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Abstract In this review article I discuss two aspects of magnetism in small metal

clusters. The first question discussed is whether simple metal clusters, that obey

electronic shell models and mimic properties of elemental atoms, also obey Hund’s

rule of maximum spin multiplicity. The second question is whether small clusters of

4d transition metal atoms, that are non-magnetic in the bulk, have magnetic ground

states. The question arises because calculations showed that small V clusters are

magnetic although the bulk metal is not. We discuss known results on Rh clusters in

detail to show that small clusters are generally magnetic, but it is difficult to

unequivocally identify the ground state due to the presence of many isomers and

spin states that are very close in energy.
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Introduction

Magnetism remains one of the most intriguing aspects of physical reality we are

familiar with. Being as fascinating as it is in bulk materials, magnetism in finite size

systems, such as atomic clusters and quantum dots, poses further conceptual

challenge to our understanding of how nature works. In this article I wish to review

some of the attempts to understand magnetic properties of materials at very small

length scales, in atomic clusters composed of a few atoms. I approach the question

of magnetism in small atomic clusters from two different perspectives. The first

approach is in the context of simple metal clusters such as group IA, IIA, group III,
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and the coinage metals, particularly Cu and Ag. The second approach is in the

context of 4d transition metal (TM) elements. I elaborate these below.

By now a rich literature exists which establishes that properties of the simple

metal clusters (as defined above) can be understood in terms of the electronic shell

models. Since review articles [1] and book chapters [2] have discussed this issue at

great lengths, I will only mention the essential points here. The first point is to

assume that just as in bulk metals, the properties of the clusters can essentially be

understood in terms of their valence electrons. The simplest model for the valence

electrons in a bulk metal is the free-electron theory. One can similarly take a free

electron model for the simple metal clusters. The crucial difference between the bulk

metals and clusters is that the latter are finite objects, and hence the electrons are

confined in space. Theoretically, one has to solve the problem of free electrons

confined to a finite region by an appropriate confining potential rather than applying

periodic boundary conditions on a cubic box, as is typically done in case of bulk

metals. The simplest assumption one makes for the shape of the confining potential is

that it is spherically symmetric. Quantum confinement leads to discrete one-electron

energy levels. Spherical symmetry of the confining potential ensures that the energy

eigenstates are simultaneously eigenstates of the angular momentum operator. The

energy levels thus occur in bunches, called electronic shells. The exact values of the

energies, of course, depend on the detailed functional form of the confining potential.

For electrons confined in a spherical box, for example, the energy levels are ordered

in increasing energy as 1S, 1P, 1D, 2S, 1F, 2P, 1H…. S, P, D,… denote eigenstates

with the angular momentum quantum number l ¼ 0; 1; 2; . . .. Here we have used

capital letters S, P, D etc. to distinguish these shell orbitals from the atomic orbitals

with the same angular momentum quantum numbers.

The next step of the argument is that as atoms with filled electronic shells are less

reactive and more stable, the same should be the case with metal clusters. Noting

that S, P, D… orbitals can accommodate maximum of 2, 6, 10,… electrons, clusters

with 2, 8, 18, 20, 34, 40, 58,… valence electrons will have filled electronic shells,

and hence will be more stable than their neighbors. This was in fact demonstrated

for the first time in, what has by now become a cult paper in the area of cluster

science, by Knight et al. [3]. Nan clusters at sizes 8, 18, 20, 40, 58 and 92 were

found to be more stable than the neighboring sizes. Analogy of the simple metal

clusters was taken a step further when it was experimentally shown that clusters

with one electron less than shell filling have large electron affinities (EA), like

halogen atoms [4–7], and those with one electron more than shell filling have small

ionization potentials (IP), like alkali atoms [8–12]. From these it became clear that

some simple metal clusters mimic properties of elemental atoms. Clusters that

mimic properties of atoms, or have other useful properties and retain their structures

in chemical assemblies were termed ‘superatoms’. Pioneering works by Khanna,

Jena, Rao and Castleman have firmly established the conceptual foundations of

superatoms, and have demonstrated their existence in experiments [13–17]. More

recently, the idea of superatoms has been extended to include magnetic species

called ‘magnetic superatoms’. Some of the fundamental ideas about designing

magnetic superatoms may be found in these references [2, 18–20].
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Here I will discuss a different aspect of the analogy of simple metal clusters with

elemental atoms. This has to do with Hund’s rule of maximum spin multiplicity.

Based on experimental spectroscopic data, Hund proposed that of all possible

electron configurations for an atom, the state that has the maximum value of total

spin S has the lowest energy. Since electrons in simple metal clusters occupy shells

similar to atomic orbitals, and these clusters mimic certain properties of elemental

atoms, a natural question is whether Hund’s rule of maximum spin is valid in these

as well. In that case, one would have an interesting situation where small clusters of

elements, that are non-magnetic in the bulk, have finite magnetic moments. As a

concrete example, the Na4 cluster has an electron configuration 1S21P2. If Hund’s

rule is obeyed, the ground state will be a triplet. On the other hand, if Hund’s rule is

not obeyed, a singlet state will result. Similar questions can be asked about all

clusters that do not lead to filled electronic shells in the sense discussed above. I will

review what is known about possible magnetism in small alkali and aluminum

clusters containing a few atoms, and will briefly mention some results on clusters

containing a few tens (� 50–70) of atoms.

A clarification is in order here. Although I started the discussion on simple metal

clusters with spherical shell models, not all clusters are ‘spherical’. Only when high-

symmetry structures happen to be ground states, either due to filled electronic shells

or complete geometric shells, the clusters are found to be spherical as measured by

the so-called Hill-Wheeler parameter [1, 21, 22]. Clusters having partially filled

shells usually have distortions from a perfectly spherical shape. Clemenger [23]

proposed shell models with spheroidal distortions to treat such cases. Ellipsoidal

shell models have also been discussed in the literature [1]. When the distortions are

not large, the molecular orbitals (MO) of the clusters can still be considered to be

angular momentum eigenstates to a good accuracy, although the degeneracy of all

the 2ðlþ 1Þ states found for a spherical shape is now lifted. Measurement of

photoelectron angular distribution from alkali clusters has established this point

beyond doubt [24, 25]. Therefore, although the spherical shell models are only

guides to our understanding of the electronic structure of simple metal clusters in a

strict sense, they remain a very good guide, and this simple picture is used to

interpret the results of more accurate first-principles calculations.

