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Abstract
Purpose Most individuals with antibody deficiency (hypogammaglobulinemia) need immunoglobulin replacement therapy 
(IgG-RT) from healthy plasma donors to stay clear of infections. However, a small subset of hypogammaglobulinemic patients 
do not require this substitution therapy. We set out to investigate this clinical conundrum by asking whether the peripheral 
B cell receptor repertoires differ between antibody-deficient patients who do and do not need IgG-RT.
Methods We sequenced and analyzed IgG and IgM heavy chain B cell receptor repertoires from peripheral blood mononu-
clear cells (PBMCs) isolated from patients with low serum IgG concentrations who did or did not require IgG-RT.
Results Compared to the patients who did not need IgG-RT, those who needed IgG-RT had higher numbers of IgG antibody 
clones, higher IgM diversity, and less oligoclonal IgG and IgM repertoires. The patient cohorts had different heavy chain 
variable gene usage, and the patients who needed IgG-RT had elevated frequencies of IgG clones with higher germline 
identity (i.e., fewer somatic hypermutations).
Conclusion Antibody-deficient patients with infection susceptibility who needed IgG-RT had more diverse peripheral anti-
body repertoires that were less diverged from germline and thus may not be as optimal for targeting pathogens, possibly 
contributing to infection susceptibility.

Keywords Antibody repertoire sequencing · hypogammaglobulinemia · infection susceptibility

Introduction

Defense against infections is orchestrated by a complex 
immune system where every component has a task, and the 
quantitative or qualitative defect of a single component often Yoong Wearn Lim and Neftali Jose Ramirez contributed equally to 
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contributes to a clinically apparent immunodeficiency [1]. 
The most common form of inborn errors of immunity/pri-
mary immunodeficiency is antibody deficiencies, a phenotype 
which is mostly characterized by recurrent upper respiratory 
tract infections. Antibody deficiencies include agammaglobu-
linemia (no antibodies), hypogammaglobulinemia (not enough 
antibodies), IgG subclass deficiencies, and specific anti-PnPS 
(pneumococcal polysaccharide) deficiency, the latter present-
ing with recurrent pneumococcal infections [2]. The combi-
nation of serum IgG levels and infections’ susceptibility are 
used to make the decision for or against providing IgG-RT, 
as the immunoglobulin replacement preparations do not con-
tain significant amounts of IgM or IgA. Hence, IgG-RT is 
not indicated for the treatment of selective IgA deficiency [3]. 
The reduction of an IgG titer to 4 g/L has been shown to be 
associated with an increased risk of infection [4], though some 
patients with almost normal IgG levels may still present with 
pathological infection susceptibility. Conversely, some people 
with IgG levels of <4 g/L show no apparent infection suscep-
tibility, potentially because their immune system can respond 
to each challenge with high-quality acute naïve and memory 
IgG responses [5].

We approached this clinical conundrum with the question 
whether the composition of the peripheral B cell receptor 
sequences and number/diversity of B cell clones may provide 
an indication of why some patients with severe hypogam-
maglobulinemia have no infection susceptibility and thus do 
not need IgG-RT, while most of the patients with antibody 
deficiency need IgG-RT to stay healthy. We sequenced and 
analyzed the IgG and IgM heavy chain B cell receptor reper-
toires from PBMCs isolated from cohorts of patients with low 
serum IgG concentrations who did or did not require IgG-RT. 
We found that patients who needed IgG-RT had more diverse 
IgG and IgM antibody repertoires, and their IgG sequences 
were significantly more similar to germline. This suggests that, 
although patients with low serum IgG concentrations who 
required IgG-RT had higher diversity repertoires, their anti-
body clones were less diverged from germline and thus might 
not be as optimal for targeting pathogens, causing infection 
susceptibility. Conversely, those with low serum IgG concen-
trations who did not need IgG-RT had less diverse, yet more 
matured, antibody sequences, which might be better suited to 
targeting pathogens. The identification of the latter sequences 
may lead to the production of synthetic immunoglobulin mol-
ecules well suited to protect recipients from infections.

