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Abstract
Nanoliposomes with a great surface area within nano scales of about 20–100 nm have acceptable stability profiles for direct 
drug carriers. The present study focuses on the nanoliposomes loaded with α-Al2O3 quantum dots nanoparticles (QDNPs) 
for the in vivo imaging study. The final nanoliposomes loaded with α-Al2O3 QDNPs were synthesized with the microwave 
irradiation method and characterized with scanning electron microscopy (SEM), Fourier transformed infrared spectrum (FT-
IR), thermo-gravimetric analysis (TGA), the average particle size can estimate between about 11 and 20 with transmission 
electron microscopy (TEM) and dynamic light scattering (DLS). The optical properties were evaluated with Uv-vis spec-
troscopy, and injected 0.001 mg/mL nanoliposomes loaded with α-Al2O3 NPs to the right leg (Balb/c male). The synthesis 
parameters such as power, irradiation time and concentration were designed by 2 k factorial. According to the analysis of 
variance experiments, it was found that the size of the minimum nanoparticles in this study was achieved at the highest 
irradiation time (15 min) and the lowest microwave power (180 watts) and α-Al2O3 concentration (0.05 g).
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Introduction

Nanoliposomes are a smaller variant of liposomes, one of 
the most widely used encapsulation and controlled release 
systems [1–4]. To gain a better understanding of nanoli-
posomes, we must first comprehend the earlier technology 
that they are based on namely, liposomes [5–7]. Liposome is 
derived from two greek words, lipos (fat) and soma (body or 
structure) and refers to a structure in which an aqueous com-
partment is encased by a fatty envelope [8, 9]. A liposomes 
(sometimes called bilayer lipid vesicles) are excellent cell 
and biomembrane models [10, 11]. Because of their likeness 

to biological membranes [12], they are a perfect system for 
studying not only modern biomembranes [13, 14] but also 
the emergence, function and evolution of primitive cell 
membranes [15, 16]. These structures are also employed as 
carrier systems by the food, cosmetics, agricultural [17, 18] 
and pharmaceutical industries [19] for the protection [20] 
and transportation of various materials like medicines [21], 
nutraceuticals [22], insecticides [23] and genetic material 
[24, 25]. Liposomes are made up of one or more concentric 
or nonconcentric lipid and phospholipid bilayers and bio-
degradable substrates for biomarkers and in drug delivery 
[26–28], and they can also contain other molecules like pro-
teins [29, 30]. They can be single or multilamellar in terms 
of the number of bilayers they contain [31], and their aque-
ous and/or lipid compartments can accept hydrophilic, lipo-
philic [32] and amphiphilic molecules[33]. Liposomes and 
nanoliposomes have similar chemical, structural and thermo-
dynamic features in general; these structures with quantum 
dots can increase the speed of cell penetration and intra-
tissue process with high efficiency [34]. Nanoliposomes, on 
the other hand, have a larger surface area than liposomes and 
hence have the potential to increase solubility [35], improve 
bioavailability [36], improve controlled release [37] and 
enable more precise targeting of the encapsulated material 
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[38]. Quantum dots (QDs), as a group of semiconducting 
nanomaterials, have advantages for wide applications in 
biology, they are used as markers for specific cells such 
as luminescent probes [39], labeled cancer cells [40] and 
transplanted cells from host cells [41]. Nanoliposomes, also 
known as submicron bilayer lipid vesicles are a relatively 
new technology for encapsulating and delivering bioactive 
substances the use of QD luminescent labels has the poten-
tial to eliminate most of these problems [42]. Nanoliposomes 
have potential uses in a wide range of disciplines, including 
nanotherapy (e.g. diagnosis, cancer therapy, gene transfer), 
cosmetics [43], food technology [44], and agriculture [45], 
due to their biocompatibility and biodegradability [46], as 
well as their nanosize. QDs as semiconductor nanoparticles 
(e.g. CdSe, InP, InAs) with diameters in the range of 2 to 
10 nm are spherical nanoparticles with a diameter of a few 
nanometers that are highly emissive [47]. They serve as a 
platform for a family of materials that can be used in light 
emitting diodes, photovoltaic cells, and biosensors. The syn-
thesis of quantum dots has gotten a lot of interest in recent 
years because of its unique optical, chemical, and electri-
cal features which can decrease the systemic side effects of 
anticancer drugs through effectively increasing the surface-
to-volume ratio [10, 48]. Fluorescence labeling as a safe 
and high efficiency method used for tracing and measuring 
nanoliposomes in vivo study [49]. Liposomes have shown 
advantages as drug carriers but they are associated with 
problems related to physical stability such as aggregation, 
sedimentation and leakage on storage. In this study, by pre-
paring nanoliposomes loaded with α-Al2O3 nanoparticles, in 
addition to increasing the stability of the liposomes unique 
optical properties for use in smart drug delivery and targeted 
treatment of cancer cells was inducing in these structures.

