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ABSTRACT. Objective. To present a decision support system
for optimising mechanical ventilation in patients residing in the
intensive care unit. Methods. Mathematical models of oxygen
transport, carbon dioxide transport and lung mechanics are
combined with penalty functions describing clinical preference
toward the goals and side-effects of mechanical ventilation in a
decision theoretic approach. Penalties are quantified for risk of
lung barotrauma, acidosis or alkalosis, oxygen toxicity or
absorption atelectasis, and hypoxaemia. Results. The system
is presented with an example of its use in a post-surgical patient.
The mathematical models describe the patient’s data, and the
system suggests an optimal ventilator strategy in line with
clinical practice. Conclusions. The system illustrates how
mathematical models combined with decision theory can aid
in the difficult compromises necessary when deciding on
ventilator settings.

KEY WORDS. mechanical ventilation, decision theory, decision
support systems

INTRODUCTION

Several systems have been developed to aid in the process
of selecting appropriate ventilator settings in mechanically
ventilated patients [1-6]. Those finding their way into
clinical practice [3, 4] have focussed on using rules either
to automate clinical protocols for particular ventilator
modes [3], or to keep the patient within a ‘“zone of
comfort” during pressure support ventilation [4, 5].

Key to these rule-based systems is that they automate
the heuristics of the clinician, controlling patient venti-
lation without providing a deep physiological picture of
the patient’s state. This may be appropriate in situations
where the system controls ventilation every 5 minutes [4,
5] i.e., when the clinician is not at the bedside. However,
when the clinician is present at the bedside a different sort
of system might be required. One which, in addition to
controlling patient ventilation, supports the clinician in
understanding the patient’s state from numerous clinical
measurements, before a ventilation strategy is selected.

Decision support systems (DSS) based on physiological
models may provide this deeper understanding. Using
such models patient state is described by the parameters of
the models. If the models are tuned to a particular patient,
by estimating the parameters, they might be used to
answer ‘“‘what if” questions predicting the outcomes
of different ventilation strategies. In addition, when
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physiological models are combined with utility theory [7],
the expected utility of outcomes can be quantified and
ventilator settings selected so as to maximize expected
utility.

A few DSS have previously been developed for
selecting ventilator settings based upon models and utility
theory [8, 9]. However, the recent advances in this field
have been in the application of rule-based systems, which
do not exploit the large wealth of physiological knowl-
edge in this field [4, 5]. In this paper a new DSS for
optimising ventilator settings is presented. This system
includes physiological models and utility functions in a
decision theoretic approach to optimising ventilation. The
purpose of this paper is to present the structure and
function of the system and illustrate its use in a single
clinical example. In the first section the DSS is described,
including the mathematical models and utility functions
used in the system. The second section illustrates how the
system is used with an example of a patient ventilated
following coronary artery bypass grafting surgery
(CABG).

THE DSS

Figure 1 illustrates the structure of the DSS for suggestion
of optimal ventilator settings. Physiological models are
used to simulate the effects of changes in ventilator set-
tings on pressures and volumes in the lung, and the
oxygenation and acid—base status of the blood.

Included in these physiological models are parameters
describing lung function, metabolic, circulatory, and
blood state. Parameters give a description of the patient’s
physiological status, which can be assumed to be relatively
constant for model predictions. For example when
describing gas exchanges abnormalities in the lung, pul-
monary shunt and ventilation/perfusion (V/Q) mismatch
might be considered better parameters than arterial oxy-
gen pressure, having deeper physiological meaning and
remaining relatively constant on changes in inspired
oxygen fraction. Values of parameters are either directly
measured or estimated from clinical data by using the
models. Parameter estimation requires known values of
the specific patient’s ventilator settings and physiological
model variables listed in the legend of Figure 1. The
parameter estimation process is described later in the text.
Values of parameters provide a clinical picture of the
patient’s state describing all clinical measurements, from
which patient specific simulations of changes in ventilator
settings can be performed.

Also represented in the system are mathematical
functions quantifying clinical preference to the goals and
side effects of ventilator therapy. These are described later

in the text, but include: sufficient oxygenation; mini-
mising the risk of acidosis and alkalosis, and minimising
the risk of ventilator induced lung injury due to baro-
trauma or oxygen toxicity. These functions are expressed
as penalties. For any model simulated ventilatory strategy
the total preference is expressed as the sum of the pen-
alties for each of the simulated goals or side effects. A high
total penalty indicates a reduced clinical preference
toward the strategy.

