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Abstract Green fabricated nanoparticles often need to be

encapsulated and stabilized, to ensure uniform dispersion

in the aquatic environment and relevant larvicidal activity

over time. However, recent research showed that nanoen-

capsulation processes led to a reduction of nanoparticle

larvicidal efficacy. We used an extract of Argemone mex-

icana to reduce TiO2 nanoparticles, which were then

capped with PSS/PAH (poly(styrene sulfonate)/poly

(allylamine hydrochloride)). The toxic and repellent

potential of the nanoparticles were compared to elucidate

their potential effects against the Zika virus vector Aedes

aegypti. Nanoparticles were characterized by biophysical

methods including UV–Vis, EDX and FTIR spectroscopy,

SEM, TEM, XRD and DLS analyses. In larvicidal and

pupicidal experiments, TiO2 nanoparticles achieved LC90

values from 41.648 (larva I), to 71.74 ppm (pupa).

Nanoencapsulated TiO2 achieved LC90 values from 39.16

(I), to 69.12 ppm (pupa). In adulticidal experiments, LC90

of TiO2 nanoparticles on Ae. aegypti was 10.31 ppm, while

LC90 of nanoencapsulated TiO2 was 9.54 ppm. At 10 ppm,

the repellency towards Ae. aegypti was 80.43% for TiO2

nanoparticles, and 88.04% for nanoencapsulated TiO2.

This research firstly highlighted the promising potential of

PSS/PAH encapsulation, leading to the production of

highly effective titania nanostructures, if compared to

titania nanoparticles synthesized with eco-friendly routes

without further stabilization.
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Introduction

Insects are vectors of key diseases leading to significant

outbreaks and epidemics in the increasing global popula-

tions of humans and animals [10, 58]. Mosquitoes include

more than 3500 species. However, less than 100 species,

mostly belonging to Aedes, Anopheles and Culex genera,

are reported as vectors for diseases that affect humans and

other vertebrates. Good examples are malaria, dengue,

yellow fever, West Nile, filariasis and Zika virus [16, 78].

These mosquito-borne diseases cause high morbidity and

mortality worldwide, and represent a major economic

burden within endemic countries [32, 55].

Dengue is primarily transmitted by females of the yel-

low fever mosquito Aedes aegypti, and the Asian tiger

mosquito Aedes albopictus [18, 76]. Ae. aegypti is also a

vector for other viral diseases such as yellow fever,

chikungunya, and—as showed by recent outbreaks—Zika

virus [14]. It is a highly anthropophilic, endophilic, and

endophagic day-biting species with an autogenous feeding

behavior. This cosmotropical species can rapidly adapt to

different anthropogenic environments. Ae. aegypti mos-

quitoes lay eggs in various aquatic habitats—including

small-size ones—such as water-filled plastic containers and

tires, tree holes, wells, temporary and permanent pools, and

marshy areas, which are often close to human settlements

[79].

The first clinically recognized dengue epidemic occur-

red almost simultaneously in Asia, Africa, and North

America in the 1780 s [80]. The World Health Organiza-

tion estimates that dengue infects approximately 50–400

million people annually in the tropical and subtropical

regions [81]. Dengue fever is endemic in Southeast Asian

countries including India, Bangladesh, and Pakistan, and its

spread is associated with population growth and uncon-

trolled urbanization in tropical countries, and has become

an important public health problem as the number of

reported cases continues to increase [14]. Dengue fever is

characterized by fever, headache, muscle and joint pains,

rash, nausea, and vomiting [58, 59], while more severe

forms include dengue hemorrhagic fever and dengue shock

syndrome [56].

One of the approaches for the management of mosquito-

borne infections is the interruption of disease transmission

by killing vectors or preventing mosquitoes from biting [5].

Moreover, due to their low mobility in breeding habitats,

young mosquito instars are attractive targets for pest con-

trol operations, even if larvicidal treatments are not rec-

ommended for rural areas [16]. However, these operations

are weakened by the emerging resistance of mosquitoes to

synthetic insecticides [35], 49], thus botanical insecticides

may be suitable alternative control strategies to pursue

[3, 19, 20, 26, 45, 46, 54, 63, 64, 73]. The massive

screening of plant materials and fungi as sources of

metabolites for parasitological studies is worthy of atten-

tion, as elucidated by the recent example given by Y. Tu,

who received the Nobel Prize for her discovery of arte-

misinin [14]. Notably, plant-borne molecules are often

effective at a few parts per million against young instars of

Aedes, Anopheles and Culex mosquitoes [11, 52, 53].