In this study nanoliposomes bilayer lipid vesicle as a 
new structure for the encapsulation and delivery of α-Al2O3 
quantum dots agents for in vivo imaging study. The final 
nanoliposomes loaded with α-Al2O3 quantum dots nano-
particles were characterized with DLS, SEM, TEM, TGA, 
FT-IR and Uv-vis spectroscopy.

Experimental

Methods and Materials

All of the materials required to carry out this research 
project were without further purification. The crystallinity 
structure of Al2O3 quantum dots nanoparticles (QDNPs) 
investigated using of X-Ray Diffraction with specifications 
a Rigaku D-max C III, X-ray diffractometer using 
Ni-filtered Cu Ka radiation. Cholesterol and non-ionic 
surfactants (Span40, sorbitan monopalmitate ≤ 99.0%) 
were purchased from SRL Co, Italy. Al(NO3)3.9H2O 

(CAS No.7784-27-2, MW: 375.13  g/mol) and NaOH 
(Molar mass: 39.997  g/mol,  ≤ 99.0%) were purchased 
from Merck company. Morphological properties evaluated 
with scanning electron microscopy (SEM), Philips XL-30 
ESEM, and the transmission electron microscope (TEM, 
JEM1200EX, JEOL). The Fourier-transform infrared 
spectroscopy (FT-IR) spectra evaluated with Shimadzu 
Varian 4300 spectrophotometer in KBr pellets in the 
range of 500–3500 cm−1. The size distribution estimated 
with Dynamic Light Scattering (DLS/measurement range 
0.3  nm–10.0  microns/Malvern Panalytical GmbH—
Herrenberg, Germany). UV-Vis diffuse ref lectance 
spectroscopy analysis was carried out using Shimadzu 
UV-2600 spectrophotometer. Analysis of variance 
(ANOVA) was carried out using Design Expert 7.0.0 
package (Stat-Ease, Inc., Minneapolis, MN, USA). For 
in vivo imaging study of QDNPs, the mice (Balb/c male 
Inbred rats purchased from Animal care center aged between 
8 and 6 weeks) were feeded and raised according to the 
Institutional an Animal Care and Use Committee (IACUC) 
protocol. To investigate the optical properties in the living 
organism we injected 0.001 mg/mL nanoliposomes loaded 
with α-Al2O3 NPs to the right leg (Balb/c male).

Preparation of Nanoliposomes

For the preparation of the liposomal system, according to 
laboratory conditions, the method of watering a thin layer 
was selected [50]. In the first, 300 µL of surfactant (Span 
40) and 76 µL Cholesterol was dissolved in 20 mL chloro-
form in a 150 mL round-bottomed flask in reflux system. 
Above solution was heated and stirred in a magnetic stirrer 
at 400 rpm and 45 °C for 2 h.

Then the material, under static conditions for 60–50 min, 
were deposited as thin solid layers in the bottom of the bal-
loon. For hydration, dry the layer of PBS saline solution 
(saline buffered Phosphate) was used. For better hydration, 
thin solid layers in the bottom of the balloon were exposed 
under a hairdryer at 45 °C for 60 min. In the final the milky 
solution was placed in the sonicator bath for 45 min at 
60 watts. The nanoliposomes were collected in a falcon tube 
for characterization and the next step.

Nanoliposomes Loaded with α‑Al2O3 NPs

At the first, 0.05 g of Al(NO3)3.9H2O in 10 mL propylene 
glycol was added. Then 3 mL NaOH 2 M was added drop 
by drop to the above solution under 400 rpm for 30 min 
to get a homogeneous mixture. For the preparation of 
nanoliposomes loaded with α-Al2O3 NPs, 2 mL of the white 
α-Al2O3 solution was added to 5 mL of nanoliposomes put 
into Teflon, and reaction was performed under microwave 
irradiation system at the various power and time. In this 
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study, in order to design experiments, microwave irradiation 
and power were considered as variables and size were 
analyzed as a response.