All software has been written in JAVA including the
mathematical models and penalty functions, optimisation
code, and user interfaces. The system runs on a standard
PC and is linked to a research database system built in our
research group [10, 11], so that almost all data required to
run the DSS can be automatically collected from routinely
available intensive care equipment. Currently data can
be collected from intensive care ventilators (Servo 300
and Servo i, Maquet, Solna, Sweden), an intensive care
monitor (Siemens SC 9000; Siemens AG, Erlangen,
Germany), and several capnographs and expiratory O,
sensors (Oxigraf monitor; Oxigraf, CA, USA, COSMO;
Respironics, CA, USA). Currently only values of blood
gasses need to be entered into the system by hand in order
to run the DSS. Data collection is performed via RS232
connection using the JAVA communications class. Model
simulations run within one second.

The DSS may now be used in 3 ways: (1) to estimate
patient specific parameters providing a clinical picture of
the patient’s state describing all measurements; (2) to
answer “‘what if” questions, simulating the effects of dif-
ferent ventilator strategies; and (3) to find the optimal
ventilatory strategy, a process which occurs automatically
in the DSS using repeated simulations to find the venti-
latory strategy which gives the minimum total penalty.

Mathematical models in the DSS

This section describes the physiological models and
mathematical functions describing clinical preference. For
the physiological models a detailed description of the
mathematics will be omitted, as these have been published
previously [12—14]. The models describing clinical pref-
erence will be described, as these have not been published
previously.

Mathematical model of oxygen transport

This model describes transport of oxygen in the lungs,
blood and to the tissues, and has previously been pub-
lished [12]. In the model the lung is divided into two
compartments involved in gas exchange each with dif-
ferent ventilation and perfusion. The ventilation of each
compartment is described as a fraction of the total alveolar
ventilation (Va), e.g., fA2 to the compartment labelled 2
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Fig. 1. The structure of the decision support system. Ovals illustrates components of the system, which includes ventilator settings (f, Vt, FiO,, I:E-ratio,
PEEP and PIP), model parameters (shunt, fA2, Vd, compliance, DPG, Hb, COHb, MetHb, temp, Q, VO, and VCO,), physiological models and their
variables (FetCO,, FetO,, SaO,, PaO,, PaCO,, pHa, SvO,, PrvO,, PvCO,, and pHy), those variables selected as surrogate outcomes (PIP, SvO,,
SaO,, pHv and FiO,) and functions describing clinical preference (barotrauma, hypoxia, acidosis—alcalosis, oxygen toxicity). The system can be used to
perform parameter estimation, simulate the effect of a change in the ventilator settings and to generate a suggestion of “‘optimal’” ventilator settings, as described

in the text.

in Figure 2, where Va is the total ventilation (VT)
excluding anatomical dead space ventilation (VD). The
perfusion of lung compartments is described as a fraction
of the total perfusion (Q) excluding the fraction of flow
due to shunting of pulmonary blood (fs), e.g., 2 to the
compartment labelled 2 in Figure 2. fs represents the
fraction of blood flowing passed the lungs without being
involved in gas exchange. Gas exchange abnormalities
are represented using parameters describing Vb, V/Q
mismatch and fs. By setting 2 = 0.9, V/Q mismatch is
described by values of fA2 which describes the fraction of
ventilation (fA2) to a compartment receiving 90% of the
non-shunted blood flow. A value of fA2 = 0.9 would
then be consistent with 90% of the alveolar ventilation
going to 90% of the non-shunted perfusion, values of fA2
lower than 0.9 indicating a V/Q mismatch.

Included in the model of oxygen transport is an
implementation of the oxygen dissociation curve (ODC)
[15], which describes the relationship between oxygen
pressure (PO,) and haemoglobin oxygen saturation (SO,)
in the blood. The position of the ODC is shifted
depending on changes in PCO,, temperature, carboxy-
haemoglobin (COHb), methaemoglobin (metHb), pH
and the concentration of 2,3 diphosphoglycerate (DPG).
All values except DPG can be measured in a blood sam-
ple. DPG can therefore be used as a parameter describing
the position of the ODC. Values of the DPG parameter
can be estimated from a blood sample with sufficiently
low oxygen saturation. Also included in the oxygen
model are parameters describing oxygen consumption

(VO,) and cardiac output (Q).

To estimate values of shunt and V/Q mismatch
requires fitting this model to measurements of ventilation
and arterial oxygenation at 4-6 different levels of inspired
oxygen fraction, in a procedure taking 10-15 min [16].
When values of shunt and V/Q mismatch have been
estimated the model can be used to predict arterial oxy-
genation for difterent levels of FiO;.

