with those of PSD, FD and PSD/FD based models.

This was done using leave-one-subject-out cross validation,

in which during each test the data for all but one subject were

used for training of an SVM model and the data for the left-

out subject were used for testing. These tests were then

repeated while rotating the left-out subject.

For classification with PSD, FD, and PSD/FD, the same

PSD and FD features were used and for our DWT based

model, the following DWT feature sub-set was used for

this study:

• the standard deviation of level 4 and approximate

coefficient,

• mean of the level 4 and approximate coefficient,

• the median of level 3 and approximate coefficient,

• the coefficients immediately preceding the medians of

level 2,

• the approximation coefficient, energy of level 2.

Table 3 presents the results of two-class and three-class

classification scenarios with leave-one-subject-out cross-

validation at 500 and 125 Hz sampling rates. Table 3

compares the results of the classification accuracy for the

proposed DWT method for both two-class and three-class

scenarios with those of classification using PSD only, FD

only, and combined PSD/FD features (using the same

machine learning method, i.e. SVM).

Table 3 presents the results of two-class (severe, non-

severe) and three-class (mild, moderate, severe) classifi-

cation scenarios with leave-one-subject-out cross-valida-

tion at 500 Hz and 125 Hz sampling rates. As it can be

seen, the DWT features show higher accuracy than others

(e.g. compared to using PSD FD and combined PSD/FD

features).

Therefore, a non-parametric statistical test, i.e. sign rank

test, was performed to explore the statistical significance of

these differences, SAS software (www.sas.com).

Specifically, the statistical test was performed on dif-

ference between the average of the leave-one-subject-out

classification accuracy obtained by the DWT features and

that obtained by other features, e.g. difference between the

average accuracy of classification obtained by DWT fea-

tures and that of the combined PSD/FD Features. These

tests were conducted to validate whether or not the

resulting differences in the average accuracies are statisti-

cally significant or not. Table 4 presents the results of these

statistical tests.

Table 4 suggests that the accuracy differences observed

in Table 3 between the proposed DWT features and other

methods are statistically significant, even when the pro-

posed method was compared with classification using

combined PSD/FD features (at both 500 and 125 Hz).

In order to further test the reliability of the proposed

method against the other methodologies, the area under the

curve (AUC) of receiver operating characteristic (ROC) in

detecting the severity of volume status (i.e. severe/non-

severe) was calculated for classification with the proposed

DWT features, as well as classification with combined

PSD/FD features, PSD only features, and FD only features.

The values of AUC for the DWT method as well as the

traditional methods are provided in Table 5.

While Table 5 shows that the AUC was higher in both

frequencies for the proposed DWT based method, as in the

case of classification accuracy, the main question was

whether the observed difference between the AUC of the

DWT method and traditional methods was statistically

significant. In order to investigate this, we performed sign

rank tests among the AUC’s obtained by the proposed

DWT and the traditional methods (i.e. PSD/FD, PSD only,

and FD only). The results are shown in Table 6. As it can

be seen in Table 6, the differences between the AUC of the

DWT method and others are statistically significant, both at

500 and 125 Hz sampling rates.

4 Discussion

Predictive models generated by applying SVM to a subset

of features extracted via DWT, as shown in Tables 3, 4 and

5, indicated better performance than the traditional
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methods of detecting the degree of hypovolemia using

HRV which are based on PSD and FD. This may be due to

DWT’s intrinsic capacities for handling non-stationary

signals and registering not only the frequency of events but

also their location in time. The features extracted from

DWT analysis seem to have a much higher association with

early physiological shock as created in this LBNP model,

compared to FD and PSD alone. This may be associated

with the fact that the concepts of ‘‘level’’ and ‘‘shift’’ in

DWT are much richer than ‘‘frequency’’ in the PSD.

Moreover, due to DWT’s ability to combine the domains of

time and frequency, it can analyze HRV signal and in-turn

the physiological changes in multi-resolutions. DWT is

therefore well-suited to analysis for RR series, particularly

when studying hypovolemic patients whose conditions may

be physiologically compensated for in the early stages, but

can quickly deteriorate. In addition, unlike FT based

methods, such as PSD, that are limited to sinusoidal basis

functions, DWT allow the use of unlimited number of basis

functions to decompose signals. This may be useful in

applications such as RR signal analysis where the RR signal

displays different characteristics, since a suitable basis

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Group and individual variations from baseline to LBNP stage

4 for 500 Hz. Each group plot is presented as Mean ± SE. a DWT

Level 1 median: Group, b DWT Level 1 median: Individual, c DWT

Level 4 median: Group, d DWT Level 4 median: Individual, e PSD

HF: Group (f) PSD HF: Individual, g PSD LF: Group, h PSD LF:

Individual, i FD: Group, j FD: Individual, k Plot of Heart Rate

Variability for 5 subjects shown from stages 0 to 4
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function can be chosen to match the signal shape. By

preserving the locality of RR changes, our approach allows

the extraction of additional information from the beat-to-

beat intervals in the heart rate signal which may be missed

by traditional methods. DWT’s ability to capture these fine

and rapid variations may prove particularly useful in earlier

detection of hemorrhage, and thus lead to more successful

treatment.