Only three of the 3d TM elements, Fe, Co and Ni, turn out to be ferromagnetic

(FM) in their bulk phases although all of them have partially filled d states in the

atoms. Mn and Cr turn out to have anti-ferromagnetic (AFM) ground states in the

bulk. Usually, itinerant FM is understood in terms of the Stoner criterion [26]. This

says that if the product of the exchange integral, and the density of states (DOS) at

the Fermi energy in the paramagnetic state is larger than 1, the system

spontaneously transforms to a broken symmetry FM state. The same criterion

could explain magnetic properties of V clusters [27]. Khanna and co-workers, in

their theoretical studies, found that a nine-atom V cluster in the body centered cubic

(bcc) structure with inter-atomic distances as in the bulk, had an antiferro-magnetic

(AFM) ground state. The spin on the atom at the body center was oriented opposite

to the spins on the corner atoms. Changing the ‘lattice constant’ (R) changed the

relative stabilities of the magnetic and non-magnetic states. For large R=R0, R0

being the cubic lattice constant of the bulk, the FM and AFM states were nearly
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degenerate, and were more favorable than the paramagnetic (PM) state. As the

interatomic distances decreased, the AFM state became more favorable. This

remained the ground state down to R=R0 ¼ 0:9. For R smaller than this, the PM state

became energetically favorable. This transition between FM/AFM and PM states

correlates nicely with the change of DOS at the Fermi energy. At large inter-atomic

separations, the DOS at the Fermi energy is large. This decreases with decreasing R,

and finally almost vanishes at R=R0 ¼ 0:8.
In this work, Khanna et al. also explored the effect of coordination on the

magnetic state. When six more V atoms were added to from a V15 cluster in the bcc

structure, moment on all the atoms vanished. The moment remained zero for V27

and V51 clusters in the bcc structure. In this context, it is also important to mention

that in the V9 cluster, the moment on the central atom was much smaller (1.38 lB)
than those on the corner atoms (3.82 lB). To illustrate the role of coordination on

magnetic moment, they also calculated properties of a linear chain of V atoms. Up

to V7 at bulk V-V separation, the moment per atom remained almost constant, and

moment on all the atoms aligned ferromagnetically. For a dimer, the moment per

atom turned out to be 4 lB at the bulk separation of *2.5 Å. But it was found to be

only 1 lB at the gas-phase equilibrium bond length of 1.7 Å. These findings again

underscore the effect of coordination and inter-atomic separation on the magnetic

moment on an atom.

In order to understand the role of reduced coordination on magnetic moment,

magnetic properties of Fe, Co and Ni clusters were measured extensively by the

groups of de Heer [28] and Bloomfield [29, 30]. The most significant conclusion of

these works is that clusters have larger magnetic moment per atom than the

corresponding bulk FM solids. Moreover, magnetic moment per atom varied non-

monotonically with size. Larger moment per atom was understood in terms of

reduced coordination on an average in the clusters compared to the bulk. The non-

monotonicity in the variation of with size is related to the structural growth pattern

of the clusters. Atoms in clusters with compact structures have higher coordination

on an average, and tend to have small moment, while more open structures have

larger moment [31]. Thus structural details played an important role in determining

magnetic properties of these clusters. The de Heer and Bloomfield groups tried to

find at which size the clusters reach their ‘bulk limit’ as far as the magnetic moment

per atom is concerned. The de Heer group reported that Ni clusters reach bulk limit

at *150 atoms. Fe and Co clusters have average moment larger than the bulk up to

sizes *450 and *550 respectively. In a later experiment, the Bloomfield group

found that Ni clusters have larger than bulk moment even up to 740 atoms. The

reason for the discrepancy between the two results is not clear, but both go on to

show that a lower coordination leads to a larger moment.

The theoretical work on V clusters, and the experiments on Fe, Co and Ni

clusters and the related theoretical works raised the question whether some of the

4d or 5d TM elements, all of which are paramagnetic in their bulk, can have finite

magnetic moments in cluster form. Reddy, Khanna and Dunlap were the first to

show the possibility of large magnetic moments in 4d TM clusters [32]. This

generated a flurry of activities on these clusters. Here I will review some of the

works on Rh clusters.
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Hund’s Rule in Simple Metal Clusters

Origin of Hund’s Rule in Atoms

Before I go on to discuss applicability or otherwise of Hund’s rule to metal clusters, it

is important to understand its microscopic origin in atoms. It was argued by Slater

that Hund’s rule of spin maximization is a consequence of many-electron exchange

effect [33]. Suppose we are to fill the electronic states in a carbon atom. The

electronic configuration would be 1s22s22p2. According to Hund’s rule, the ground

state will be a triplet (term symbol 3P0). A simple way to understand this is as

follows. Within a Hartree–Fock picture, two electrons with the same spin orientation

(Sz ¼ 1=2) will have a lower energy due to a finite negative contribution of the

exchange term, than if the spins were oriented oppositely. In other words, parallel

spin orientations lead to lower electron-electron interaction energies, and this is the

origin of Hund’s rule. This idea prevailed for quite some time before it was

scrutinized more closely. A crucial assumption in Slater’s argument, which remains

unstated here, is that the atomic orbitals remain the same in both spin states. It is easy

to argue that this cannot be true [34]. Each eigenstate must satisfy the virial theorem,

2T þ V ¼ 0. Here T is the kinetic energy and V is the total potential energy including

electron-nucleus, electron-electron, Hartree and exchange contributions [35]. If the

potential energy decreases, the kinetic energy must increase according to the virial

theorem. But if the orbitals remain the same the kinetic energy also remains the same.

So there is an inconsistency. Self-consistent calculations by Hongo et al. [34] in fact

show that the orbitals are different in different spin states. The higher spin states have

lower electron-nucleus interaction energy as a consequence of the orbitals getting

more localized near the nucleus. This also leads to an increase in the kinetic energy in

the higher spin state. More strikingly, a triplet state has a higher electron-electron

interaction energy. Accurate diffusion Monte Carlo calculations by these

authors [34] show that for a C atom in the singlet (S ¼ 0) and triplet (S ¼ 1) spin

states, the kinetic energy, electron-nucleus interaction energy (Ven) and the total

electron-electron interaction energy (Vee) change as follows.

TS¼1 [ TS¼0;

VS¼1
ee [VS¼0

ee ;

VS¼1
en \VS¼0

en :

ð1Þ

As these relations show, the gain in Ven more than compensates for the increases in

T and Vee, and is responsible for a high-spin state.