The model of oxygen transport described here has been
shown to fit the data of numerous patient groups [12,
17-21] and has been shown to have a structure complex
enough to reproduce results of the reference experimental
technique for measuring gas exchange [22]. In addition it
has been shown that reasonable estimates of fs and fA2 can
be obtained quickly from routinely available clinical data
[18].

The oxygen model can be used in two ways: as a
diagnostic tool, estimating patient specific values of shunt
and V/Q mismatch; and to predict the effect on oxy-
genation of adjusting ventilator settings.

Mathematical model of carbon dioxide transport

This model describes carbon dioxide storage and transport
in the lungs, blood, interstitial fluid and tissues, and has
been published previously [13, 14]. In the lungs carbon
dioxide transport is described, like oxygen transport, by
a two compartmental model with the same values
of parameters describing gas exchange abnormalities,
i.e., anatomical dead space, V/Q mismatch and shunt
(Figure 2). In the blood CO, storage is represented as a set
of reaction equations describing the acid—base chemistry
of the blood [13]. Significant stores of CO, are present in
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Fig. 2. The structure of the mathematical models of oxygen and carbon
dioxide transport.

the interstitial fluids and tissues. The model therefore
includes equations describing the acid base chemistry of
the interstitial fluid and tissues [14]. Also included in the
CO, model are parameters describing CO, production
(VCO») and Q.

The models of acid—base chemistry and CO, transport
used here have been verified against experimental data
reported in the literature [13, 14]. When simulating
normal ventilation using the model, it has been possible to
reproduce normal conditions in the lungs, arterial and
venous blood, interstitial fluid and tissue. For use in the
DSS it is necessary to simulate the effects of varying

ventilation volume on acid—base and CO; levels. In doing
so it has been possible to reproduce changes in changes in
end tidal CO, seen in the experimental literature on
varying ventilation volume [14].

For known values of gas exchange parameters the CO,
model can be used to simulate steady-state conditions of
the acid-base status of blood for different ventilatory
minute volumes [14]. Since tissue stores of CO, are large
[14] the effects of changing ventilation on acid-base
chemistry do not reach a steady state until 0.5—1 h after
the change in ventilation. The simulations performed as
part of the DSS, therefore, reflect the values of acid—base
chemistry and CO, levels 0.5-1 h following a change in
ventilatory minute volume.

Mathematical model of lung mechanics

The current model of lung mechanics included in the
system is very simple. This model describes the relation-
ship between peak inspiratory pressure (PIP) and tidal
volume as a one compartmental model with a constant
value of compliance representing the whole lung. The
compliance (ml/cm H,O) is described as the change in
volume, i.e., VT, divided by the corresponding change in
pressure, i.e., PIP minus positive end expiratory pressure
(PEEP).

Assuming a constant value of compliance, the model
can be used to predict the effect on PIP of changing VT
assuming a volume controlled ventilator strategy. In some
patients this assumption may be inappropriate due to,
amongst other factors, volume dependent compliance and
the effects of airway resistance, this assumption is con-
sidered further in the discussion.

Mathematical functions describing clinical preference

The system includes mathematical functions, which
describe clinical preference towards the goals and side
effects (outcomes) of mechanical ventilation (Figure 3). In
classical decision theory [7] these functions are called
utility functions, where the function describes a prefer-
ence towards a specific outcome; or penalty functions,
where the function describes a dislike towards a specific
outcome. Penalty functions are associated with hypoxa-
emia, acidosis and alkalosis, risk of oxygen toxicity and
absorption atelectasis, and barotrauma. Each of these goals
and side effects is associated with a surrogate outcome
variable, values of which are obtained from either the
result of model simulations, or the ventilator. In this
system the risk of acidosis/alkalosis is represented by
venous pH level, and risk of oxygen toxicity and
absorption atelectasis is represented by FiO, level. PIP
level represents risk of barotrauma, as this has shown to
correlate positively with mortality [23]. The penalty
associated with the risk of barotrauma is scaled with
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Fig. 3. The penalty functions included in the DSS. The penalty function for barotrauma is based on PIP (Figure 3a). Individual penalty curves are
representing penalties incurred for different respiratory frequency (f) with two example curves f=15 breaths/min and 20 breaths/min illustrated here. For all
curves PIP below or equal to 20 emH2O has a penalty of 0. In addition a small penalty is added to the barotraumas penalty for respiratory frequencies greater
than 15. The penalty function for oxygen toxicity and absorption atelectasis is defined as a function of FiO, (Figure 3b). FiO, equal to 0.21 has been defined
to have penalty of 0. The penalty function for insufficient oxygenation (hypoxaemia) is represented as the sum of two functions where SvO?2 represent global
ischaemia and SaO; local ischaemia: SvO; equal to 70% has been defined as a global ischaemia penalty of zero, and SaO; equal to 98% has been defined as
a local ischaemia penalty of zero. The penalty function for acidosis and alkalosis is based on mixed venous pH (Figure 3c). Mixed venous pH equal to 7.36

has been defined to have a penalty of 0.