Results and Discussion

Characterization

The results obtained from scanning electron microscopy 
(SEM) analysis show that the nanoliposomes based on lipid 
bilayers have been created as a carrier with suitable capacity 
for α-Al2O3 NPs. Figure 1A shows SEM images of the as 
synthesized nanoliposomes loaded with α-Al2O3 NPs in dif-
ferent concentrations such as 0.01 mg/mL (1a), 0.1 mg/mL 
(1b), 0.05 mg/mL (1c), 0.5 mg/mL (1d), 0.09 mg/mL (1e) 
and 0.9 mg/mL (1f) respectively. The new contract from as 
synthesized the α-Al2O3 NPs indicated a uniform substrate 
with the ability of connect to the nanoliposomes [51]. The 
relationship between concentrations of the α-Al2O3 NPs and 
the shape of the final formulation shows as the concentra-
tion of the α-Al2O3 NPs in the nanoliposomes as carriers, 
increases the adhesion of the structure increases signifi-
cantly. This adhesion in the final formulation can be due to 
the increase in the surface-to-volume ratio of nanoparticles. 
The presence of porous holes in quantum dots is evident due 
to electron transfer cavity electron transfermate [52]. The 
PSA diagram of α-Al2O3 NPs is shown in Fig. 1B

To show the internal image of the nanoliposomes loaded 
with α-Al2O3 NPs we used transmission electron micros-
copy (TEM) analysis. The TEM image of the nanoliposomes 
loaded with α-Al2O3 NPs is shown in Fig. 2a. As the results 
show, two components including enclosed space and trapped 
nanoparticles can be easily detected. The core zone related 
to nanoliposomes which are dark borderline, is clearly vis-
ible. The α-Al2O3 NPs trapped in nanoliposomes as separate 
points are visible and the average particle size is estimated 
between 95 and 120. Figure 2b confirms the α-Al2O3 NPs 
particle size according to dynamic light scattering (DLS) 
analysis. The results show that the distribution number 
(Dn) in 10%: 11.17 nm, Dn 50%: 14.75 nm and Dn 90%: 
20.38 nm. The particle size curve has a uniform distribution. 
The diffusion coefficient for the calculation of particle size 
distribution is obtained from the below relation:

where q is the scattering vector, given by q = (4πn/λ). 
sin(θ/2). The refractive index of the solution is n. The 
wavelength of the laser light is λ, and the scattering angle 
is introduced with θ. Inserting Dt into the Stokes–Einstein 

(1)Γ = Dtq
2

equation according to Eq. 2 [53], solving for particle size is 
the final step.

Dh, Dt are the hydrodynamic diameter and the transla-
tional diffusion coefficient. Also kB, T and η are Boltzmann’s 
constant, thermodynamic temperature and dynamic viscosity 
respectively.

In Fig. 3a, the Fourier transform infrared spectroscopy 
(FT-IR) is used for the investigation of the functional groups. 
The nanoliposomes as synthesized show the principal bands 
at about 2985 cm−1 and 2924 cm−1 which can be related to 
CH2 stretching groups in the span and cholesterol chains.

In addition, the absorption band centered at 1741 cm−1 
is assigned to C = O stretching in the nanoliposomes loaded 
with α-Al2O3 NPs. The band centered at 1631 cm−1 cor-
respond to symmetric vibrations CH2 groups in the final 
products. The band at about 1420 cm−1 is related to C–O–C 
groups in nanoliposomes. The band at about 1649 cm−1 and 
950 cm−1 correspond with Al-O vibration in α-Al2O3 NPs. 
Connection points α-Al2O3 quantum dots nanoparticles to 
liposome structures occur through C-H bands. This can lead 
to the fabrication a new type of QDs with liposomes.