Validity of Hund’s rule in clusters

With the simple intuitive explanation for spin maximization turning out to be

incorrect for elemental atoms, the issue for metal clusters is only expected to be more

complex. The question whether small simple metal clusters, and clusters of non-

magnetic 3d TM’s are magnetic has been addressed in only a few experimental works
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as far as I know. Cox et al. [36] were the first to explore magnetism in small

aluminum clusters. They used a usual Stern-Gerlach apparatus for this. But instead of

measuring the deflection of the cluster beams, they measured the decrease in

intensity at the maximum of the beams due to the field gradient. The ratio of the

intensities at the beam maximum with and without the field gradient present (I0=IH)
was called the depletion factor. Al2 and Al3 showed significant depletion factors of

3.6 and 1.8 indicating magnetism in these clusters. These authors were unable to

measure the depletion factors of Al4 and Al5 clusters because the energy of the

ionizing ArF laser (6.4 eV) they used is lower than the ionization threshold of these

clusters. Note that after passing through the inhomogeneous magnetic field, clusters

are detected in a time-of-flight mass spectrometer for which ionization is essential.

Al6, Al7 and Al8 clusters also showed considerable depletion factors of 1.5, 1.9 and

1.7 respectively. If a cluster has spin S, the cluster beam is expected to split into

2Sþ 1 beams corresponding to the 2Sþ 1 allowed values of Sz as it passes through

the magnetic field. Moreover, for clusters having half-integer spins, the Sz ¼ 0 state

is not allowed. Therefore, for sufficiently strong field gradients, the intensity along

the original beam direction should be very small, and the depletion factor should be

large. Since each Al atom has an odd number of electrons, all odd-sized clusters will

have half-integer values of S, and should show large depletion ratios. However, as the

above numbers show, some of the even-sized clusters (Al2, for example) show larger

depletion ratio than odd-sized clusters. Also, the depletion ratio becomes nearly 1 (no

deflection) for all clusters larger than Al8. These two observations, contrary to

expectations, are explained as follows. To have large depletion ratios, even the

clusters in the smallest Sz states should have appreciable deflection so that they are

removed out the portion of the beam near the center that gets exposed to the ionizing

laser. Remembering that the amount of deflection (n) for a particular Sz state is [2]

n / ðSz=MÞðoB=ozÞ; ð2Þ

M being the mass of the cluster, substantial deflection of the smallest Sz states

requires large enough field gradients. Limited deflecting power of the magnetic

field, and a finite spatial extent of the ionizing laser prevent one from obtaining an

ideal depletion ratio. The deflection is also inversely proportional to the mass of the

cluster. Therefore, for the same value of spin, deflections of larger (heavier) clusters

become smaller. This may explain why even the large odd-sized clusters show a

depletion ratio close to 1.

These observations indicate that large clusters have small magnetic moments.

Odd-sized clusters are perhaps doublets, while the even-sized clusters are singlets.

Small even-sized clusters, Al2, Al6 and Al8, on the other hand, are inferred to have

triplet ground states.

In a second experiment, Douglass et al. [37] explored magnetic states of V, Cr,

Pd and Al clusters. They measured the deflection of the cluster beams directly, and

obtained the upper bound of the moment from the experimental uncertainties

assuming a superparamgnetic model for the cluster spin. They explored size ranges

8-99 for V, 9-31 for Cr, 100-120 for Pd and 15-48 for for Al clusters. In all cases

they could not detect any moment on the clusters within their experimental
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resolution. The situation is particularly interesting for the V clusters as Khanna and

co-workers had found large magnetic moment on a V9 cluster in a bcc structure with

bulk inter-atomic separations. An absence of magnetic moment indicates that the

structure of V9 is not a bulk fragment. Unfortunately, ref [37] could not study Al

clusters in the small size regime explored by Cox et al. [36].

The experimental scenario is a little unfortunate in the following way. Cox et al.

did report non-zero magnetic moments on small Al clusters. Particularly important

are the non-zero moments on Al6 and Al8 clusters, because odd-sized clusters

always have spin unpaired electrons anyway. But Douglass et al. could not

independently verify these results. They could do experiments only in the size range

15-48. Both these works, however, agree that the clusters are non-magnetic in the

size range where they overlap. I will not get into any further discussions on the

magnetic properties of V and Cr clusters as that is not our focus here. I focus on

simple metal clusters.

There have only been a few works addressing the question of magnetic states of

small Al clusters. A number of early studies using both ab initio and the local density

approximation (LDA) within density functional theory (DFT) reported a triplet

ground state for the Al2 dimer, in agreement with the experiments of Cox et al. [38–

41]. The situation for the size range of 3-6 atoms is less clear. Some authors have

claimed Al3, Al4, and Al5 to be quartet, triplet, and quartet in their respective ground

states [42, 43]. Rao and Jena [40] found Al4 to be a triplet, but Al3 and Al5 turned out

to be doublets (low spin states) in their DFT calculations based on the generalized

gradient approximation (GGA). They also found Al6, Al8 and Al10 to have triplet

ground states. These results are in complete agreement with the experiments of Cox

et al, except for Al10 for which Cox et al. found a depletion factor of 1, and Al4 and

Al5 for which there were no measurements. Akola et al. [44], in their 1998 work

using spin-polarized LDA, had predicted all Al clusters to have low spin ground

states: doublet for odd-sized clusters, and singlet for even-sized clusters. Al2 was the

only exception, which they found to be a triplet. Upton [45], in his model calculation,

predicted Al2 and Al6 to have nearly degenerate singlet and triplet states, but found

Al4 to be a singlet, and the odd-sized clusters Al3 and Al5 to be doublets. Phung et al.

[46] found Al2, Al4, Al6, Al10, Al12 and Al16 to have triplet ground states in their DFT

calculations. However, Al8 was found to be a singlet, contrary to the conclusions of

Cox et al. Al14 also turned out to be a singlet. In a more recent set of calculations

employing both hybrid DFT and quantum chemistry methods, Kiohara et al. [47]

found Al2 and Al3 to have triplet and doublet ground states respectively. From Al4 to

Al9, however, multi-reference character was detected in the ground state wave

functions, implying significant static correlation. It is clear that all calculations agree

that Al2 is a triplet, but they disagree on the ground state spin configurations of

clusters in the range 3-10. Even those works, that found high spin ground states for

small Al clusters, did not address the question if these can be rationalized using

Hund’s rule within a shell model picture.