Methods

Sample Collection

We identified patients from the adult outpatient immunode-
ficiency clinic of the University of Freiburg with decreased 

levels of serum IgG (<4 g/L) and remaining peripheral B 
cells of >40/μL. In the case of patients with the need for 
IgG-RT (those who had recurrent infections of the respira-
tory tract, n = 15), hypogammaglobulinemia was evaluated 
using retrospective data from the time of diagnosis (before 
starting regular IgG-RT). Hypogammaglobulinemia patients 
that did not have recurrent respiratory tract infections (n = 
10) were not prescribed IgG-RT. The patient’s infection 
history, other non-infectious diagnoses, and their ability to 
respond to vaccines are provided in Table S1.

The participating individuals donated blood samples 
after signing an informed written consent. PBMCs from the 
donated blood samples were isolated using Ficoll/Pancoll 
density gradient centrifugation under sterile conditions, fol-
lowing standard protocols. The harvested PBMCs (9–17 × 
 106 cells/mL) in freezing medium (heat-inactivated 90% fetal 
bovine serum (FBS) + 10% dimethyl sulfoxide (DMSO)) 
were stored in liquid nitrogen until further processing.

Flow Cytometry

Red blood cells from 500 μL whole blood were lysed for 10 
min at 4°C with ammonium chloride, washed twice with 
phosphate-buffered saline (PBS) + 2% FBS, and stained 
with anti-CD19 (APC-Cy7, HIB19, Biolegend), anti-CD27 
(BV421, M-T271, Biolegend), anti-IgD (PE, IA6-2, Biole-
gend), anti-IgA (FITC, goat IgG, Southern Biotech), and 
anti-IgG (AF700, G18-145, BD Biosciences) for 20 min at 
room temperature. Subsequent fixation (Optilyse B, Beck-
man Coulter) for 20 min at room temperature was followed 
by another washing step with PBS + 2% FBS. Stained cells 
were measured with a Navios Flow Cytometer (Beckman-
Coulter) and analyzed with Kaluza Analysis Software 
(Beckman-Coulter).

Antibody Repertoire Sequencing

The harvested PBMCs were thawed into media (RPMI 
+ 10% FBS) and counted on a Cellometer K2 (Nexce-
lom). The cells were pelleted by centrifugation and 
RNA was extracted using a NucleoSpin RNA Plus kit 
(Macherey-Nagel) according to manufacturer’s instruc-
tions. To amplify heavy chain variable regions for deep 
sequencing, tailed-end RT-PCR was performed on the 
extracted RNA. At the 5’ end, a pool of variable region 
primers with Illumina adapters was used, and at the 3’ 
end, a constant region primer (for IgG or IgM) with a 
sample-specific index sequence and Illumina adapter was 
used (Table S2); IgG and IgM sequences were amplified 
in separate reactions [6]. The PCR product was run on 
an agarose gel, extracted, purified, and quantified using 
a KAPA quantitative PCR Illumina Library Quantifica-
tion Kit (1069, Roche). The libraries were sequenced as 
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previously described [7] on a MiSeq (Illumina) at a library 
concentration of 9 pM with a 255-cycle forward read and 
a 255-cycle reverse read (see Table S2 for sequencing 
primers). Sequencing data are available in the Short Read 
Archive under project identifier PRJNA876301.

Antibody Sequence Analysis

We sequenced the antibody repertoire libraries to an aver-
age of 28,901 reads (range 13,064–45,080 reads). Sequence 
analysis was performed using our previously reported bioin-
formatics pipeline [7–9]. Briefly, we calculated the expected 
number of errors (E) for a read from its Phred scores and 
discarded reads with E >2 [10]. After error filtering, we 
randomly sampled up to 15,000 reads from each sample for 
further analysis. We verified that our findings were consist-
ent across multiple rounds of random read sampling (data 
not shown). We processed IMGT [11] immunoglobulin 
sequences to generate position-specific sequence matrices 
(PSSMs) for each framework/CDR junction. We used these 
PSSMs to identify framework/CDR junctions for each of 
the nucleotide sequences. Python scripts were then used 
to translate the sequences. We required reads to have a 
valid predicted CDR3 sequence. We then defined antibody 
“clones” conservatively, where unique sequences were com-
bined if they had 1 amino acid difference for 5–6 amino acid 
long CDR3H, or if they had 1–2 amino acid differences for 
>6 amino acid long CDR3H. Only clones with at least two 
sequencing reads were included in the analysis.

We ran UBLAST [12] using the nucleotide sequences as 
queries and V and J gene sequences from the IMGT database 
as the reference sequences. The UBLAST alignment with 
the lowest E-value was used to assign V and J gene families 
and compute percent identity to germline [7–9]. The IgG 
sample for patient CVID-1712-01 had low sequence quality 
and was excluded from analysis.