Nanotechnology can revolutionize the biomedical,

agricultural and veterinary industry [17, 40], leading to the

development of novel tools for pest and vector manage-

ment [9, 15, 50, 57, 72]. Nanoparticles are usually smaller

than 100 nm in each spatial dimension, and can be syn-

thesized using top-down and bottom-up strategies. In

recent years, the application of nanotechnology in pest

management has revolutionized the application of pesti-

cides [6–8, 12, 13, 67, 68]. As arthropod vectors rapidly

gain pesticide resistance, there is an urgent need to syn-

thesize novel products via eco-friendly nanosynthesis

routes [9, 20].

Titanium dioxide nanoparticles have attracted consid-

erable attention because of their unique physico-optical

properties, and are widely used for sunscreen and tooth-

paste production, surface coating, and water treatment [42].

Constituents from plant extracts can be used to reduce

metal ions to nanoparticles in a green single-step synthesis.

Recently, researchers proposed the green synthesis of

nanomaterials with methods using naturally occurring

components such as vitamins, sugars, plant extracts,

biodegradable polymers and microorganisms acting as

reducing and capping agents [17].

Argemone mexicana L. (Papaveraceae), commonly

known as the prickly poppy, is used in folk medicine in

several countries [23] for its analgesic, antibacterial, anti-

malarial, antispasmodic, sedative and narcotic effects. A.

mexicana seeds are useful for treating cough and asthma

[38] and possess anti-HIV, antioxidant, anxiolytic, hep-

atoprotective, and sedative activities [4]. Among its main

secondary metabolites, benzylisoquinoline alkaloids appear

to be the most important for the biological activities,

namely antimicrobial, antiparasitic, antimalarial, pesticide

and neuroprotective ones [60].

Green fabricated nanoparticles often need to be encap-

sulated and stabilized, to ensure uniform dispersion in the

aquatic environment and relevant insecticidal activity over

time [21, 22]. Nanoencapsulation is a process through

which a chemical such as an insecticide is slowly and

efficiently released for insect pest control, allowing proper

absorption of the chemical into plants as well as in the

aquatic environment [62]. The release mechanisms of

nanoencapsulated pesticides include diffusion, dissolution,

biodegradation and pH-specific osmosis [25, 75].

Nanoencapsulation has been widely used in biomedicine,
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since some of the products are highly tissue-compatible.

Besides their potential application as scaffolds in tissue

engineering, environmentally sensitive hydrogels, or as

sustained-release delivery systems, nanoencapsulated

molecules or cells can be used as biosensors, drug carriers

and insecticides [44].

However, recent research showed that several nanoen-

capsulation processes led to a serious reduction of larvi-

cidal efficacy of metal and metal oxide nanoparticles [48].

To face the above mentioned challenge, in this study, we

developed a novel titanium dioxide nanocomplex with

mosquitocidal potential using A. mexicana extracts

encapsulated with the polymers poly(styrene sulfonate)/

poly(allylamine hydrochloride) (PSS and PAH). Both A.

mexicana-synthesized TiO2 nanoparticles and PSS/PAH

encapsulated TiO2 nanoparticles were characterized using

UV–visible spectroscopy, Fourier transform infrared

spectroscopy (FTIR), X-ray diffraction analysis

(XRD),energy-dispersive X-ray analysis (EDX), and field

emission scanning electron microscopy (SEM). Further-

more, the toxicity of A. mexicana-synthesized TiO2

nanoparticle sand PSS/PAH encapsulated TiO2 nanoparti-

cles was comparatively assessed on larvae, pupae and

adults of the dengue and Zika virus vector Ae. aegypti. We

also investigated the repellent activity of A. mexicana-

synthesized TiO2 nanoparticles and PSS/PAH encapsulated

TiO2 nanoparticles on Ae. aegypti adults over different

exposure times.