A question further complicating the case of small Al clusters is whether Al atoms

are monovalent or trivalent in these systems. Therefore, even if one attempted to

view the magnetic ground states within a shell model, it is not immediately obvious

what would be the valence electron count. Let us try to understand this with an
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example. If Al is a monovalent atom, Al4 will have four valence electrons. If shell

model is valid, its electron configuration will be 1S21P2. Now if Hund’s rule is

valid, the total spin will be 1, and the cluster will have a triplet ground state. On the

other hand, if Al atoms are trivalent, then the valence electron count will be twelve,

and the electron configuration within the shell model will be 1S21P61D4. If Hund’s

rule is valid, the ground state will be a quintet in this case. Although early works

claimed that Al behaves as a monovalent atom in small clusters [12, 40], most

recent works by Melko and Castleman [48], and Chauhan et al. [49] have shown

that sp hybridization is present even at small sizes. Therefore, we conclude this

discussion on Al clusters by noting that although the question of the validity or

otherwise of Hund’s rule in this system is interesting, there is no conclusive

evidence either way for clusters up to 8 or 9 atoms. For intermediate sizes, Al13,

Al14 etc., shell model provides a good description of the electronic structure as

shown by Bergeron et al. [14, 15], and Chauhan et al. [49]. However, both theory

and experiments suggest that Hund’s rule is not valid, as low-spin ground states are

obtained. It is worth mentioning that electronic structure of Al clusters is strongly

affected by the geometric structure [45], and at still larger sizes shell model

predictions are valid only at a few specific sizes [50].

Clusters have an additional degree of freedom, their atomic structure, that is

absent in atoms. This also plays a crucial role in determining their ground state spin

multiplicity. This point has been nicely explained through LDA calculations by

Khanna et al. [51]. Although this particular work is quite old, by now it is well

established that the ground state of the Na4 cluster is a singlet in a rhombus

structure. Khanna et al. found that the optimal rhombus structure has an apex angle

(the smaller internal angle) of 520. The triplet has a higher energy in this structure.

As the apex angle was increased, the energy of the triplet decreased, and that of the

singlet increased. At an apex angle of 760, the two energies became equal, and after

that the triplet became the lower energy state. In a perfectly symmetric square

structure (apex angle of 900), triplet is the lower energy state.

These results can be understood in terms of a competition between crystal-field

splitting caused by Jahn–Teller (JT) distortions and exchange splitting of the MOs

of the cluster. Energies of the MOs in different structures and spin states are shown

in Fig 1. A perfectly square symmetry ensures that the px and py orbitals in the

cluster are degenerate. In the triplet state in this structure, the px and py states in the

a ("-spin) channel are occupied by two electrons. The states in the b (#-spin)
channel are at a higher energy and are unoccupied. In the singlet state, the a and b
states are also degenerate, and one each in the two spin channels are occupied.

Consequently, there is a gain in exchange energy in the triplet state relative to the

singlet. In the rhombus structure (apex angle between 520 to 760), the degeneracy

between the px and py states are lifted by an amount that is greater than the exchange

splitting in the triplet state. Thus, it is energetically favorable to occupy the px states

in the two spin channels leading to a singlet ground state. In fact, the partially filled

highest occupied molecular orbital (HOMO) in the singlet state of the square

structure represents an unstable situation. Our calculations show that after relaxation

(within DFT) this structure distorts, and transforms to a rhombus.
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To explore the interplay of crystal-field effect and exchange splitting further, Liu

et al. [27] also studied a Li4 cluster in a tetrahedral structure. In a perfect

tetrahedron, the px, py and pz orbitals are degenerate. Note that the pz orbital is

removed to a higher energy in the planar square and rhombus structures, and it was

not relevant to the discussion. In the singlet state of the tetrahedron, therefore, the

HOMO is 1/3 filled (2 electron in 6 orbitals). In the triplet state there is an exchange

splitting of the levels, and as a consequence a gain in exchange energy. However, a

perfect tetrahedron still leaves the px, py and pz orbitals degenerate in each spin

channel giving a 2/3 filled HOMO in the a channel. A further gain in energy is

achieved by a small distortion of the tetrahedron so that the three-fold degeneracy of

the p orbitals now breaks into a (2?1)-fold degeneracy. Thus a local minimum is

obtained for a distorted tetrahedron in a triplet state.

I would like to emphasize that the net result of this subtle interplay of crystal-

field splitting (as dictated by the JT distortion) and exchange splitting is that the Na4
and Li4 clusters have global minima that are singlet in a rhombus structure. In fact,

Nan clusters have low spin ground states at all sizes up to n = 20: doublet for odd

sizes, and singlets for even sizes [52]. At larger sizes, things could be different. The

geometric packing effects become more important at larger sizes, and the role of

electronic shell structure in determining the stable clusters diminishes [22, 53]. In

such a regime, even alkali clusters may have high-spin ground states as the crystal-

field splitting due to JT distortion is small. In fact, around n = 55, DFT calculations

suggest that ground states of Nan clusters have high spins: triplets for even sizes, and

quartet for odd sizes. Na71 is also found to have a quartet ground state. [53]. Kn

Fig. 1 Energies of the relevant MOs of Na4 in the singlet and triplet states in square planar and rhombus
structures. With kind permission from [51], Fig. 2
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clusters behave in a similar manner [22]. K54 has a quintet ground state in DFT

corrected for dispersion interactions; K55 and K71 are quartets. K56 and, surprisingly,

K61 have triplet ground states. Although magnetic moments of these clusters have

not been directly measured, a good match of the calculated and measured photo

electron spectra (PES) of the Nan cluster anions gives confidence that this could

indeed be the case. A direct measurement of a finite moment will settle the issue

decisively.

The case of Cs clusters, however, may be different even at intermediate sizes.

Theoretical studies indicate that way. The reasons why Cs clusters will be different

from the Na clusters are the following. (1) Relativistic effects are important in Cs

atoms, but not in Na. Relativistic effects contract the valence 6s orbital of the Cs

atom, making it of the same spatial extent as the 5d orbitals. Alongside this, the

6s ! 5d and 6s ! 6p excitation energies are nearly the same in Cs, and both are

*0.4 eV lower than the 3s ! 3p excitation energy in Na. Therefore, sd

hybridization is likely to play an important role in Cs systems. Indeed, significant

sd hybridization is found near the Fermi level in bulk Cs [54–56]. There is

practically no possibility of any sd hybridization in Na systems as there are no

2d states, and the 3d states are higher in energy. (2) Whenever a new electronic shell

gets occupied for the first time in a simple metal cluster, there is a drop in IP.

Experiments and theory have clearly established that there are drops in IP between

alkali clusters of sizes 8 and 9, and between sizes 20 and 21 [8, 9, 11, 57].

Interestingly, the drops in IP’s in Cs clusters are much smaller than the

corresponding drops in the Na clusters [57]. This suggests a weaker role of

electronic shells in determining the stability of Cs clusters, and one expects a

concomitantly greater role of geometric packing. Therefore, by the same argument

as above, Cs clusters much smaller than 55 atoms can have magnetic ground states.

