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Abstract
Down syndrome fits an immunophenotype of combined immunodeficiency with immunodysregulation, manifesting with in-
creased susceptibility to infections, autoimmunity, autoinflammatory diseases, and hematologic malignancies. Qualitative and
quantitative alterations in innate and adaptive immunity are found in most individuals with Down syndrome. However, there is
substantial heterogeneity and no correlation between immunophenotype and clinical presentation. Previously, it was thought that
the immunological changes in Down syndrome were caused by precocious aging. We emphasize in this review that the immune
system in Down syndrome is intrinsically different from the very beginning. The overexpression of specific genes located on
chromosome 21 contributes to immunodeficiency and immunodysregulation, but gene expression differs between genes located
on chromosome 21 and depends on tissue and cell type. In addition, trisomy 21 results in gene dysregulation of the whole
genome, reflecting the complex nature of this syndrome in comparison to well-known inborn errors of immunity that result from
monogenic germline mutations. In this review, we provide an updated overview focusing on inborn errors of adaptive immunity
in Down syndrome.
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Introduction

Down syndrome (trisomy 21; OMIM 190685) is a multi-
system condition associated with mental and motor develop-
mental impairment, facial dysmorphia, and congenital
malformations—in particular congenital heart disease.
Individuals with Down syndrome have an increased suscepti-
bility to develop infections, hematologic malignancies, auto-
immunity, and autoinflammatory diseases, which we have
reviewed recently [1].

Upper and lower respiratory tract infections are frequently
reported by parents of children with Down syndrome, but
prospective population-based studies to quantify the burden
of disease are currently lacking [2, 3]. What we do know is
that both viral and bacterial respiratory infections lead to more
health care utilization in Down syndrome [4], as well as higher
morbidity and mortality. For example, respiratory syncytial
virus (RSV) infections lead to more hospital admissions (odds
ratio [OR] 8.69, confidence interval [CI] 7.33–10.30),
prolonged hospital stays (4.73 days longer, CI 2.12–7.33),
and a higher requirement of respiratory support (oxygen re-
quirement: OR 6.53 [CI: 2.22–19.19]; mechanical ventilation:
OR 4.56 [CI 2.17–9.58]) [5]. Although infections seem less
prevalent in adults with Down syndrome, they still contribute
to increased hospital admission rates and remain the most
important cause of mortality in Down syndrome in all age
groups (standardized mortality ratio 5.58–53.8) [1, 6–8].
These infections and their consequences can at least in part
be explained by the numerous anatomical and physiological
alterations found in Down syndrome [1].

Hematologic malignancies such as acute lymphocytic leu-
kemia (ALL) and acute myeloid leukemia (AML) are approx-
imately 20-fold more frequent in children with Down
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syndrome, compared to children without Down syndrome [1].
In addition, transient myeloproliferative disorder (TMD) is a
unique neoplasia that is specific to neonates with Down syn-
drome. These hematologic malignancies in Down syndrome
show distinct genetic changes. For example, mutations in Ras
and janus kinase 2 (JAK2) are seen in ALL, whereas muta-
tions in transcription factor GATA1 can be found in TMD [9].
Interestingly, the age-adjusted incidence of lymphoma is the
same for individuals with Down syndrome and the general
population, while solid malignancies (apart from testicular
cancer) are actually less common, resulting in a lower overall
risk for malignancies in Down syndrome [10, 11].

The well-known increased incidence of specific autoim-
mune diseases such as thyroid disorders (affecting 50% of
adults), celiac disease (6–10-fold increase), and type I diabetes
mellitus (3–4-fold increase)—all characterized by specific
autoantibodies—warrants screening strategies [1, 12]. Other
inflammatory conditions that are more common in Down syn-
drome include arthritis (at least 3-fold increase) and
hidradenitis suppurativa (5-fold increase) [1, 13–15]. In addi-
tion, at least three-quarters of individuals with Down syn-
drome are affected by early-onset Alzheimer’s-like dementia
[16–18]. Besides amyloid-β deposition, the role of neuroin-
flammation has been acknowledged in the development of this
condition. Interestingly, the neuroinflammatory phenotype
appears to be significantly different in Down syndrome com-
pared to individuals without Down syndrome, which has been
identified as a potential target for future treatment [17, 18].

This clinical profile of increased rates of infections, hemato-
logic malignancies, and specific autoimmune and
autoinflammatory diseases fits a phenotype of combined immu-
nodeficiency with immune dysregulation. In the last decades, the
discovery of manymonogenic primary immunodeficiency disor-
ders (PIDs) has improved our understanding of specific immu-
nological pathways and their role in health and disease [19]. This
is in high contrast with our understanding of the alterations found
in the immune system of individuals with Down syndrome,
which are the result of an extra (critical part of) human chromo-
some 21 (Hsa21). Contrary to common belief, the expression of
Hsa21 genes is not always increased by 50%. Instead, each gene
on Hsa21 can have increased, decreased, or unchanged expres-
sion, as well as show a different expression profile depending on
the tissue and cell type [20–22]. Besides, genome-wide expres-
sion analysis revealed that trisomy 21 causes extensive dysregu-
lation of the whole genome and modifies the transcriptional and
posttranscriptional program of many different genes, and not
only those that are located on Hsa21 [23, 24]. Additional com-
plexities may exist due to epigenetic changes. MicroRNA
(miRNA) expression is altered, resulting in dysregulation of
many specific target proteins involved in immunity [25–28].
Thus, Down syndrome is a complex disorder of gene expression
dysregulation and not just a collection of independent single-
gene defects.