In order to address the possibility of overfitting, in this

study we performed a cross validation experiment on 87

examples (subjects) using only 9 features; this significantly

reduces or eliminates the risk of overfitting. In particular

note that the cross validation experiment is conducted over

subjects, i.e. models are tested on subjects whose data were

not included in training at all. When overfitting happens,

the testing accuracy would be low at least in some of the

(g) (h)

(i) (j) 

(k) 

Fig. 3 continued
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subjects not included in the training set. Furthermore,

choosing the type of cross-validation method is a complex

and scenario specific issue. With relevance to the dataset for

this study, ‘leave-one-subject-out’ cross validation seemed

the most practical approach to explore whether overfitting

exists or not, and as shown above, the model presented in

this paper did not exhibit any sign of overfitting.

Based on the results of this study, the following obser-

vations can be made. First, it has been shown that DWT is

able to extract underlying information from RR signals

which can be used to more accurately distinguish the

presence and severity of progressive reduction in central

blood volume similar to that occurring in bleeding patients,

but simulated by LBNP. DWT decomposition and PSD

have correspondence with the high frequency (HF) and low

frequency (LF) components of RR intervals respectively,

which respond to parasympathetic and sympathetic activity

[45]. However, when the classification performance of the

models based on the DWT features were compared with

that of the PSD and FD features, the DWT-based models

showed higher accuracies. Specifically, the performance

results from the leave-one-subject-out cross validation

between DWT, PSD, and FD demonstrated that the DWT

approach shows better classification accuracy for both two-

class and three-class scenarios. Second, although the tra-

ditional PSD and FD methods showed utility in this

application, the DWT approach demonstrated better per-

formance (in most cases p values \0.0001). Although

degraded, performance was also better using DWT than

PSD and FD when the lower sampling rates (i.e., 125 Hz)

was applied to the ECG signal. This has important impli-

cations in its reduction to clinical practice.

There are several limitations to this study. These include

the fact that LBNP is limited in its ability to model severe

hemorrhagic and traumatic shock. Tissue injury is not a

part of the model, and subjects cannot be taken to a level

resulting in a more severe level of central hypovolemia for

safety reasons. That being said, the fact that HRV relates

changes in the ECG can be detected and evaluated indi-

cates that the approach may allow for more of an early

warning detection method. Additionally, performance

cannot be fully evaluated due to the lack of balanced data.

A possibility exists that the amount of data for some stages

(e.g., collapse at stages 2, 3, 7, and 8) was not enough to

generate a reliable predictive model compared with other

Table 3 Performance of DWT, PSD only, FD only, and combined

PSD/FD classification using the leave-one-subject-out cross

validation

Average accuracy with

leave-one-out cross

validation

Two-class

classification

Three-class

classification

Non-severe/severe Mild/moderate/

severe

500 Hz

(%)

125 Hz

(%)

500 Hz

(%)

125 Hz

(%)

DWT 89.1 77.9 69.5 60.5

PSD only 80.1 66.0 60.0 52.6

FD only 64.0 62.1 48.8 46.8

PSD/FD 80.2 72.5 62.1 55.0

The numbers for classification accuracy are provided for both 500 and

125 Hz. Sampling rates

Table Statistical test on the significance of the difference between

the accuracy of the proposed DWT with PSD/FD, PSD only, and FD

only features based on the leave one-subject-out cross validation

Non-parametric statistical

test for average accuracy

(sign rank test)

Two-class

classification

Three-class

classification

Non-severe/severe Mild/moderate/

severe

500 Hz 125 Hz 500 Hz 125 Hz

PSD/FD—DWT \0.0001 \0.0001 \0.0001 \0.0002

PSD only—DWT \0.0001 \0.0001 \0.0001 \0.0065

FD only—DWT \0.0001 \0.0001 \0.0001 \0.0001

Table 5 AUC performance comparison among classification based

on DWT, PSD only, only FD and PSD/FD features using the leave

one-subject-out cross validation as well as 95 % of conference

interval (CI) of their means

Method Two-class classification

Average AUC with leave-one

subject out cross validation

500 Hz (%) 125 Hz (%)

DWT 86.0 73.3

PSD/FD only 79.8 65.6

PSD only 76.0 59.0

FD 60.9 58.0

Table 6 Statistical analysis of the AUC performance comparison

among DWT, PSD/FD, PSD only, and FD only features using the

leave one-subject-out cross validation

Non-parametric statistical test for AUC (sign

rank test)