The idea is best explained with the example of the Cs13 cluster as demonstrated

by Aguado [58]. According to the shell model, electron configuration of Cs13 (or

other 13-atom alkali clusters) is 1S21P61D5. 1D is half-filled. Such clusters with

partially filled HOMO levels undergo JT distortions to lift the degeneracy, as we

already saw. Such JT distortions leading to low spin ground states are consequences

of electron-vibron coupling. The 1D orbital being exactly half filled, prolate and

oblate distortions are equally likely for 13-atom alkali clusters. This is found to be

true for Na13. Two nearly degenerate structures, one with a C2 symmetry and the

other with Cs symmetry are found to be the ground states. The C2(Cs) structure can

be viewed as oblate(prolate) distorted relative to a more ‘spherical’ icosahedron.

Both turn out to be spin doublets. In other words, JT distortions and consequent

crystal-field effects win over exchange splittings in Na13 to produce low spin ground

states. But if the electron-vibron coupling is weak, one may have a perfectly

symmetric icosahedron in high spin ground state. Occupation of all the five 1D

orbitals in a single spin channel will make the shape of the electronic charge density

congruent with the arrangement of the nuclear charges, thus lowering the electron-

nuclear interaction energy. The C2 and Cs structures for Na13 and the icosahedron

structure for Cs13 are shown in Fig. 2.

Electronic structure calculations that Aguado performed [58] on the Cs13 cluster,

in fact, support this conjecture. He performed several calculations on the icosahedron
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(Ih), C2 and Cs isomers. Two different exchange-corrleation functionals were used:

the PBE gradient corrected functional, and a non-local correlation functional that

describes van der Waals interactions within DFT (vdW-DFT). For both these

approaches, he did calculations fixing the spin state to be doublet, and finding the

spin state self consistently. Again, for both PBE and vdW-DFT methods, two

different basis sets were used: one that included the 5d atomic orbitals, and one that

did not. It turned out that both within PBE and vdW-DFT, a perfect icosahedron in

the spin sextet state has the lowest energy when the d orbitals were included in the

basis. If the d orbitals are not included, the C2 structure turns out to have the lowest

energy followed by the Cs and the Ih. If the spin was fixed to be a doublet, even

inclusion of the d orbitals led to the C2 (with vdW-DFT) or Cs (with PBE) structure to

have the lowest energy. Thus, effect of the d orbitals in determining the ground state

structure and spin configuration is crucial. But more importantly, Cs13 does have a

high-spin ground state in a perfectly symmetric icosahedron structure.

Aguado also reported contributions of different terms to the total energy in the

sextet and doublet states. The nuclear arrangement was kept fixed at the lowest

energy icosahedron structure of the sextet state so that the contribution of the

nuclear interactions was the same in both cases. The electron-nucleus interaction

energy is 0.127 eV lower in the sextet state. Unlike in an atom, where a higher spin

state increases the electron kinetic energy, the kinetic energy was lower in the high

spin sextet state. In an atom, there is a single nuclear attractor. Therefore,

contraction of the orbitals closer to the nucleus increases the kinetic energy

contribution. In clusters, presence of a number of attractors allows the electronic

wave function to spread out while taking advantage of the nuclear attraction,

thereby reducing the kinetic energy. The electron-electron interaction energy

contribution is 0.105 eV higher in the sextet state. The overall result is that the

sextet state is 0.124 eV lower compared to the doublet.

Cs13 is a special case because it has an exactly half-filled 1D state. Therefore,

once the exchange splitting lifts the degeneracy between the two spin channels, a

filled sub-shell (of the majority spin 1D orbitals) is obtained, giving a large gap

between the highest occupied and the lowest unoccupied molecular orbitals

(HOMO-LUMO gap). But this is obviously not the case at every size. Cs15 is an

example that illustrates the point. Cs15 has an electronic configuration 1S21P61D7.

Fig. 2 Structures of Na13 having C2 and Cs symmetries, and Cs13 having Ih symmetry. Adapted from
[58] � Am. Chem. Soc. 2012, and [78] with permission
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The ground state can have total spin of S = 3/2 or 1/2 depending on whether the spin

is maximized or not. If the JT distortion is large, one would have a single unpaired

spin in the majority spin channel, whereas a large exchange splitting would give a

high spin ground state. Aguado’s calculations [58] showed that Cs15 does undergo a

JT distortion from the perfectly symmetric Kasper polyhedron of D6d symmetry to a

lower symmetry D2 structure. The associated splittings of the orbitals in both spin

channels are smaller than 0.02 eV. Compared to this, the exchange splitting between

the occupied 1Da and 1Db levels in the reference D6d structure is 0.1 eV. Therefore,

the JT distortion is unable to drive the cluster to a low spin ground state, and it

remains a quartet. At other sizes also, the crystal-field splittings were typically an

order of magnitude smaller than the exchange splittings, giving high spin ground

states for Cs clusters. The reason for such smallness of the JT energy scale is a

smaller electron-vibron coupling in Cs systems compared to Na systems.

This presents us with an exciting situation where clusters containing few Cs atoms,

that form an ideal free electron paramagnetic metal in the bulk, is magnetic with the

highest possible spin value. Na andK clusters containing*55 atoms ormoremay also

be magnetic. It would be interesting to have experimental confirmation of these.

Magnetism in Rhodium Clusters

Rh13 cluster

I now come to the topic of magnetism in 4d TM clusters that are non-magnetic in

the bulk. I will discuss Rh clusters only, as these turn out to be the most interesting

ones. The first indication that small Rh clusters could have large magnetic moments

came from theoretical calculations of Reddy et al. [32]. They studied 13-atom

clusters of 4d TM atoms Rh, Pd and Ru using DFT. Rh13 turned out to have a

moment of 21 lB in an icosahedron structure. This result was very surprising and

exciting because the per atom moment, 1.6 lB, was larger than the moment of 0.56

lB in bulk FM nickel. In fact, it was comparable to the moment of 1.64 lB per atom

in FM bulk Co. The moments on all the individual Rh atoms were aligned, and the

outer shell atoms had slightly larger moment than the central atom. Pd13 and Ru13
were also magnetic, but the moments were much smaller in these clusters. Two

factors conspired to produce such a large moment on Rh13. Firstly, high symmetry

of the icosahedron structure increased degeneracy of the electronic states, producing

sharp peaks in the density of states (DOS). In fact, in the non-magnetic Rh13 cluster,

the Fermi energy occurred near one of the peaks in the DOS. Secondly, a large

number of surface atoms, having low coordination, gives a large moment. In an

icosahedron, 12 of the 13 atoms are on the surface.