Materials and Methods

Green Synthesis, Encapsulation,

and Characterization of TiO2 Nanoparticles

Fresh A. mexicana leaves were collected from the Bhar-

athiar University Campus (Coimbatore, Tamil Nadu,

India). The A. mexicana leaves were gently washed with

tap water and dried in the shade at room temperature, cut

into fine pieces, grinded, and sieved to produce a fine

powder. Extraction of 50 g of the plant material was per-

formed in 300 mL of methanol for 8 h in a Soxhlet appa-

ratus [77]. The crude plant extract was evaporated to

dryness at room temperature.

TiO2 nanoparticles were synthesized in an Erlenmeyer

flask by reacting 0.4 M of titanium tetra-isopropoxide with

the A. mexicana leaf extract. After 4 h of continuous stir-

ring at 50 �C, the mixture was centrifuged at 5000 rpm for

15 min to obtain a colloidal solution of TiO2 nanoparticles,

which was washed with ethanol and centrifuged at

5000 rpm for 10 min. TiO2 nanoparticles were separated

via annealing at 400 �C in a muffle furnace for 3 h to yield

a nanopowder. Experimental concentrations (10, 20, 30,

40, and 50 ppm) were prepared by dilution in distilled

water. All stocks and dilutions were stored at - 4 �C.
Calcium carbonate(CaCO3) particles with nano-dis-

persed diameters were prepared by mixing 0.21 g of Na2-
CO3 and 0.29 g of CaCl2�5H2O in 20 mL of H2O under

magnetic agitation with 0.29 g of polystyrene sulfate

(PSS). After 30 min, the CaCO3 particles were centrifuged

at 5000 rpm for 10 min and washed in water 3 times.

Polyelectrolytes (2 mg/mL) were adsorbed onto the CaCO3

particles by immersing the particles in 0.1 M of Tris–HCl

buffer (pH 7.0) for 15 min followed by three washes in

distilled H2O. The mixture was incubated for 15 min under

gentle shaking, and excess electrolytes were removed by

centrifugation at 5000 rpm for 10 min and washing in

water for 3 h. After assembly of the four subsequent

polyelectrolytes bilayers of PSS/PHH/PSS/PAH, the par-

ticles were formed by dissolving. The CaCO3 core was

immersed in 0.2 M EDTA solution (100 mL in Tris–HCl

buffer at pH 7.0) for 30 min under agitation, and subse-

quently centrifuged (5000 rpm for 10 min). After washing

in water, the hollow microcapsules were re-dispersed in

10 mL of sample solution at a different pH, and the mix-

ture was incubated at room temperature for 15 min. Then,

the particles were centrifuged at 5000 rpm for 10 m to

remove the suspension.

The presence of A. mexicana-synthesized TiO2

nanoparticles and PSS/PAH encapsulated TiO2 nanoparti-

cles in the tested preparations was confirmed by sampling

the colloidal solutions at regular intervals for UV–Vis

analysis using a Shimadzu UV-3600 spectrophotometer

scanned from 200 to 700 nm with a resolution of 1 nm.

The mixture was then centrifuged at 15,000 rpm for

20 min, the pellet was dissolved in distilled water, then

filtered through a 0.45-mm Millipore filter. The morphol-

ogy of the A. mexicana-synthesized TiO2 nanoparticles and

PSS/PAH encapsulated TiO2 nanoparticles was analyzed

using a 10-kV ultra-high-resolution FEI Quanta 200 SEM,

where 25 lL of sample were sputter-coated onto a copper

stub. The surface groups of the A. mexicana-synthesized

TiO2 nanoparticles and PSS/PAH encapsulated TiO2

nanoparticles were qualitatively confirmed by FTIR spec-

troscopy [66] using a Perkin-Elmer Spectrum 2000 FTIR

spectrophotometer. XRD and EDX were shed light on the

crystalline structure and elemental composition of the

samples, respectively [67, 68]. TEM was performed using a

JEOL 1200 EX microscope operating at an accelerating

voltage of 120 kV. Samples were prepared by placing a

drop of colloidal solutions of A. mexicana-synthesized

TiO2 nanoparticles and PSS/PAH encapsulated TiO2

nanoparticles on carbon-coated TEM grids. The film on the

TEM grid was dried for 5 min under laboratory conditions.

The DLS particle size measurements were carried out using

a Malveern Zetasizer Nano ZS. Samples were diluted to
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0.1 wt% using C12-C15 alkyl benzoate. The measurement

duration was set to automatic, and five repeated measure-

ments were taken at 25 �C. The TiO2 and capped TiO2

samples were run using the refractive index obtained using

Malveern Mastersizer 2000 [2].