In this study thermos gravimetric analysis (TGA) tech-
nique used for physical and chemical characterization [54]. 
The first weight loss until about 130 °C is related to loss of 
adsorbed water from nanoliposomes loaded with α-Al2O3 
NPs. The second mass loss can be related to the decom-
position of the final products which happens in the range 
of 130 °C up to 150 °C which confirms that carbon chains 
between structures are broken. In this range carbon chains 
are broken in nanoliposomes as a carrier. After 150 °C up to 
300 °C structural network at α-Al2O3 NPs is completely sep-
arated from each other and thermal degradation occurs. The 
differential thermal analysis (DTA) shows two endothermic 
transformations. The first strong peak occurs in the range of 
130 °C up to 150 °C which can be related to phase transi-
tions and the second occurs between 230 °C up to 240 °C 
due to melting points. TGA/DTA curves of nanoliposomes 
loaded with α-Al2O3 NPs are shown in Fig. 3b.

Statistical Analyses

According to the analysis of variance (ANOVA) experiments 
were performed regarding one replicate and three center 
points (23–1). The effects of the independent variables on 
the experimental design and obtained the final equation in 
terms of coded factors are represented in Table 1.

The mathematical relationship between the three factors 
was estimated by the two-factor interaction model equation.

(2)D
h
= k

B
T∕3Π�Dt
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Fig. 1   A SEM images of the as synthesized nanoliposomes loaded with α-Al2O3 NPs in different concentrations such as 0.01  mg/mL (a), 
0.1 mg/mL (b), 0.05 mg/mL (c), 0.5 mg/mL 1d, 0.09 mg/mL 1e and 0.9 mg/mL 1f respectively. The PSA diagram of α-Al2O3 NPs (B)
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R is the predicted response (size), A, B and C represent 
the coded levels of the independent variables such as power, 
time and concentration in the statistical model. According 
to the ANOVA results, the model of the proposed study was 
significant (p ≤ 0.0001) while the lack of fit of the model 
was not significant (p ≥ 0.9502). The difference between Adj 
R-squared (0.7627) and pred R-squared (0.7601) is estimated 
at about 0.0026, which shows that the model argument is 
very accurate.

Figure 4a, b and c show three-dimensional (3D) contour 
plots, the effects of the α-Al2O3 quantum dots nanoparticles 
concentration, irradiation time and microwave power on the 
final size of nanoliposomes loaded with α-Al2O3 quantum 
dots nanoparticles. The minimum nanoparticles size in this 
study was achieved at the highest irradiation time (15 min) 
and the lowest microwave power (180 watts) and α-Al2O3 
concentration (0.05 g).

Therefore, according to the suggested model, the Pred 
R2 is in reasonable agreement with the Adj R2 which shows 
that there is an excellent correlation between the predicted 
values and the experimental results (R2 = 0.9941). Figure 5a 
and b show desirability and predicted vs. actual in statistical 

(3)R = +17.25 + 4.25 A − 3.75 B + 4.25 BC + 2.75 ABC
analyses. The results show that the effect of the variables 
irradiation time and microwave power on the particle size 
response of the final products are very significant compared 
to α-Al2O3 concentration. According to the model calcula-
tions, the best size (8.41 nm) with the highest desirability 
can be obtained at microwave power (180.29 watts), irradia-
tion time (14.99 min) and α-Al2O3 concentration (0.06 g).

Table 2 shows that the model of the study is signifi-
cant, while the lack of fit of the model was not significant 
(p ≥ 0.9502). The Model F-value of 8.23 implies the model 
is significant. There is only a 2.00% chance that a "Model 
F-Value" this large could occur due to noise. The "Curva-
ture F-value" of 22.70 implies there is significant curvature 
(as measured by the difference between the average of the 
center points and the average of the factorial points) in the 
design space. There is only a 0.50% chance that a "Curvature 
F-value" this large could occur due to noise.

Optical Properties and in vivo Study

For the investigation of the optical properties of nanoli-
posomes loaded with α-Al2O3 NPs we used UV-Vis absorp-
tion spectroscopy in room temperature. In Fig.  6a, the 
absorption spectra show a strong peak in the wavenumber 