This path-breaking work prompted Cox et al. [59, 60] to look for magnetism in

small Rh clusters in experiments. In a Stern-Gerlach setup, they indeed found all Rh

clusters in the size range 12-32 to be magnetic [59]. Some sizes, Rh15, Rh16 and

Rh19 in particular, had significantly larger moments compared to their neighbors. In

the first work (ref. [59]), Cox et al. reported a moment of 0:88� 0:16 lB/atom for

Rh13. It turned out there was a systematic error in their measurements [60]. They
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corrected this in ref. [60], and the moment on Rh13 turned out to be 0:48� 0:13 lB/
atom. Rh15, Rh16 and Rh19 still had larger moments compared to their neighbors. In

ref [60] all the Rh clusters up to size 34 were found to be magnetic. In a follow up of

their original work, Reddy et al. [61] reported that there are a number of different

spin states for icosahedral Rh13 that are very close in energy. At very small inter-

atomic distances, the moment on Rh13 is very small. As the distances increase

(keeping the icosahedron structure intact) the cluster makes a transition to a state

with a total moment of 7 lB. With further increase in the distances, a state with 15

lB becomes favorable. In fact, this state, at an inter-atomic separation of 2.65 Å,

turns out to be the lowest energy state. As the inter-atomic distances are increased

further, the cluster goes to a state of 21 lB, and this is the state that Reddy et al.

reported in their first work [32]. Energy difference between the 15 lB and 21 lB
states was only 25 meV/atom, at the limits of accuracy of their DFT calculations. In

a different calculation (using a different basis set), the 21 lB state in fact came out to

have a lower energy. Reddy et al. also reported the variation of the binding energy

per atom (BE) of Rh13 for all spin states from 7 to 23 lB [61]. The variation in BE

over such a large range of moments was only 0.1 eV/atom. This clearly shows that

different spin states in Rh clusters are very close in energy, and which state comes

out to have the lowest energy may be influenced by the choice of the method of

calculations. We discuss this point in more detail later. The most important point,

despite the mismatch between the calculated and measured moments, is that Rh13
cluster is magnetic.

Let us now look at some of the other important theoretical works on Rh13. After

the first theoretical work by Reddy et al. [32] and the experimental work by Cox

et al. [59, 60], Jinlong et al. [62] performed a thorough calculation on Rh13. They

considered the Ih, cuboctahedron (Oh), and a low symmetry D3h structures. The Ih
structure turned out to have the lowest energy, and was 0.45 eV and 1.35 eV lower

than the D3h and Oh structures respectively. Let us first focus on the magnetic

properties of the Ih structure. Jinlong et al. [62] also found (this work actually

preceded ref [61]) competing spin states for Rh13 below interatomic separation of

*2.61 Å. Between 2.54 and 2.61 Å, there are three close-lying spin states with total

moments of 7 lB, 15 lB and 21 lB. At 2.56 Å, the 15 lB state turns out to have the

lowest energy, and this is the global minimum in agreement with ref. [61].

Interestingly, a later work by Bae et al. [63] found a completely different structure

to be the ground state for Rh13. We will discuss this later. The 7 lB and 21 lB states

are 0.74 eV and 0.35 eV higher respectively at this interatomic distance. The 21 lB
state becomes stable only above 2.54 Å, while it is the only stable state above 2.67

Å. Although the 7 lB state was found to exist over a large size range below 2.61 Å,

it is never the ground state. This point is in disagreement with the results in ref [61]

which find 7 lB to be the most favorable state below 2.6 Å.

Another interesting aspect of Jinlong et al’s results is that the moment of the Ih
cluster is smaller than that of the Oh and D3h clusters over a large range of

interatomic distances below 2.65 Å. Common understanding is that the more

symmetric a structure is, the more the degeneracy of the electronic levels, and hence

less is the crystal-field splitting. Therefore, the exchange splitting wins, producing

large magnetic moments. So a high symmetry structure having low moment is
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surprising. Jinlong et al. explain this in terms of an energy difference (DE) which
was defined as follows. For clusters with a partially filled HOMO, which is the case

with all Rh13 clusters they studied, DE is the energy difference between the HOMO

and the closest-in-energy spin-opposite molecular orbital (CSMO), which is the

one-electron energy level in the opposite spin channel nearest to the HOMO in

energy. This orbital may be occupied or unoccupied. The important point is that the

minimum energy re-ordering of the orbitals necessary to change the spin state of the

cluster is this difference. DE is *0.5 eV for the Oh and the D3h clusters, but it is

only *0.05 eV for the Ih cluster. Therefore, the magnetic state of the Ih cluster is

changed more easily with change in structure, but the moments on the Oh and the

D3h clusters remain 19 lB at all interatomic distances. As a result, for distances

below 2.6 Å, moment on the Ih cluster falls below that of the other two.

Bae et al. [63], as a departure from the earlier works, not only considered

symmetric icosahedron, cuboctahedron and such structures, but explored other less

symmetric structures for Rh13. In fact, a cage structure without any central atom,

with a magnetic moment of 17 lB, turned out to be the ground state. The

icosahedron with 21 lB is 0.3 eV higher. An icosahedron with 17 lB was also found,
and this is only 0.01 eV higher than the 21 lB state. Several other close-lying

structural isomers and spin states were detected. A centered hexagonal prism-like

structure having 11 lB is 0.04 eV higher than the ground state. Another prism-like

structure having 15 lB moment lies 0.08 eV above the ground state. Surprisingly,

these authors do not report either the 7 lB or the 15 lB Ih cluster. This shows that

different methods within DFT can produce different energy orderings of structural

and spin isomers. I will not get into a detailed discussion of the methods used in

different works, which can be found in the original papers.

One aspect common to the works of Reddy et al, Jinlong et al. and Bae et al. is

that the calculated moment in the ground state is much larger than that found in the

experiments by Cox et al. While the experimental number is 0:48� 13 lB per atom,

the value found in the three theoretical works are 1.15 lB, 1.15 lB and 1.30 lB
respectively. There could be several reasons for this. Firstly, it is not entirely clear

what is the ground state. Refs [61] and [62] considered only some high symmetry

structures. Ref [63] did consider other isomers, but given the small energy

differences between these isomers and various spin states, that are at the limit of

accuracy of the DFT calculations, one cannot be absolutely certain about the ground

state. Even if one assumes that the cage structure with 17 lB is the ground state, the

low lying isomers and spin states, which have lower moments, can very well be

produced in the cluster source, giving a lower value of the measured moment.

Experimentally, what was measured is the effective moment, related to the true

moment on the cluster by the Langevin function, under the assumption that the

clusters behave as super-paramagnets [2],

leff ¼ l coth
NlB
kBT

� �
� kBT

NlB

� �
: ð3Þ

In this relation leff and l are the measured and the true moments per atom on an N-

atom cluster. B is the average magnetic field in the Stern-Gerlach apparatus, kB is
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the Boltzman constant and T is the cluster vibrational temperature. Any uncertainty

in the cluster temperature, which is only known indirectly, can lead to error in the

measured moment.