Antibody Diversity Index

Antibody diversity index was calculated using the diversity 
function of the tcR package (version 2.3.2) [13] in R ver-
sion 4.1.2.

Correlation Analysis

The data used for the correlation analysis are in Table S1. 
Pearson correlation analysis was performed using the cor 
function of the corrplot package (version 0.92) [14] using 
the “pairwise.complete.obs” option, in R version 4.1.2. Cor-
relations with P ≤ 0.05 were considered significant.

Variable Gene Usage and Mutation Frequency

To identify IGH V gene identity, sequencing fasta files 
were mapped to human V gene reference sequences 
(release 202243-1, 24 October 2022) from IMGT [11], 
using USEARCH version v8.1.1916M_i86linux64 
(options: -usearch_local -mismatch -1 -id 0.5 -evalue 1e-3) 
[12]. The IMGT antibody numbering system was used 
to identify CDR and framework regions along V genes 
(which was also used to determine CDR3H length). For the 
principal component analysis (PCA), we added a pseudo 
count of 1 to all V gene frequencies and log2 transformed 
them. PCA was performed using the prcomp command in 
R. Wilcoxon rank sum tests were used to compare V gene 
usage frequencies between donors who did and did not 
need IgG-RT. P-values were adjusted for the number of V 
genes tested using the Benjamini-Hochberg method. The 
number of mismatches along V genes was tallied using 
custom Perl scripts and visualized using ggplot2 [15] in 
R. The first 21 nucleotides (7 amino acids) of V genes 
were the PCR primer binding sites for preparing the anti-
body sequencing libraries. Any mutations in this region 
could not be accurately measured and thus the region was 
excluded from the V gene mutation frequency analysis.

Results

Patient Cohorts

We recruited 25 patients with low IgG serum concentra-
tions of which 15 needed IgG-RT (male, 3; female, 12), 
and 10 did not need IgG-RT (male, 8; female, 2), based 
on their susceptibility to infection (Table S1). On average, 
the patients who needed IgG-RT had 1.86 g/L IgG prior 
to IgG-RT (standard deviation, SD = 1.31), 0.24 g/L IgM 
(SD = 0.15), and 0.10 g/L IgA (SD = 0.072) in serum, 
while the patients who did not need IgG-RT had 2.69 g/L 
IgG (SD = 1.11), 0.39 g/L IgM (SD = 0.31), and 0.71 g/L 
IgA (SD = 0.64) in serum (Fig. 1a); the serum IgA titers 
were significantly different between the two groups (P = 
0.0019). The patients who needed IgG-RT had a compa-
rable amount of  CD19+ B cells (mean = 221.3 cells/μL, 
SD = 146.1) compared to the patients without the need of 
IgG-RT (208.9 cells/μL, SD = 279.5; P = 0.24). Vaccine 
responses against various pathogens (e.g., tetanus, diph-
theria, and pneumococcal polysaccharide) were observed 
for most patients that did not need IgG-RT compared to 
patients who did need IgG-RT. Furthermore, autoimmune 
manifestations, chronic infections, and other complica-
tions were more common in patients who needed IgG-RT 
(Table S1).
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Antibody Repertoire Sequencing

We performed IgG and IgM antibody repertoire sequenc-
ing of the heavy chain immunoglobulin for both patient 
cohorts from isolated PBMCs (IgA repertoires could not 
be investigated in this study due to low or absent IgA-
memory B cell counts in most of the patients in need of 
IgG-RT; Fig. 1a, Table S1). We defined antibody “clones” 
conservatively, where unique sequences were combined 
if they had one amino acid difference within 5–6 amino 

acid long CDR3H (complementarity-determining region 3 
heavy chain), or if they had one to two amino acid differ-
ences for >6 amino acid long CDR3H. Only clones with 
at least two sequencing reads were included in the analy-
sis. Interestingly, the patients who needed IgG-RT had a 
significantly higher number of IgG clones (mean = 1310 
clones) than the patients who did not need IgG-RT (mean 
= 483 clones; P = 0.0015) (Fig. 1b). On the other hand, 
there was no significant difference in the number of IgM 
clones between those who did (mean = 2760 clones) and 
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Fig. 1  IgG and IgM antibody repertoire sequencing. a Antibody titer 
for IgG (left panel), IgM (middle panel), and IgA (right panel), for 
the patients who did and did not need IgG-RT. b Number of IgG 
and IgM antibody clones. c IgG and IgM antibody diversity indices. 
d Cumulative frequency of the top 20 IgG clones (each patient is a 
different color). The y-axis shows cumulative frequency, measured 