respiratory frequency (f), such that higher frequencies at
the same pressure incur a greater penalty. In addition a
small penalty is added for respiratory frequencies greater
than 15. This is necessary to enable an increasing baro-
trauma penalty with increasing respiratory frequency even
if PIP is less than 20 cmH,0. Hypoxaemia is represented
as the sum of two functions: SvO, is used to represent the
risk of global ischaemia as it represents the net effects on
the whole body of oxygen delivery and consumption;
SaO, is used to represent two factors: local ischaemia,
which may occur with low arterial oxygenation even if
whole body venous oxygen levels appear normal; and to
represent the increased load on the heart, whereby an
increased cardiac output may be required to maintain
oxygen delivery if arterial oxygen saturation is reduced.
The shape of each penalty function defines the rela-
tionship between an outcome and the associated penalty.
In the DSS these shapes have been derived from input
provided by a domain expert. These functions are then
scaled, such that the subjective preference toward a par-

ticular outcome is the same on all graphs. This means that
the total penalty can be represented as a sum of the
individual functions illustrated in Figure 3. In the current
version of the DSS the scaling procedure was based on the
input from a domain expert. Scaling was performed by
generating 20 test case patients. The domain expert was
then asked to suggest a ventilation strategy for these test
patients. The utility functions were then scaled such that
the decision system behaved as the expert, suggesting
similar settings for the ventilator. It is important to note
that these functions are extremely subjective and that
different functions may be defined for different clinicians
or intensive care specialities. This point will be addressed
further in the discussion.

USING THE DSS — AN EXAMPLE

This section illustrates the use of the DSS with the aid of a
clinical example of a postoperative coronary artery bypass
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Fig. 4. Illustrates the user interface of the decision support system. This interface is divided into 3 sections. On the left hand side the ventilator settings and the
associated penalties are displayed as current, simulated and optimal. The right hand side displays data describing the current, simulated and optimal values of
variables describing the lungs, arterial and venous blood. The bottom of the screen displays patient specific parameters organised according to organ systems. The

data of a single post-operative cardiac patient is included for illustration.

patient residing in the intensive care following surgery.
The application of the system is illustrated by describing
the user interface and in doing so it is highlighted how:
the system can be used to help interpret patient data in
terms of parameters describing lung function, blood state,
circulatory state and metabolic state; how the quality of
these estimated parameters can be verified; and how the
system can be used to suggest ventilator settings which
balance the conflicting goals when deciding upon
appropriate mechanical ventilation.

Figure 4 illustrates the user interface of the DSS
including the data of 1 postoperative CABG patient. The
interface is divided up into three sections, the left hand
side (LHS), right hand side (RHS) and bottom of the
screen. In the LHS and RHS the majority of the variables
have three different values in 3 columns, which represent
respectively the measured value (Current), inputs or
outputs from model simulations (Simulated), and optimal
values calculated by the system by minimising the total
penalty (Optimal). The LHS contains the ventilator

settings, penalties and function buttons of the system.
These function buttons are clicked when the user wishes
to perform a simulation, or to find the “optimal” venti-
lator settings, i.e., those that incur the least predicted
penalty. The RHS contains data describing the lung,
arterial blood and venous blood. Across the bottom of the
screen are patient specific parameters. These are organised
according to organ system and include parameters
describing lung gas exchange, lung mechanics, blood,
circulatory status, and metabolic status. These parameter
values are measured or estimated and assumed to be
constant for any simulated ventilator setting, an assump-
tion that will be discussed later.

The system is used as follows in three steps. First, the
physiological models are fitted to the patient data, so as to
estimate patient specific values of the physiological
models’ parameters included in the bottom of the inter-
face screen (Figure 4). The quality of the estimated patient
specific parameters can then be assessed from how well the
mathematical models included in the system fit the clinical
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data. These steps are technical by nature and can be run
automatically without the clinician being interested in the
technicalities of the model fitting. Upon estimation of
parameters the clinician can now use the system for
decision support. “What if” questions can be asked by
inputting values of possible new ventilator settings into
the system, which then performs simulations. The com-
puter system can also be requested to automatically find
suggestions for appropriate values of ventilator settings for
the patient based upon the physiological models and
penalty functions. Each of these steps is now described.