Larvicidal, Pupicidal and Adulticidal Activity

Aedes aegypti mosquitoes were reared as reported by

Sujitha et al. [70]. Larvicidal and pupicidal assays were

conducted in laboratory conditions [27 ± 2 �C,
75–85% R.H., 14:10 (L:D) photoperiod] by testing both A.

mexicana-synthesized TiO2 nanoparticles and PSS/PAH

encapsulated TiO2 nanoparticles. Following the method by

Murugan et al. [46], in the toxicity tests, 25 first, second,

third, fourth and instar larvae and pupae were kept in glass

beakers containing 250 mL of dechlorinated water plus the

desired concentration of A. mexicana-synthesized TiO2

nanoparticles or PSS/PAH encapsulated TiO2 nanoparti-

cles. Each dose, as well as the negative control (where no

nanoparticles were added) was replicated 5 times. Control

mortalities were corrected as indicated by Abbott [1].

In adulticidal assays, based on wide and narrow range

tests, A. mexicana-synthesized TiO2 nanoparticles and

PSS/PAH encapsulated TiO2 nanoparticles were tested at

2, 4, 6, 8, and 10 ppm (formulated in 5 ml of aqueous

solution), applied on Whatman no. 1 filter papers (size

12 cm 9 15 cm). Control papers were treated with dis-

tilled water; 20 Ae. aegypti females were collected and

gently transferred into a plastic holding tube. Ae. aegypti

females were allowed to acclimatize in the holding tube for

1 h and then exposed to the test paper for 1 h. At the end of

the exposure period, the mosquitoes were transferred back

to the holding tube for a 24 h recovery period. A cotton pad

soaked with 10% of glucose solution was placed on the

mesh screen. Each test included a set control groups with

five replicates.

Repellent Activity

In repellent assays, a treated and a control cotton pad were

soaked with goat blood and placed in opposite directions

inside a glass container; then the treated pads were soaked

in different concentrations of A. mexicana extracts; 20 Ae.

aegypti females were released into each container, and the

number of females landing on each pad was recorded with

the slightly modified protocol by Govindarajan and

Sivakumar [34]. The repellency of treated and control pads

were calculated by the following formula:

C� T

C
� 100

where C and T is the number of mosquitoes on the control

and treated pad, respectively.

Statistical Analysis

Toxicity and repellent data were subjected to ANOVA,

then the means were separated by Tukey’s HSD test

(P\ 0.05); mosquito mortality data were subjected to

probit analysis. LC50 and LC90 were calculated using the

method reported by Finney [30]; Chi square values were

not significant [15]. Data were analyzed using the SPSS

16.0 software (SPSS Inc., Chicago, IL, USA). A proba-

bility level of P\ 0.05 was used to evaluate the statistical

significance of differences between values.

Results

Green Synthesis, Encapsulation,

and Characterization of TiO2 Nanoparticles

The formation and stability of the A. mexicana-synthesized

TiO2 nanoparticles was monitored by UV–Vis spec-

trophotometry, where the UV–Vis spectrum showed a

maximum absorbance at 370 nm (Fig. 1a). PSS/PAH

encapsulated TiO2 nanoparticles showed a minimum and

maximum absorbance at 148 nm and 370 nm (Fig. 1b),

respectively; it was also observed that absorbance

increased with the incubation time.

The FTIR spectrum of A. mexicana-synthesized TiO2

nanoparticles indicated several potential functional groups

from the A. mexicana extracts which probably acted as

capping and reducing agents in titania nanosynthesis. Peaks

were found at 668 and 1320 cm-1 (Fig. 2a). The stretching

frequencies at 1658, 3120, 3468, and 3660 cm-1 can be

linked to the presence of organic components in the poppy

extract, which were attached to or adsorbed on the surfaces

of PSS/PAH encapsulated TiO2 nanoparticles (Fig. 2b).

The XRD spectrum for A. mexicana-synthesized TiO2

nanoparticles (Fig. 3a) shows five intense peaks with 2h
values of 27�, 41�, 54�, 63�, and 69�, which were assigned

to the (101), (100), (111), (211), and (200) planes of the

face centered cubic (fcc) phase, which are comparable with

the standard (JCPDS 89-3722) TiO2 lattice. A few unas-

signed peaks were also seen near these characteristic peaks.