as percent of the total repertoire, while the x-axis shows the top 20 
clones, ordered from the most to the least abundant. The right and left 
panels indicate patients who did and did not need IgG-RT, respec-
tively. e Cumulative frequency of the top 20 IgM clones (each patient 
is a different color). f Heavy chain CDR3 amino acid length distribu-
tion, for IgG (left panel) and IgM (right panel)
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those who did not need IgG-RT (mean = 2733 clones; P 
= 0.96).

To further examine the IgG and IgM antibody repertoires, 
we measured the true diversity index, which considers the 
abundance of individual antibody clones in addition to the 
number of clones. The true diversity of an antibody reper-
toire X refers to the effective richness of that population: 
the number of equally common antibody clones that would 
be required to produce a repertoire with the same overall 
diversity as X. This value will increase with the number of 
antibody clones in the repertoire, as well as with the even-
ness with which these clones are distributed [16]. Relative 
to those who did not need IgG-RT, the patients who needed 
IgG-RT had significantly higher IgM diversity index (P = 
8.5 ×  10−5) (Fig. 1c).

Among the donors who did not need IgG-RT, one donor 
had an IgG titer of 4.18 g/L and an additional donor had an 
IgM titer of 1.2 g/L (Fig. 1a, Table S1). To ensure that these 
donors with higher antibody titer were not driving the dif-
ferences in antibody clone counts and diversity, we removed 
these donors from the datasets (Fig. S1a) and repeated the 
above analyses. We observed the same differences, where 
the donors who needed IgG-RT had significantly higher 
number of IgG clones (P= 0.0016; Fig. S1b) and a higher 
IgM diversity index (P= 4.1 ×  10−6; Fig. S1c).

Visualizations of the frequencies of the top 20 antibody 
clones showed that patients who needed IgG-RT tended to 
have less oligoclonal IgG and IgM repertoires (Fig. 1d, e). 
On average, the top 20 IgG clones made up 19.5% and 42.1% 
of the total repertoire for the patients who did and the ones 
who did not need IgG-RT, respectively, indicating lower IgG 
oligoclonality for the former cohort (P = 0.0015). Similarly, 
the top 20 IgM clones accounted for on average of 2.65% 
and 7.06% of the repertoire for the patients who did and did 
not need IgG-RT, respectively, indicating lower IgM oligo-
clonality for the former cohort (P = 0.0014).

We examined the distribution of the CDR3H amino acid 
sequence lengths, another feature that may provide insight 
into the composition of the antibody repertoire. However, 
both patient cohorts had normally distributed heavy chain 
CDR3 lengths with a median of 15 amino acids, for both 
IgG and IgM (Fig. 1f).

Together, these data show that the patients who needed 
IgG-RT had more IgG clones, a higher IgM diversity index, 
and lower IgG and IgM oligoclonality, consistent with more 
diverse antibody repertoires.

Correlations Between Antibody Repertoire 
and Immune Features

Next, we set out to understand the interplay between differ-
ent features of the antibody repertoires and various immune 
parameters. For both patient cohorts, we measured the 

frequency of different B cell subtypes by flow cytometry. 
Then, we performed an all-by-all correlation analysis of anti-
body titer, clone count, diversity, and abundance of different 
B cell subtypes for the patients who did and did not need 
IgG-RT (Figs. 2, S2; Table S1).

For patients who did not need IgG-RT, IgG diversity 
positively correlated with the frequency of CD19+ B cells 
(Pearson correlation coefficient, r = 0.91, P= 0.00028) and 
IgD+ CD27+ B cells (r = 0.98, P = 1.34 ×  10−6) (Fig. 2a, 
c, d). In the same patient cohort, IgM diversity also posi-
tively correlated with the frequency of CD19+ B cells (r 
= 0.76, P = 0.011) and IgD+ CD27+ B cells (r = 0.8, P = 
0.0051) (Fig. 2a, e, f). IgG diversity negatively correlated 
with the frequency of IgD+ CD27-naïve B cells (r =−0.82, 
P = 0.0039) (Fig. 2a, g). These correlations of IgG and IgM 
diversity with B cell frequencies were not observed in the 
patients who needed IgG-RT (Fig. 2b).