Step 1: Calculation and estimation of patient specific values
of the physiological models’ parameters

Data is processed in order to estimate patient specific
values of all the parameters used in the physiological
models, i.e., parameters describing lung gas exchange and
mechanics (shunt, fA2, Vd, compliance); blood (2,3
diphosphoglycerate (DPG), haemoglobin (Hb), carboxy-
haemoglobin (COHD), methaemoglobin (MetHb), tem-
perature (Temp)), circulatory parameters (cardiac output
(Q)), and metabolic parameters (oxygen consumption
(VO,), carbon dioxide production (VCO,)). The fitting
procedure depends to some degree on the type of patient
and hence the quantity and quality of data collected. The
post-operative CABG patient illustrated in Figure 4 had
data collected from a pulmonary arterial (PA) catheter, a
capnograph and an end tidal oxygen monitor. The PA
catheter enables measurement of mixed venous blood
gases and Q. For a large fraction of the ICU patients a PA
catheter is not present. As such estimation of many of the
patient specific parameters becomes more difficult. In
these cases Q might be measured by other techniques
[24], or simulated using models [25]. Mixed venous gases
might be estimated from central venous [26], although
central venous do not always correlate well with mixed
venous [27]. Apart from measurements of blood gases, all
these data can be collected automatically by the DSS.

Blood parameters

For blood, values of Hb, COHb and MetHb are measured
in the venous blood. For each patient the mixed venous
blood sample is used to estimate the position of the ODC.
This is performed by estimating a value of DPG, which
enabled the ODC to intersect the measured mixed venous
values of PvO, and SvO,.

Metabolic parameters

VO, is calculated using the Fick equation, 1.e., VO, = Q
(CaO,-CmvQO,), where CaO, is the concentration of
oxygen in arterial blood and CmvO, is the oxygen con-
centration in mixed venous blood. CaO, and CmvO, are

calculated respectively from the measured oxygen pressure
(PO,) and saturation (SO,) in the arterial and venous
blood from o, PO, + eHb SO,, where 05 is the sol-
ubility coefficient for oxygen in blood at 37°C
(25> = 0.01 mmol/1/kPa), and eHb is the effective hae-
moglobin concentration after subtracting the concentra-
tions of COHb and MetHb from the measured
concentration (Hb). VCO, was estimated to enable the
best possible fit of the models to measured arterial and
venous blood gasses. To check whether the values of
VCO, estimated were reasonable a respiratory quotient
(RQ) is calculated, i.e., RQ = VCO,/VO,. Values of
RQ should lie within 0.7-1.0.

Gas exchange parameters

Anatomical dead space (Vd), is calculated using the alve-
olar air equation, ie., VO, = f (Vt-Vd) (FiO,-Fe’O5),
using the measured end tidal oxygen fraction (Fe’O,) and
the calculated VO, from the Fick equation. Values of
shunt and fA2 are estimated using the data obtained from
the previously described system [16], together with
measured values from the arterial blood sample (Hba,
MetHba and COHba), the estimated DPG, and the cal-
culated VO, and Vd.

Lung mechanics parameters

Dynamic compliance is calculated dividing the ventilatory
tidal volume (Vt) by the change in pressure, i.e., PIP
minus PEEP. The value of resistance is not calculated, as
the patient was ventilated using the pressure regulated
volume controlled mode of the ventilator and pause
pressure was not available.

Step2: Evaluating the quality of the model fit

Following calculation and estimation of patient specific
values of the physiological models’ parameters an evalu-
ation of the quality of the model fit can be performed.
Parameter values are displayed at the bottom of the user
interface and the current ventilator settings (Vt, FiO,, f)
are displayed in the current column of the LHS. By
inputting the same values of ventilator settings into the
simulated column and clicking the “Simulate” button a
model simulation is performed. The results of the simu-
lation are presented in the simulated column if the RHS.