Smaller Rhodium Clusters

Now I discuss results, mostly theoretical, on smaller Rh clusters. Let us start with

the smallest size, the Rh2 dimer. Different theoretical methods give a wide range of

values for the equilibrium bond length (d) and the binding energy (BE) for the

dimer. Even different calculations using the same exchange-correlation functional

in DFT by different authors give different numbers. LDA calculations by Chien

et al. [64] give a bond length of 2.27 Å, and BE of 1.6 eV/atom. GGA calculations

by the same authors as also by Reddy et al. [61] give d * 2.33 Å. Chien et al. found

a BE *1.32 eV/atom, but Reddy et al. found 1.88 eV/atom. Nayak et al. [65] found

d = 2.26 Å and BE = 1.51 eV/atom, again within GGA. Configuration interaction

(CI) produced bond lengths over a wide range, d = 2.28–2.86 Å. These methods

found a wide scatter in BE also, 0.43–1.05 eV/atom [66–68]. Given this wide

spread of the results, it is comforting to note that all these calculations agreed on the

ground state spin configuration of the dimer, which is a quintet. Recently, Beltran

et al. [69] also found a quintet state using the B3LYP hybrid functional, with a bond

length of 2.28 Å, and BE of 0.7 eV/atom.

One would imagine that in such a situation, a comparison with experimental

results is the way to decide which method works best. But experiments are also

limited for such small clusters. The moment is too small to get an appreciable

deflection in a Stern-Gerlach set up, more so because Rh is a much heavier atom

than Al. Two experiments have reported values of BE for the Rh2 dimer. Gingerich

et al. [70] found BE of 1.46 eV/atom. But the values of d and the vibrational

frequency had to be assumed to get the BE. Wang et al. [71] calculated BE from the

measured value of the anharmonic vibrational constant for Rh2 in an Ar matrix. The

value they obtained is 0.7 eV/atom. Whether this is the BE of an isolated Rh2 dimer,

or the matrix affects its properties significantly, is a point to ponder.

For Rh3, different calculations using LDA, GGA, CI and B3LYP produced

ground state structures that are either equilateral (D3h) or isosceles (C2v) triangles.

The bond lengths also varied over a wide range from 2.4 Å to 2.6 Å. Rather than

giving a long list of all the results, I refer interested readers to the original papers

and the references in those: [61, 64, 65, 69, 72]. The important point is that the

calculations differ on the ground state spin configuration also. Within DFT, both the

LDA calculations in refs. [64, 72] find a quartet state. GGAs differ. Nayak et al. [65]

found a quartet while Reddy et al. [61], and Chien et al. [64] found a sextet using

GGA. In all these calculations the energy difference between the quartet and sextet

states is, however, rather small, only a few tens of meV/atom. The CI calculations

differ more widely with each other. Das et al. [73] find a C2v structure with BE of

2.72 eV/atom in a quartet state, but Dai et al. [74] find a C2v structure in a sextet

state with a much larger BE of 3.59 eV/atom.

Again, there are no direct measurements of themagnetic moment of the trimer. The

previous calculations were not compared to any experiments. Only recently a couple
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of joint theory and experimental works have been published. Beltran et al. compared

calculated anion PES for Rhn clusters up to C2v = 9 to the measurements of Bowen’s

group [69]. The one by Harding et al. [75] focuses only on the cation clusters. The

anion adiabatic and vertical detachment energies (ADE andVDE) that were calculated

in ref [69] depend on the geometry and electronic structure of both the anion and

neutral clusters. Compared with experiments, these can indirectly give information

about the structure and spin states. Calculated ADE of 1.16 eV for the trimer is in very

good agreement with the experimental value of 1.0 eV. This indicates that sextet in an

isosceles triangle structure is indeed the ground state of Rh3.

Rh4 represents a good example as to how complicated finding out the ground state

geometry and electronic state of these clusters can be. The calculations in refs [61,

64], [65] and [72] all agreed that the ground state geometry is a tetrahedron, and the

spin state is singlet. Nayak et al. [65] and Reddy et al. [61] calculated the square

planar structure also. This was found to have a quintet spin state and was marginally

higher in energy. But Bae et al. [63] found the ground state to be a bent rhombus, with

the angle of bent nearly 900, in a septet state. Ghosh et al. [76] also found the ground

state to be a septet but a tetrahedron. These authors also found a quintet square, and a

singlet tetrahedron. These two isomers were nearly degenerate, and only 0.05 eV/

atom higher than the ground state. Beltran at al’s [69] B3LYP calculations also

produced a septet bent rhombus ground state. Their calculated ADE (1.02 eV) and

VDE (1.12 eV) values for Rh4 anion match closely the second peak in the measured

PES [69]. The experimental PES is shown in Fig. 3. In fact, none of the isomers

found in this work reproduced the first peak in the PES at 0.8 eV. It is possible that

the peak at 0.8 eV is due to electron detachment from a spin excited state of the anion.

Given the small energy differences between various isomers and spin states, it is

difficult to identify the precise reason as the electronic structure calculations are

always limited by the approximations for the exchange-correlation energy.

Nevertheless, this shows the complexity of these clusters.

A number of authors have studied different size ranges for Rh clusters larger than

Rh4. Here I will only mention the most important aspects keeping in mind that

magnetism is our primary focus. ForRh5,GGAandB3LYP calculations find the sextet

and octet spin states in the square pyramid structure to be very close in energy [61, 63,

64, 69, 76]. The energy difference is only a few tens of meV. Different LDA

calculations produce either a triangular bi-pyramid quartet [72] or a square pyramid

sextet [64] as the ground state. The situation is not entirely clarified even after

comparison with experiments. For the anion, Beltran et al. [69] find a square pyramid

septet to be the lowest in energy. However, the calculated ADE and VDE values for

both the square pyramid and the triangular bi-pyramid are in reasonable agreement

with the measured values, making a unique identification difficult.

For Rh6 Reddy et al. [61] predicted a singlet octahedron to be the ground state,

though the septet was very close, only 0.01 eV/atom higher. GGA calculations of

Bae et al. [63] find a septet, but in a triangular prism geometry, to be the ground

state. The septet octahedron is only 0.01 eV/atom higher. Beltran et al’s [69]

B3LYP calculations produce a septet in an octahedron structure. Jinlong et al’s [72]

LDA calculations produce an octahedron singlet ground state, and the septet is

0.07 eV/atom higher. Such close energies for two very different spin states again
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illustrates the complexity of this problem. But the B3LYP ADE and VDE values are

in very good agreement with the experiments, giving confidence about the septet

octahedron ground state.