For the PSS/PAH encapsulated TiO2 nanoparticles

(Fig. 3b), peaks with 2h values of 19�, 29�, 26�, 43�, and
54� were assigned to the (100), (101), (111), (201), and

(202) planes of the face centered cubic (fcc) phase.

According to SEM and TEM analyses, the morphology

of A. mexicana-synthesized TiO2 nanoparticles was mostly

rod-shaped; the titania nanoparticles formed aggregates
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that were about 50 nm in diameter (Figs. 4 and 5). The rod-

shaped A. mexicana-synthesized TiO2 nanoparticles

(Figs. 4a and 5a) had cubic structures and increased in size

to about 65 nm after the encapsulation with PSS/PAH

(Figs. 4b and 5b). Figure 5b shows the morphology of the

PSS/PAH encapsulated TiO2 nanoparticles, formed aggre-

gates of about 40 nm in diameter and TiO2 exhibited

23 nm.

TheTiO2 nanoparticles generally have a typical

absorption peak at 4.9 and 0.1 keV due to the SPR phe-

nomenon. Figure 6 shows a representative EDX profile of

the sample spot, showing strong titanium and oxygen sig-

nals along with calcium peaks at approximately 0.1, 1, 2,

and 4 keV. Overall, strong signals in EDX spectra for Ti

and O atoms confirmed the presence of TiO2 (Fig. 6) in the

analyzed samples.

Lastly, from the DLS results given in Fig. 7, it is evident

that the particles were dispersed fully and exhibited nano-

size lower than 25 nm for A. mexicana-synthesized TiO2

nanoparticles (Fig. 7a) and 45 nm for the PSS/PAH

encapsulated TiO2 nanoparticles (Fig. 7b).

Toxic and Repellent Activity Against Aedes aegypti

In larvicidal and pupicidal experiments, A. mexicana-syn-

thesized TiO2 nanoparticles achieved LC50 values of

17.880 (larva I), 21.708 (II), 26.115 (III), 30.045 (IV), and

35.298 ppm (pupa), while the LC90 values were 41.648 (I),

51.148 (II), 56.51 (III), 62.97 (IV), and 71.74 ppm (pupa)

(Table 1). Furthermore, PSS/PAH encapsulated TiO2

nanoparticles achieved LC50 values of 16.154 (I), 21.302

(II), 24.265 (III), 27.550 (IV), and 32.881 ppm (pupa),

while the LC90 values where 39.16 (I), 49.94 (II), 53.82

(III), 61.36 (IV), and 69.12 ppm (pupa) (Table 2).

In adulticidal experiments, LC50 and LC90 values of A.

mexicana-synthesized TiO2 nanoparticles on Ae. aegypti

were 3.55 and 10.31 ppm, respectively, while the LC50 and

LC90 values of PSS/PAH encapsulated TiO2 nanoparticles

were 3.06 and 9.54 ppm, respectively (Table 3).

In repellence assays, at the maximum concentration

tested (10 ppm), the repellency rates calculated on Ae.

aegypti was significantly lower (P\ 0.05) for A. mexi-

cana-synthesized TiO2nanoparticles (80.43%), if compared

to that achieved by a single treatment with PSS/PAH

encapsulated TiO2 nanoparticles (88.04%) (Table 4).

Discussion

Green Synthesis, Encapsulation,

and Characterization of TiO2 Nanoparticles

UV–Vis spectroscopy is an essential tool to evaluate the

production and stability of metal oxide nanoparticles [31].

The formation of A. mexicana-synthesized TiO2 nanopar-

ticles was confirmed by an absorption peak at 370 nm,

while PSS/PAH encapsulated TiO2 nanoparticles showed a

Fig. 1 UV-visible spectra of a Argemone mexicana-fabricated TiO2

nanoparticles (120 min after the reaction) and b PSS/PAH encapsu-

lated TiO2 nanoparticles

Fig. 2 FT-IR spectra of a Argemone mexicana-fabricated TiO2

nanoparticles and b PSS/PAH encapsulated TiO2 nanoparticles
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minimum absorption peak at 148 nm and a maximum

absorption peak at 370 nm. Very recently, UV–Vis has

been used to study the green synthesis of other metal

nanoparticles, including silver and gold ones. About the

latter, a recent example has been provided by Murugan

et al. [46], which studied the UV–Vis spectrum of gold

nanoparticles synthesized using Cymbopogon citratus

(DC.) Stapf, where the formation of Au nanostructures was

confirmed by the presence of an absorption peak at

540 nm.