Fig. 2   a The TEM image of 
the nanoliposomes loaded with 
α-Al2O3 NPs (a) and DLS 
diagram of α-Al2O3 NPs
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of about 225 nm. This is blue shift relative to the empty 
liposomes as potential vehicles [55]. The UV-Vis absorption 
spectroscopy data shows well that the presence of α-Al2O3 
NPs has created unique optical properties for in vivo imag-
ing [56, 57]. The results show a good light reflection in 
nanoliposomes loaded with α-Al2O3 NPs compared to the 
blank sample and the liposomes sample only. The nanoli-
posomes loaded with α-Al2O3 NPs have been highly efficient 
in vivo research due to the distance between the conduction 
levels and capacitance levels through appropriate light emis-
sion [58]. To investigate the optical properties in the living 
organism we injected 0.001 mg/mL nanoliposomes loaded 

with α-Al2O3 NPs to the right leg (Balb/c male). Then a 
1:2 ratios of ketamine/xylazine was injected for anesthesia 
immediately. After 3 min, the optical properties of nanoli-
posomes loaded with α-Al2O3 NPs is clearly visible on the 
right leg. How to inject into mice and in vivo image of mice 
after 3 min are illustrated in Fig. 6b and c respectively. The 
bright spots indicate α-Al2O3 quantum dots nanoparticles 
with high luminescence activity due to the quantum effect. 
The existence of the quantum dot structure gives a signifi-
cant synergistic effect in image formation at in vivo imaging 
studies. The bright white spots are characteristic α-Al2O3 
quantum dots nanoparticles and this can be due to the unique 

Fig. 3   The FT-IR spectrum (a) 
and TGA/DTA profile of the 
nanoliposomes loaded with 
α-Al2O3 NPs (b)

Table 1   Coefficient estimate 
and confidence limit low and 
high in the suggested model

Factor Coefficient 
estimate

Degree of 
freedom

Standard error 95% confidence 
limit low

95% confi-
dence limit 
high

Intercept 17.25 1 1.32 13.85 20.65
A-power 4.25 1 1.32 0.85 7.65
B-time − 3.75 1 1.32 − 7.15 − 0.35
BC 4.25 1 1.32 0.85 7.65
ABC 2.75 1 1.32 − 0.65 6.15
Center point 12.08 1 2.54 5.56 18.60
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properties through a high surface-to-volume ratio from these 
structures. This shows that quantum dots nanoparticles 
absorb more amount drugs on their surface.

X-ray diffraction technique in room temperature of 
α-Al2O3 quantum dots nanoparticles is indicating in Fig. 7. 
The presence of peaks with the same position peaks of XRD 
patterns of Al2O3 nanoparticles show crystal phase have 
been formed. The X-ray diffraction measured in the range of 
10 < 2Ө < 80. The X-ray diffraction analysis indexed as 27.1° 
and 38.8° could be have in positions as (121), (211). The 
crystallographic parameters for Al2O3 were a = 4.7606 A°, 
b = 4.7606  A°, c = 12.9940  A° and crystal system was 
rhombohedral.

Conclusion

The nanoliposomes, as bilayer lipid vesicles, have the ability to 
encapsulate hydrophilic and hydrophobic drugs. In this study 
these nano-systems loaded with α-Al2O3 quantum dots nano-
particles as targeted tracking drug delivery carriers. According 
to the ANOVA results designed by 2 k factorial, the model 
was significant (p ≤ 0.0001) and the minimum size for nanoli-
posomes loaded with α-Al2O3 quantum dots nanoparticles was 
achieved at the highest irradiation time (15 min), the lowest 
microwave power (180 W) and α-Al2O3 concentration (0.05 g). 
The final products were characterized with DLS, SEM, TEM, 
TGA, FT-IR and UV-vis spectroscopy. In vivo study results 
show nanoliposomes loaded with α-Al2O3 quantum dots nano-
particles have good potential for creating optical properties in 
targeted drug delivery carriers.

Fig. 4   Three-dimensional (3D) 
contour plots, the effects of 
Vconcentration (A), microwave 
power (B) and irradiation time 
(C) on the final size of nanoli-
posomes loaded with α-Al2O3 
quantum dots nanoparticles
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Fig. 5   Desirability diagram (a) 
and predicted vs. actual (b) in 
statistical analyses

Table 2   Analysis of variance 
(ANOVA) of medium 
components related to size 
response as per two-level 
factorial design

Source Sum of squares Degree of 
freedom

Mean square F-value P-value Prob > F

Model 462.00 4 115.50 8.23 0.0200
A-power 144.50 1 144.50 10.30 0.0238
B-time 112.50 1 112.50 8.02 0.0366
BC 144.50 1 144.50 10.30 0.0238
ABC 60.50 1 60.50 4.31 0.0925
Curvature 318.56 1 318.56 22.70 0.0050
Residual 70.17 5 14.03
Lack of Fit 9.50 3 3.17 0.10 0.9502
Pure Error 60.67 2 30.33
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