For patients who needed IgG-RT, the IgG titer corre-
lated with the number of IgM clones (r = 0.64, P = 0.011) 
(Fig. 2b, h). The IgG titer also correlated with the frequen-
cies of IgA+ CD27+ B cells (r = 0.75, P = 0.013) and IgD- 
CD27+ memory B cells (r = 0.69, P = 0.0048) (Fig. 2b, i, 
j). These correlations were not observed in the patients who 
did not need IgG-RT (Fig. 2a).

V and J Gene Diversity

V(D)J (variable, diversity, joining) recombination, which 
assembles antibody gene segments during B cell develop-
ment, contributes to the vast combinatorial diversity of anti-
bodies [17]. We evaluated whether V(D)J diversity differs 
between patients who did and did not need IgG-RT. For IgG 
and IgM, both patient cohorts displayed diverse V and J gene 
usage (Figs. 3a, b, S3a, S3b). Interestingly, principal compo-
nent analysis (PCA) of the IgG V gene frequencies revealed 
that the patients clustered based on their need for IgG-RT. 
Principal component 1 (PC1), which explained 15.55% of 
the variance in V gene usage frequencies, separated the 
patients who did and did not need IgG-RT (Fig. S3c). PCA 
of IgM V gene usage frequencies showed clustering of the 
patient cohorts to a lesser extent (Fig. S3d). Next, we com-
pared V gene frequencies between patients who did and did 
not need IgG-RT. Compared to the patients who did not need 
IgG-RT, those who needed IgG-RT had fewer IgG antibody 
clones with the IGHV4-30-2 and IGHV4-30-4 heavy chain 
V genes (Benjamini-Hochberg adjusted P-values = 0.04) 
(Fig. 3c). The patients who needed IgG-RT also had elevated 
numbers of antibody clones with the IGHV3-23 and IGHV4-
34 V genes (adjusted P = 0.04) (Fig. 3c). While the patients 
who did not need IgG-RT had on average 4.53% of IGHV4-
34 clones, consistent with the gene’s 3–9% prevalence in 
adult B lymphocytes [18], the patients who needed IgG-
RT had on average 11.27% of IGHV4-34 antibody clones 
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Fig. 2  Correlations between antibody repertoire and immune fea-
tures. a, b All-by-all correlation matrix of various antibody features 
and immune cell frequencies for patients who did not (a) and did 
(b) need IgG-RT. The numbers indicate Pearson correlation coef-
ficients. Blue and red shadings indicate positive and negative corre-
lation, respectively, as indicated in the legend in b. Only significant 

(P ≤ 0.05) correlations are shown. c–j Scatter plots showing several 
significant correlations from a and b, for patients who did (right pan-
els) and did not (left panels) need IgG-RT. The blue lines are linear 
regression lines while the gray shadings show the 95% confidence 
intervals around the fitted lines. P-values are indicated in black (P > 
0.05) or red (P ≤ 0.05)
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Fig. 3  Antibody heavy chain V and J gene diversity. a Heatmaps 
showing the abundance of antibody clones with specific heavy chain 
V genes (y-axis) for the patients (x-axis) who did (right panel) and 
did not need IgG-RT (left panel), for IgG. The color indicates clone 
frequency per patient, as indicated by the legend. b Heatmaps show-
ing heavy chain V gene usage for IgM. c IgG heavy chain V genes 
that are present at different frequencies between the patients who did 
and did not need IgG-RT. y-axis represents percent antibody clone 
with a given V gene. P-values are adjusted using the Benjamini-
Hochberg method for multiple testing correction. d IgM heavy chain 

V gene usage difference between patient who did and did not need 
IgG-RT. e Boxplots showing percent nucleotide identity of V and J 
genes to germline sequences for all IgG clones. f Boxplots showing 
percent amino acid identity of V and J genes to germline sequences 
for all IgM clones. g V gene nucleotide mutation frequency in dif-
ferent regions, for IgG (left panel) and IgM (right panel). FR, frame-
work; CDR, complementarity determining region. ns (not signifi-
cant): P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 
0.0001
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(Fig. 3c). Notably, antibodies with the IGHV4-34 V gene 
have been shown to be self-reactive and are more common 
in naïve B cell repertoire than in memory B cells [19–21]. 
We also examined differences in IgM V gene usage. The 
patients who needed IgG-RT had fewer IgM clones with the 
IGHV4-31 V gene (adjusted P = 0.04) (Fig. 3d). Finally, we 
examined J gene usage frequencies and did not observe any 
significant difference between the patient cohorts for either 
IgG or IgM.