Two-class

classification (non-

severe/severe)

500 Hz 125 Hz

PSD only—DWT \0.0001 \0.0001

FD only—DWT \0.0001 \0.0001

PSD/FD—DWT \0.0001 \0.0001

The number outside parentheses are the results for 500 Hz and the

numbers inside parentheses are the results for sampling with 125 Hz
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stages (e.g., 5 and 6) for which there was an ample data set.

This problem, however, equally affected both models.

The ability to detect physiological changes via analysis

of a single low-level signal such as ECG is appealing,

provided the information contained within the signal can be

easily extracted, processed and tied into the condition of

interest. However, it is not known if a signal exists which

offers sufficient accuracy for diagnosis and monitoring of

individual patients. Based on our preliminary studies [38,

46], it is likely that analysis of multiple signals will provide

more powerful predictive capabilities. We are therefore

currently examining the use of DWT methods in extracting

useful information from other easily-available physiologi-

cal signals(e.g. blood pressure, skin temperature, etc.), and

subsequently applying machine learning techniques to

create condition detection algorithms for integration into

computer-assisted decision making tools [47].

The ultimate goal of computer-aided diagnosis based on

analysis of physiological signals is that the process be

suitably sensitive to the changes in individuals and specific

to the patient currently under consideration. As shown in

Fig. 3, DWT responses seem to be fairly uniform across

individual subjects. In contrast, the PSD and FD responses

appear more inconsistent. While not quantified herein,

these results are in agreement with a recent finding that

PSD and FD values may not be highly correlated with

changes in stroke volume during LBNP [17]. Since DWT

showed promising results in distinguishing volume status

levels (as shown in Tables 3, 4, 5, it may have greater

potential for incorporation into portable monitors for rapid

detection of hemodynamic changes associated with hypo-

volemia. With the eventual objective of the system

designed towards prehospital and battlefield use, some of

the features from FD and PSD measure might also be

incorporated into the final feature set if it is seen relevant

and informative and computationally feasible. However for

the scope of this paper, features extracted through DWT

analysis has been given more emphasis.

Nonetheless, the innate suitability of each individual

signal in detection of a given condition must be thoroughly

investigated, along with its ability to be practically

implemented in a realistic environment in terms of sam-

pling and processing requirements. In the field of com-

puter-aided diagnosis, rapid feedback is often crucial,

particularly in cases of trauma and hemorrhage. Conse-

quently, careful consideration of which signals to use and

the application of fast and accurate methods such as DWT

for analysis is necessary for a decision support system to be

of true practical use. Our approach to HRV analysis is

designed to be simple, accurate, and easy to implement,

making it particularly suited for use in portable monitoring

devices in combat settings, remote civilian triage, and any

other situation where a full medical facility is not readily

available.

There are several suggested criteria for development and

evaluation of new methods and markers of cardiovascular

risk as detailed by Hlatky et al. [48], which emphasize the

assessment of the clinical value of new markers on their

effect on patient management and outcome. As we move

forward with examining our approach to HRV monitoring

with DWT in actual trauma and other critically ill subjects,

adaptation of these evaluation criteria should be considered

including adding other markers.

5 Conclusion

This study examined an approach to RR series analysis

based on extracting features via the DWT. Specifically, the

utility of DWT features in detecting hypovolemia severity

was evaluated, using SVM and a dataset based on the

LBNP model of simulated blood-loss. Results suggest that

the proposed wavelet-based features may be able to detect

changes associated with progressive hypovolemia, while

remaining simple and computationally inexpensive. The

novelty of this study lies in its development of a practical

and accurate framework for detection of hypovolemia, and

in its use of DWT as a vital tool in this application. As

such, it has potential as a practical approach to detecting

the extent of hypovolemia, such as in portable monitoring

devices for remote triage. This may be best achieved by a

simple portable monitoring device which can offer instant

feedback on subject condition by offering higher accuracy

and rapid results at a relatively low computational cost.

Acknowledgments This material is based upon work supported by

the National Science Foundation under Grant No. IIS0758410 and by

the U.S. Army Medical Research and Material Command Combat

Casualty Care Research Program (Grant: 05-0033-02). The opinions

expressed herein are the personal opinions of the authors and are not

to be construed as representing those of the Department of Defense,

the Department of the Army, or the United States Army.