Current and simulated values (first and second column
of RHS) can be compared. Differences between these
would indicate errors either in data collection or the
parameter estimation procedure. Similar values, as seen for
the patient illustrated in Figure 4, indicate that in this case
the physiological models provide a good description of the
patient’s data.
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Step 3: Petforming “‘what if ”’ questions and finding
the optimal ventilator settings

Following calculation of parameter values and evaluation
of the quality of model fit, processes that can occur
automatically, the DSS can then be used to provide
clinical decision support. The clinician can type possible
new ventilator settings into the Simulated column of the
LHS of the interface, and by clicking the “Simulate”
button, the system will calculate all variables and penalties
for these new settings, these being displayed in the Sim-
ulated columns of Figure 4. In addition the system can be
requested to find the ‘optimal’ ventilator settings of FiO»,,
fand Vt, i.e. those that incur the least predicted penalty.
By clicking the “Optimise”” button the DSS automatically
searches through combinations of FiO,, f and Vt using a
gradient descent method, finding the values resulting in
minimum total penalty. Currently the models cannot be
used to simulate the effects of changes in PEEP or L:E
ratio, and these values are fixed to those selected by the
clinician. For the patient illustrated in Figure 4 the DSS
suggests optimal ventilator settings such that FiO, was
reduced from 38.0% to 30.6%, with a small, almost neg-
ligible, increase in tidal volume. These settings gives an
‘optimal’ SaO, of 96.7%, and hence reduction in the total
penalty from 0.054 to 0.040. This reduction is due to a
lower oxygen toxicity penalty, even though the hypoxia
penalty is increased. In this case the system suggested that
a Fi02 = 38.0% was not necessary to adequately oxy-
genate the patient.

DISCUSSION

This paper describes a computer system for supporting the
clinician in the process of setting the ventilator for patients
undergoing mechanical ventilation. The DSS contains
models of oxygen and carbon dioxide transport and lung
mechanics in combination with mathematical functions
describing clinical preference towards the goals and side
effects of mechanical ventilation.

To support the clinician the models can be used to
estimate patient specific parameters describing lung
function, blood, circulation and metabolism. These
models and the parameter values enable the clinician to
simulate the consequences of different ventilator settings.
By combining model simulations and mathematical
functions describing clinical preference, the DSS can
quantify the utility of different ventilator settings, and
make explicit the compromises that exist in setting the
ventilator. The DSS can also provide suggestions for
optimal ventilator settings. Optimal settings are identified
as those which minimise the total penalty.

Previously several DSS have been developed to support
the selection of ventilator settings. The majority of these
systems have been based on rules which automate the
clinician’s heuristic reasoning or some predefined guide-
lines [3, 4, 6]. Typically these systems focus upon a spe-
cific ventilator setting or mode where having a deep
understanding of the patient’s state may not be necessary
in order to apply the rules. For example, selecting the
correct level of pressure has been performed by imple-
menting rules which keeps the patient within “zone of
comfort” as defined by the patient’s work of breathing
and expired CO, level [4, 5]. This and other systems often
act as control systems, for example modifying the level of
pressure every 5 min when the clinician is not at the
bedside. When the clinician is at the bedside a different
type of system might be helpful, i.e., one that provides: a
“deeper” understanding of the patient; the ability to
simulate the effects of changing ventilator settings; and the
ability to make explicit the necessary compromises. The
DSS presented here provides this functionality.

When simulating the consequences of different venti-
lator settings the system has two major limitations. Cur-
rently it is not possible to simulate the effects of changing
PEEP or L:E ratio. In addition, when performing simu-
lations, parameter values are assumed to be constant. This
assumption of constant parameter values may be justified if
constraints are placed upon variations in Fresp, Vt and
FiO,. For example: maintaining a respiratory frequency,
which does not induce an intrinsic PEEP; or varying Vt
over small enough ranges so that the PV curve can be
considered linear and the compliance constant. In practice
the ‘optimal’ settings obtained from the system might be
seen as targets and small steps in ventilation taken toward
these targets with checks for constant parameter values
along the way.

The penalty functions included in the system are sub-
jective and reflect the opinion of one clinician. However
their explicit formulation means that they can be discussed
and modified to reflect the opinion of different clinicians. It
has been shown that it is possible to develop computer
systems to automate the estimation of utility functions [27],
making it possible to describe the preferences of clinicians
from different intensive care specialties. Such a system
would allow comparison of different clinical opinions and
adaptation of the DSS for different clinical environments.

A DSS supporting the process of setting the ventilator
based upon models and utility theory has been presented,
and illustrated by one patient example. In future, testing
of the feasibility of the system is required in patient
populations, and further development is needed. The
formulation of a DSS using physiological models and
utility functions provides a way of making explicit the
difficult compromises necessary when setting a ventilator.
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