Concerning the functional groups from the A. mexicana

extract, which were probably involved in the reduction of

Fig. 3 XRD patterns of a Argemone mexicana-fabricated TiO2 nanoparticles and b PSS/PAH encapsulated TiO2 nanoparticles

Fig. 4 SEM (20 kV, X30,000) of a Argemone mexicana-fabricated TiO2 nanoparticles and b PSS/PAH encapsulated TiO2 nanoparticles

Fig. 5 TEM of a Argemone mexicana-fabricated TiO2 nanoparticles and b PSS/PAH encapsulated TiO2 nanoparticles
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TiO2 nanoparticles, the FTIR peak at 668 cm-1 may be

linked with the formation of C–Br bonds, while the peak at

1320 cm-1 may indicate C=O bonds. The peak sat 1658,

3120, 3468, and 3660 cm-1 were probably due to the

formation of C=C, C–H, O–H, and O–H bonds, respec-

tively [41, 69]. Based on this information, it was argued

that various concentrations of alcohols, phenols, and

alkenes were still present in the colloidal solution after the

formation of PSS/PAH encapsulated TiO2 nanoparticles.

Furthermore, the XRD pattern of A. mexicana-synthe-

sized TiO2 nanoparticles showed 5 intense peaks at 27�,
41�, 54�, 63�, and 69�, while the XRD pattern of PSS/PAH

encapsulated TiO2 nanoparticles had peaks at 19�, 29�, 26�,
43�, and 54�. Recently, several XRD studies have been

carried out to shed light on the crystalline structure of

mosquitocidal nanoparticles [13, 71, 74], including titania

nanostructures [47]. Concerning other metal nanoparticles,

several studies are available. For example, Madhiyazhagan

et al. [41], studied the XRD pattern of Ag nanoparticles

synthesized using the extract of the seaweed Sargassum

muticum; results showed five high diffraction peaks at

45.6�, 51.3�, 58.1�, 66.5�, and 71.1�, indexing the Bragg

reflection planes (004), (112), (103), (104), and (006),

respectively.

SEM studies pointed out that the reduced A. mexicana-

synthesized TiO2 nanoparticles were observed to be mostly

rod-shaped, with aggregates always lower of 50 nm in size;

on the other hand, encapsulated PSS/PAH encapsulated

TiO2nanoparticles were cubic, with a size of about 65 nm.

In both samples, EDX assays revealed the presence of

strong Ti and O peaks. The increase in particle diameter

confirmed the encapsulation of TiO2 nanoparticles by PSS/

PAH. Notably, the present green synthesis protocol led to

the production of titania nanoparticles with different fea-

tures if compared with the ones synthesized via classic

methods, such has hydrothermal synthesis. Indeed, at

variance with our results, Murugan et al. [47] showed that

titania nanoparticles fabricated via hydrothermal synthesis

and analyzed by FESEM showed spherical shapes, not rod-

like ones, with a wider size range (i.e. from 20 to 100 nm).

These data represent a further evidence of the great

potential of plant-mediated green synthesis routes, that can

be easily carried out to produce nanoparticles with different

features if compared with those obtained with chemical and

physical methods (see [21, 22] for recent reviews).

Fig. 6 EDX profiles of a Argemone mexicana-fabricated TiO2 nanoparticles and b PSS/PAH encapsulated TiO2 nanoparticles
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Fig. 7 Dynamic light scattering (DLS) showing particle size of

a Argemone mexicana-fabricated TiO2 nanoparticles and b PSS/PAH

encapsulated TiO2 nanoparticles
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Concerning other metal nano-complexes obtained with

green synthesis routes, Suresh et al. [71] reported that SEM

of green synthesized Ag0 nanoparticles showed spherical

shapes with an average size of 30–60 nm.