Somatic hypermutation, the process in which point muta-
tions accumulate across the antibody V(D)J regions, further 
contributes to antibody diversity [22]. Somatic hypermuta-
tion is also an important means for generating high affinity 
antibodies. We measured the nucleotide percent identity of 
the antibody heavy chain V and J gene to their respective 
germline sequences. Interestingly, compared to patients who 
did not need IgG-RT, those who needed IgG-RT had signifi-
cantly higher IgG V and J gene percent germline identity 
(P ≤ 0.0001; Fig. 3e). For IgM, although the V gene per-
cent germline identity was significantly lower for those who 
needed IgG-RT (P ≤ 0.0001; Fig. 3f), the average difference 
was minor (98.15% for no IgG-RT versus 98.39% for need 
IgG-RT). The differences in IgG V and J gene percent ger-
mline identities remained significant when the donors with 
the higher IgG/IgM titer were removed from the dataset, 
suggesting that the observation was not driven by the highest 
titer donors (Figs. S4a, S4b). To further investigate the dif-
ference in V gene mutations between the two patient cohorts, 
we measured mutation frequencies in different regions along 
V genes, including the framework regions (FR1, FR2, FR3) 
and the complementarity determining regions (CDR1, 
CDR2). The patient cohort who needed IgG-RT had sig-
nificantly (P ≤ 0.05) lower mutation frequencies across all 
V gene regions, at both the nucleotide level (Figs. 3g, S4c) 
and the deduced protein level (Fig. S4d, S4e), for IgG but 
not for IgM. Visualizations of mutation frequencies along 
the most common V genes further illustrated the lower IgG 
V gene mutation rates in patients who needed IgG-RT (Figs. 
S5, S6).

Finally, we measured the frequencies of somatic hyper-
mutation along V gene IGHV4-34 that had elevated usage in 
IgG for donors who needed IgG-RT. Compared to patients 
who did not need IgG-RT, patients who needed IgG-RT 
had lower somatic hypermutations along IGHV4-34 (Fig. 
S7a). Previous studies indicated that the self-reactivity of 
IGHV4-34 antibodies is mediated by a hydrophobic patch in 
the framework 1 region, and that somatic hypermutation in 
the region can remove self-reactivity [20, 23, 24]. However, 
there was no significant difference in mutation frequency in 
the hydrophobic patch (AVY residues) when comparing the 
two cohorts (Fig. S7b).

Overall, these data show that IgG hypogammaglobuline-
mia patients who did and did not need IgG-RT had antibody 

repertoires with different V gene diversities. Patients who 
needed IgG-RT displayed higher usage of a naïve antibody 
repertoire-associated V gene and had less somatic hypermu-
tation in their IgG clones, possibly suggesting less mature 
antibody repertoires leaving these patients more susceptible 
to infection.

Discussion

The decision to treat hypogammaglobinemia patients with 
IgG-RT can be challenging, because both IgG levels and 
infection susceptibility vary among patients. IgG levels do 
not always predict a patient’s infection susceptibility, and 
in some cases, IgG-RT is recommended for patients with 
asymptomatic hypogammaglobulinemia because of the 
potential risk of severe infections [25]. Furthermore, both 
symptomatic and asymptomatic hypogammaglobinemia 
patients can respond well to tetanus vaccines, while diphthe-
ria response is often impaired. Indeed, most patients in this 
study had a positive response to tetanus vaccine, before IgG-
RT started for those who need it, while many did not respond 
to diphtheria (Table S1). In addition, 8 of 9 patients who did 
not need IgG-RT that were vaccinated with pneumococcal 
polysaccharides had a positive response, while only 1 of 4 
patients who needed IgG-RT responded.