Appendix 1

This section explains the process of QRS detection per-

formed prior to feature extraction. Construction of the RR

signal using the RR intervals in the ECG signal first

requires that the R-waves be identified, which is done via

QRS detection. The most common technique is the Pan-

Tompkins algorithm [49], which detects QRS complexes

based on analysis of their slope, amplitude and width. This

method consists of four stages: band-pass filtering, differ-

entiation, squaring, and windowing. The first stage applies

the same filter as described in Sect. 2.2. The signal is then
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passed through a differentiator which suppresses the low-

frequency P and T wave components and emphasizes the

steep slopes of the QRS complex. The QRS complex also

displays high amplitude, which is emphasized by applying

a squaring operator. The next stage uses a moving average

window to smooth the signal and reduce noise. The final

step is to select a threshold that detects the QRS peaks in

the waveform.

This study applies a modified version of the Pan-

Tompkins algorithm which incorporates an additional his-

togram analysis step after averaging is performed, to

identify any unusual values which may cause errors in the

QRS detection process. It also employs an adaptive

threshold T to detect the QRS peaks, which offers more

flexibility in dealing with individuals than a fixed thresh-

old. This is calculated as T ¼ lðSÞ þmaxðSÞ � a, where S

is the filtered ECG stage segment currently being analyzed

and a is an empirically-chosen weight measure. This study

found a = 0.4 to be a suitable value.

In calculating the RR intervals, any single interval is

compared to those previously detected using a sliding

window. This process is described as follows. Let Ii be the

estimate of the RR interval at sample i, n the total number

of RR intervals detected so far, and x0, x1, and x2be

boundaries on the acceptable range of variation of the

interval, chosen based on previous interval values. In order

to find the new RR interval l, the following rules are

followed:

l ¼ Ii; if x0� Ii�x1

insert one interval; Iiþ1 ¼ Ii � l; if x1� Ii�x2

insert two intervals; Iiþ2 ¼ Ii � 2l; Otherwise

ð3Þ

The boundaries are set as x0 ¼ 0:89m; x1 ¼ 1:29m and

x2 ¼ 2m, where m is the median value of the previous

eight RR intervals.

Appendix 2

This section briefly explains the two other HRV analysis

methods used in this study. Power spectral density (PSD)

describes the distribution of the power in a signal with

frequency [22]. In other words, it shows at which fre-

quencies variations are strong and at which frequencies

variations are weak. The measures of interest in this study

are the powers of the high frequency (HF; 0.15–0.4 Hz),

low frequency (LF; 0.04–0.15 Hz) and very low fre-

quency (VLF; 0.003–0.04 Hz) bands, the normalized

powers of the LF and HF bands, and the ratios of LF to

HF and HF to LF. These are calculated by integrating the

spectrum for each band. Normalization is performed by

calculating

HFn ¼
HF

ðTAP� VLFÞ ð4Þ

LFn ¼
LF

ðTAP� VLFÞ ð5Þ

where TAP is the total average power of the RR interval

[7].

Fractal analysis monitors data via fractals: sets of points

that can be divided into subsets which each resemble the

whole. Calculating the FD of a signal quantifies both this

self-similarity and the signal’s complexity. FD is com-

monly used in analyzing biosignals such as electrocardio-

gram (ECG) and electroencephalogram (EEG) to

differentiate physiological states. This study applies Hig-

uchi’s algorithm to calculate the FD of the ECG segments

recorded over each LBNP stage. Consider a signal

Xi ¼ x1; x2; . . .; xn, consisting of n samples. This is first

divided into smaller epochs, by constructing k new time

series xk
msuch that

xk
m ¼ xðmÞ;xðmþ kÞ;xðmþ 2kÞ; . . .;x mþ N �m

k

� �� �
k

� �

ð6Þ

where m¼ 1; . . .;k indicates the initial time value and k is

the time interval between points. For each xk
m, the average

length LmðkÞ is calculated as

LmðkÞ ¼
Pa

i¼1 jxðmþ ikÞ � xðmþ ði� 1ÞkÞjðn� 1Þ
ab ck ð7Þ

where a ¼ N�m
k . The average length LðkÞfor each delay k is

calculated as the mean of the k lengths LmðkÞ for

m ¼ 1; 2; . . .; k. This is repeated for each of the k time

series. The Higuchi FD is estimated as the slope of the

least-squares best fit line to the curve of ln½LðkÞ� versus

ln 1
k

� 	
for k ¼ 1; . . .; kmax [23]. Calculation accuracy

depends on the epoch length; this study tested lengths of 8

and 15.
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