Various attempts have been conducted also to

microencapsulate plant-borne products. For instance, Hsieh

et al. [37] applied thermal treatments to study the con-

trolled release properties of chitosan-microencapsulated

citronella oil, while Mourtzinos et al. [43] encapsulated

olive leaf extracts in b-cyclodextrin substrates. In the

present investigation, the adoption of DLS showed the

nano-particle size of both green synthesized and capped

nanoparticle. DLS is an efficient and convenient method to

analyze the particle size of nanoparticles [48]. Hence, here

DLS has been applied to support TEM data on the size of

synthesized nanotitania. Notably, suspensions tested in

DLS measurements are often treated with a standard dis-

persant to give good or at least reproducible dispersions

[28]. If this is not carried out, and the sample is simply

dispersed in deionized water, the measured size may vary

significantly with the tested particle concentration, and

because the particle concentration is often adjusted to give

optimum obscuration, significant variability of the results

may occur. A similar dependence has been reported for

5 nm TiO2 particles by Fatisson et al. [29]. Moreover, Patri

et al. [51] have reported large differences for bigger TiO2

particles, i.e., about 120 nm at low ionic strength (10 mM

NaCl) and 1000–2000 nm in solutions showing high ionic

strength.

Toxic and Repellent Activity Against Aedes aegypti

The experiments conducted on larval and pupal stages of

the dengue and Zika virus vector Ae. aegypti showed a

relevant toxicity of both A. mexicana-synthesized TiO2

nanoparticles and PSS/PAH encapsulated TiO2nanoparti-

cles. Notably, the LC50 values of A. mexicana-synthesized

TiO2 nanoparticles (i.e., from 17.880 ppm on first instar

larvae to 35.298 ppm on pupae) were slightly higher if

compared with PSS/PAH encapsulated TiO2nanoparticles

(i.e., from 16.154 ppm on first instar larvae to 32.881 ppm

on pupae). Moreover, the same trend was confirmed in

adulticidal experiments, where A. mexicana-synthesized

TiO2 nanoparticles had a LC50 of 3.55 ppm, while PSS/

PAH encapsulated TiO2 nanoparticles had slightly lower

LC50 (3.06 ppm). Notably, also in repellence assays, the

repellency rates calculated on Ae. aegypti were lower for A.

mexicana-synthesized TiO2 nanoparticles (80.43%) if

Table 1 Larvicidal and pupicidal toxicity of Argemone mexicana-synthesized TiO2 nanoparticles against the dengue and Zika virus vector

Aedes aegypti

Target LC50 (LC90) (ppm) 95% Confidence limit LC50 (LC90) Regression equation v2 (d.f. = 4)

95% LCL 95% UCL

Larva I 17.880 (41.648) 14.769 (38.232) 20.428 (46.294) y = - 0.964 ? 0.054x 3.042n.s.

Larva II 21.708 (51.148) 18.337 (46.425) 24.538 (57.946) y = - 0.945 ? 0.044x 0.598n.s.

Larva III 26.115 (56.514) 23.071 (51.156) 28.900 (64.327) y = - 1.101 ? 0.042x 0.359n.s.

Larva IV 30.045 (62.971) 26.996 (56.448) 33.100 (72.825) y = - 1.169 ? 0.039x 0.325n.s.

Pupa 35.298 (71.742) 32.004 (63.292) 39.133 (85.195) y = - 1.241 ? 0.035x 0.834n.s.

n.s.Not significant (P[ 0.05)

Table 2 Larvicidal and pupicidal toxicity of PSS/PAH encapsulated Argemone mexicana-synthesized TiO2 nanoparticles against the dengue and

Zika virus vector Aedes aegypti

Target LC50 (LC90) (ppm) 95% Confidence limit LC50 (LC90) Regression equation v2 (d.f. = 4)

95% LCL 95% UCL

Larva I 16.154 (39.165) 12.907 (35.920) 18.750 (43.568) y = - 0.900 ? 0.056x 5.203n.s.

Larva II 21.302 (49.946) 17.980 (45.420) 24.083 (56.410) y = - 0.953 ? 0.045x 1.486n.s.

Larva III 24.265 (53.823) 21.155 (48.844) 27.011 (61.009) y = - 1.052 ? 0.043x 0.705n.s.

Larva IV 27.550 (61.361) 24.282 (54.887) 30.615 (71.223) y = - 1.044 ? 0.038x 0.381n.s.

Pupa 32.881 (69.120) 29.622 (61.129) 36.433 (81.750) y = - 1.163 ? 0.035x 1.120n.s.

n.s.Not significant (P[ 0.05)
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compared to PSS/PAH encapsulated TiO2 nanoparticles

(88.04%).