Hypogammaglobulinemia patients who did and did not 
need IgG-RT had multiple differences in their peripheral B 
cell receptor repertoires. Patients who needed IgG-RT had 
more IgG antibody clones, a higher IgM diversity index, and 
less oligoclonal IgG and IgM repertoires. Their IgG clones 
displayed distinct heavy chain V gene usage, had higher fre-
quencies of sequences with a naïve B cell repertoire-associ-
ated V gene, and their IgG clones had less somatic hypermu-
tation and looked more similar to germline sequences. The 
lower level of clonal antibody expansion and somatic hyper-
mutation suggests that these infection susceptible patients 
have relatively immature B cell receptor repertoires that may 
be less effective against pathogens. A reduced frequency 
of somatic hypermutation was found in the B cell receptor 
repertoire of common variable immunodeficiency (CVID) 
patients as well, further suggesting impaired repertoire spec-
ification in the germinal centers [26, 27]. Interestingly, the 
patients in need of IgG-RT showed increased IGHV4-34 
and IGHV3-23 gene usage compared to the patients without 
the need of IgG-RT. The IGHV4-34 increase was observed 
in CD19-deficient patients, patients with Wiskott–Aldrich 
syndrome (WAS), and RAG deficiency patients, indicating 
its role in self-reactive autoantibodies. Tipton et al. summa-
rized reports of increased IGHV4-34 gene usage in systemic 
lupus erythematosus patients, concluding another hallmark 
in the repertoire of the disease, defective tolerance, and 
9G4-idiotype autoantibodies [28]. The IGHV3-23 gene has 
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been shown to be associated with the exposure to self and/
or environmental antigens [29] and is relatively abundant in 
humans [30, 31]. IGHV3-23 gene usage was also reported 
in hairy cell leukemia [32], diffuse large B-cell lymphoma 
[33], after the immunization of malaria-naïve individuals 
with PfSPZ-CVac [34], HIV patients [35], and in CD21(low) 
B cells from WAS patients [36].

Conversely, hypogammaglobulinemia patients who did 
not need IgG-RT had relatively expanded and antigen-expe-
rienced B cell repertoires that appear to be adapted to better 
overcome infection susceptibility. These patients revealed 
elevated gene usage of IGHV4-30-2, IGHV4-30-4, and 
IGHV4-31 compared to the patients in need of IgG-RT. An 
increase of IGHV4-30-2 and -4 has been reported in WAS 
patients as well, demonstrating abnormalities of immune 
repertoire in both cohorts [37]. Another study on plasmab-
lasts from patients with multiple sclerosis revealed a positive 
and negative employment of IGHV4-30 gene usage, suggest-
ing other factors influencing autoreactive property, such as 
CDR3 length and charge, light chain pairing, or mutation 
accumulation [38]. Two patients with primary cutaneous 
follicle center lymphoma (FCL) showed increase usage of 
the IGVH4-30 gene, indicating the relevance of pathological 
antigen epitopes in cutaneous lymphomagenesis [39]. Naïve 
and memory B cells from WAS patients showed increased 
IGVH4-31 gene usage [36], observed in our patients with 
no need for IgG-RT. The Simon et al. study reported an 
age-dependent deterioration of B-cell differentiation pos-
sibly leading to an increased infection susceptibility and 
autoimmune manifestations. Similar observations have been 
reported in nodal marginal zone lymphomas [40] and cer-
ebrospinal fluid B cells of patients with multiple sclerosis 
[41, 42]. Furthermore, the synovium of patients with rheu-
matoid arthritis both with and without anti-glucose-6-phos-
phate isomerase antibodies showed frequent IGVH4-31 gene 
usage [43]. And interestingly, the two patients in this study 
with possible secondary hypogammaglobulinemia who did 
not need IgG-RT showed no differences compared to the 
primary hypogammaglobulinemia patients that did not need 
IgG-RT.

An important caveat to our study is that we profiled the 
antibody receptor repertoires derived from peripheral B 
cells that represented only a snapshot of the adaptive B cell 
response from the time of blood collection. Future studies 
should include the analysis of the repertoire profiles from 
bone marrow-derived plasma B cells and across longitudi-
nal time points, which may provide a more comprehensive 
analysis of the adaptive immune response in these patients. 
Furthermore, because IgG-RT has direct and indirect effects 
on B cell development, by binding to surface receptors or 
intracellular molecules and by the influence of cytokines, 
survival factors, and other immune cells [44], it is possi-
ble that the IgG-RT treatment itself could be responsible 

for some of the B cell repertoire changes observed between 
the two patient cohorts. Nevertheless, our study shows that 
peripheral B cell receptor sequencing may be utilized in the 
decision-making process for or against the use of IgG-RT in 
the setting of hypogammaglobulinemia.
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