The ground state multiplicity of Rh7 varied from 10 to 14 in different

calculations [61, 63, 69, 72]. B3LYP calculations [69] produced a pentagonal bi-

pyramid of multiplicity 14 as the ground state. But the calculated ADE (2.33 eV)
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and VDE (2.74 eV) values for this structure do not match the experiments (2.1 and

2.2 eV, respectively) very well. Curiously, the calculated values from the capped

prism structure (multiplicity of 12 and 13 for the neutral and anion), ADE 2.07 eV

and VDE 2.10 eV, match the experiments much better, although this isomer is

*0.3 eV higher for the neutral, and*0.5 eV higher for the anion. It is possible that

the higher energy isomer was produced in the cluster source due to kinetic reasons.

For clusters larger than Rh7, Reddy et al. [61] did not report the multiplicities

directly. Rather, they plotted the magnetic moment per atom for the ground states

with increasing size. Reading their plot, it seems that the ground states they found

had multiplicities 9, 10, 3, 4, and 9 for Rh8 to Rh12. Bae et al. [63] found a cube with

multiplicity 13 as the ground state for Rh8. A low coordination structure like a cube

turning out to be the ground state is quite surprising. Jinlong et al’s [72] LDA

calculations produced a tetrahedron with multiplicity 11. Beltran et al. [69] found a

bi-capped octahedron with multiplicity 13 as the ground state. Calculated ADE

(2.17 eV) and VDE (2.20 eV) for this structure match the experimental results (2.1

eV and 2.3 eV, respectively) very closely. Therefore, one can be confident that the

ground state for the neutral is indeed a bi-capped octahedron of multiplicity 13. Bae

et al. [63] found a capped cube of multiplicity 14 for Rh9, whereas Beltran et al. [69]

found a capped square anti-prism of multiplicity 18. With this structure, the

calculated VDE (2.42 eV) matches the experimental result (2.4 eV) almost exactly.

Rh10 turned out to have a triplet ground state in Reddy et al’s [61] GGA

calculations. Jinlong et al. [72], in LDA, obtained a septet ground state which was

nearly degenerate with a singlet. Bae et al. [63] found a ground state multiplicity of

15. Reddy et al. [61] found a quartet ground state for Rh11, as already mentioned.

But Bae et al. [63] found it to have a multiplicity of 16. Rh12 turned out to have a

ground state of multiplicity 13 in Bae et al’s [63] GGA calculations. But Jinlong

et al’s [72] LDA calculations found the ground state to have multiplicity 9. The

singlet, and a state of multiplicity 15 were within a few tens of meV/atom of the

ground state.

One can directly compare the calculated moments with the measurements of Cox

et al. [60] for Rh9 to Rh12. The measured moments are reproduced in Table 1.

Reddy et al. showed [61] that except for Rh9 and Rh12, their calculated moments do

not match the measured moments. For Rh9 none of the other calculations match the

experiments. For Rh10, Jinlong et al’s [72] LDA results (multiplicity 7) match the

experiments within error bars. Reddy et al’s calculated moment is too small, while

that obtained by Bae et al. is too large. For Rh11 neither Reddy et al’s nor Bae et al’s

calculations match the experiments. Reddy et al’s GGA and Jinglong et al’s LDA

Table 1 Measured magnetic

moment per atom (in lB) for
Rh9-Rh12 from Ref. [60]

Cluster Moment/atom

Rh9 0:8� 0:2

Rh10 0:8� 0:2

Rh11 0:8� 0:2

Rh12 0:59� 0:12

Rh13 0:48� 0:13
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calculations match the experiments well for Rh12. Bae et al’s calculated multiplicity

is too large.

The above discussion makes it clear that it is difficult to unequivocally identify

the ground state of Rh clusters in many cases. There are several reasons for this. At

each size, there are different structural and spin isomers very close in energy.

Different theoretical methods often produce different energy orderings of these

states. Sometimes, theoretical results from different isomers match experimental

data for different physical quantities. For example, for Rh9, ADE and VDE values

for a capped square anti-prism structure [69] calculated with B3LYP match the

experiments almost exactly. But the ground state multiplicity (18) does not match

the results of Stern-Gerlach experiments. On the other hand, Reddy et al’s [61]

calculated moment matches experiments, though the structure they found was very

different. For Rh11, none of the calculations matched the measured magnetic

moment. Interpretation of the Stern-Gerlach experiments has its complications as

well. Apart from the difficulty of knowing the exact vibrational temperature, close

energy ordering of various isomers can lead to production of not just the ground

state, but other clusters in the beam. Since the moment is estimated from the

deflection of the cluster beam, which in turn depends on the moment on the clusters,

presence of clusters with different moments in the beam leads to large error bars in

the experiment [60], making experimental determination of the ground state

moment difficult. Spin-orbit coupling can be significant for the 4d elements. But the

moment on the clusters are estimated using Eqs. 2 and 3 assuming a super-

paramagnetic behavior of the spins, and neglecting the orbital moment altogether.

Summary

I conclude this review with the following note. Experimentally, except for the very

small Al clusters studied by Cox et al. [36], all other simple metal clusters are found

to have the lowest possible spin in their ground states. Even in the Al clusters, the

exact value of the spin could not be determined experimentally. Among the

theoretical calculations, Rao and Jena’s [40] results largely agree with the

experiments. But those of Akola et al. [44] do not. Most importantly, one cannot

say for sure whether Hund’s rule is responsible for the magnetic ground states in

these clusters because firstly, the valence of Al atoms in such small clusters is still a

debated issue, and secondly, whether electrons in these clusters follow the shell

model at all is not clear. Without clarity on these two points, one does not know

what the highest possible spin state is. Alkali clusters present an interesting

situation. Theoretical calculations suggest that one may have magnetic ground states

in these clusters although the bulk is an ideal example of a PM metal. Measurements

may pose challenges, though. For example, assuming that Cs clusters behave as

super-paramagnets, a quick estimate shows that deflection of a Cs13 cluster in a

typical experimental set up (B = 1.2 T, vibrational temperature = 25 K) will be

*0.15 mm, which is at the limit of experimental resolution [77].

As for magnetism in small Rh clusters, the technical difficulties notwithstanding,

it is conclusively found, both in theory and experiments, that these are magnetic,

Magnetism in Simple Metal and 4d Transition Metal Clusters 813

123



although the bulk metal is non-magnetic. This is an effect of low coordination at

small sizes. As the cluster size increases, the per atom moment decreases

rapidly [60]. By Rh60, the moment is undetectable within experimental resolution.

Discovery of large magnetic moments on clusters of non-magnetic metals have

definitely given us new insights into the phenomenon of magnetism.
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