To our mind, these findings represent a rather rare

evidence in the field of green nanosynthesis of mosquito-

cidal nanoparticles. Indeed, earlier attempts failed to

maintain the high insecticidal activity of green synthesized

nanoparticles after the encapsulation process; very

recently, Murugan et al. [48] proposed the bio-encapsula-

tion of chitosan-Ag nanocomplex, showing activity against

Anopheles stephensi malaria vectors in laboratory and in

the field. Both nano-products also reduced longevity and

fecundity of An. stephensi. The bioencapsulated chitosan-

Ag nanocomplex showed a lower larvicidal and pupicidal

toxicity (LC50 range: 54.65–98.17 ppm) if compared with

non-encapsulated chitosan-fabricated Ag nanoparticles

(LC50 range: 4.43–7.64 ppm) [48].When comparing the

toxicities of non-encapsulated and encapsulated A. mexi-

cana-TiO2 nanoparticles, the increase of toxicity detected

here was in accordance with the findings by Cheung and

Hammockm [24], who carried out the micro-lipid droplet

encapsulation of Bacillus thuringiensis subsp. israelensis

endotoxins, reporting its toxicity against the larvae of four

mosquito species, i.e., Ae. aegypti, An. freeborni, Cx.

pipiens and Cx. tarsalis. Later, Hadapad et al. [36] eval-

uated the residual activity of sustained-release biopolymer-

based formulations for B. sphaericus strains against Cx.

quinquefasciatus larvae. The present work reports an eco-

friendly and simple method allowing the encapsulation of

titania nanoparticles without lowering their mosquitocidal

activity against the dengue and Zika virus vector Ae.

aegypti.

More generally, in the latest years, a wide number of

green routes aimed at the production of nanoparticles

toxicity to various mosquito species have been developed.

Most of the studies focused on the toxicity of plant-syn-

thesized metal nanoparticles, with special reference to

silver ones [12, 39, 65]. On the other hand, only few

researches focused on the toxicity of titania nanoparticles

against mosquito young instars [47]. Besides plant-based

fabrication processes, bacterial and fungal extract have

also been employed to prepare various metal nanoparticles.

For example, Ag nanoparticles have been fabricated using

extracts of the filamentous fungus Cochliobolus lunatus

and then tested against Ae. aegypti II–IV larval instars,

achieving LC50 of 1.29, 1.48, and 1.58 ppm, respectively

[61].

In addition to being used as reducing and capping

agents for nanosynthesis, a number of phytochemicals

have been tested for their mosquito larvicidal, adulticidal

and repellent properties [27, 33]. The review by Pavela

[52] recently highlighted that several plant-borne com-

pounds showed relevant activity as mosquito larvicides.

Also, Amerasan et al. [3] studied the adulticidal activity ofT
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Senna tora (L.) Roxb. extracts in hexane, chloroform,

benzene, acetone, and methanol against Ae. aegypti. The

adulticidal activity of the essential oil of Lantana camara

L. was evaluated against five mosquito species, Ae.

aegypti, Cx. quinquefasciatus, An. culicifacies, Ancylus

fluvialitis, and An. stephensi, on impregnated papers at

concentrations of 0.208 mg/cm2, where the KDT50 and

KDT90 values of the oil were 20, 18, 15, 12, and 14 min

and 35, 28, 25, 18, and 23 min, respectively; mortality

percentages for each species were 93.3, 95.2, 100, 100, and

100%, respectively [26]. However, on the other hand, our

knowledge about the adulticidal potential of green syn-

thesized nanoparticles remains scarce, if compared with

research efforts on their larvicidal and pupicidal potential

[12, 39].

Conclusions

Overall, here we used the poppy species A. mexicana to

reduce titanium dioxide nanoparticles, which were then

capped with PSS/PAH. The toxicity and repellent potential

of both nanoparticles were compared to elucidate their

potential effects against the dengue and Zika virus vector

Ae. aegypti. At variance with earlier studies, this research

firstly highlighted the highly promising potential of PSS/

PAH encapsulation. This process led to the production of

highly stable encapsulated titania nanostructures showing

higher toxicity and repellent potential against Ae. aegypti,

if compared with titania nanoparticles synthesized with

eco-friendly routes without further stabilization.
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