Over the past decades, the immune system in Down syn-
drome has been studied extensively, but unraveling the mech-
anisms behind the immune-mediated conditions in Down syn-
drome and finding genotype-phenotype correlations remains
challenging. Here, we provide an updated overview of adap-
tive immunity in Down syndrome with parallels drawn be-
tween well-known inborn errors of immunity.

Altered Thymic Development with Decreased
Thymic Output from Birth

The T cell development and function showmany alterations in
Down syndrome (see Fig. 1 and Table 1). Individuals with
Down syndrome have an abnormal thymus that is intrinsically
deficient from the very beginning. The majority of fetuses
have a smaller thymus on ultrasound measurements [29].
Thymic investigations in children with Down syndrome un-
dergoing cardiac surgery after birth show significant weight
reduction and accelerated thymic involution in the first years
of life with altered corticomedullary thymic organization
[30–33]. In addition, thymus transcriptome analysis in Down
syndrome thymi (< 2 years of age) shows significantly global
thymic hypofunction with underexpression of more than 400
genes, predominantly involved in cell division and T cell im-
munity, such as IL2RG, RAG2, CD3D, PRDX2, and CDK6
[34].

T cell receptor excision circles (TREC) counts as well as
recent thymic emigrants can be used to characterize thymic
output [35–37]. While both are decreased in children with
Down syndrome [33, 38], it is notable that TREC counts are
rarely under the cutoff values used in the newborn screening
for severe combined immunodeficiency (SCID) [39, 40]. This
fits the clinical picture, as newborns with Down syndrome
generally do not suffer from opportunistic infections.
However, a partial T cell deficiency can contribute to immu-
nological dysregulation and lead to an increased risk of
autoimmunity.

Dysregulated AIRE Expression and Increased
Autoimmunity

Individuals with Down syndrome have an increased risk to
develop autoimmune diseases [41]. Autoimmune regulator
(AIRE) is located onHsa21 and plays a pivotal role in negative
selection of autoreactive T cells through tissue-restricted anti-
gen expression on medullary thymic epithelial cells (mTECs).
Loss-of-function mutations in AIRE can cause autoimmune
polyendocrinopathy-candidiasis-ectodermal dystrophy
(APECED). Patients with Down syndrome and APECED
share the presence of autoimmune disease in the context of
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specific autoantibodies, although their frequency is lower in
Down syndrome [42].

In contrast to APECED, thymic AIRE expression is dys-
regulated rather than absent in Down syndrome. ThymicAIRE
expression is increased in Down syndrome in the first months
of life with more AIRE+ mTECs [33, 43], but its expression is
consistently decreased thereafter [33, 34, 43–45]. Children
with Down syndrome who have thyroid dysfunction show a
significantly lower AIRE expression in their thymi compared
to those children without thyroid dysfunction, as well as
healthy controls [44]. In addition, important AIRE partner
genes such as TOP2a, LMNB1, NUP93, and PCNA are found
to be underexpressed in Down syndrome thymi (< 2 years of
age) as well [34].

From the first months of life, Down syndrome thymi are
smaller and show an increased size of the medulla area with
remarkably large Hassall’s corpuscles (HC), suggesting early
thymic involution [33, 43]. Oxidative stress andmitochondrial
dysfunction play an important role in early-onset Alzheimer’s-
like dementia in Down syndrome [46, 47], but are also
thought to contribute to the process of accelerated thymic
involution in Down syndrome animal models [48–50]. This

is supported by skewed genomic adaptation andmiRNAmod-
ulation to support stress tolerance in thymic tissue of children
with Down syndrome [26]. In addition to accelerated thymic
involution, the proportion of AIRE+ cells within the mTEC
compartment decreases in children with Down syndrome.
This results from a relatively higher number of terminally
differentiated (post-AIRE) mTECs that are characterized by
AIRE downregulation [33, 44]. Thus, the discrepancy of de-
creased thymic AIRE expression despite trisomy 21 and de-
spite initial increased AIRE expression can be explained by
altered thymic development in general and more specifically
by accelerated mTEC maturation with AIRE downregulation.

Dysregulation of thymic AIRE expression and thymic
development in Down syndrome may result in abnormal
thymic cross-talk and defective T cell education. This
would allow for autoreactive T cells to develop and leave
the thymus, contributing to increased autoimmunity.
AIRE also plays a role in the generation and function of
natural regulatory T cells (Treg) [51]. Relative counts of
Treg are increased in Down syndrome [45, 52]. However,
the suppressive ability of these cells in thymus and pe-
ripheral blood is reduced [33, 45], in particular in
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Fig. 1 Schematic overview of T cell development in thymus and
periphery. Relative (%) and absolute (Abs) changes in subsets are
depicted by red arrows, and normal findings with a green equal (=) sym-
bol. Unknown results not depicted. DN, double negative; DP, double
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CM, central memory; TD, terminal differentiated; nTreg, natural regula-
tory T cell; Th, T helper cell; Th1, T helper type 1; Th2, T helper type 2;
Th17, T helper type 17; TFH, T follicular helper; iTreg, induced regulatory
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individuals with autoimmune thyroid disease [53]. These
findings are not only attributed to AIRE, since various
other genes and processes important for Treg differentia-
tion (e.g., autophagy pathways) are found to be dysregu-
lated in thymic transcriptome, gene co-expression net-
work, and miRNA studies in Down syndrome as well
[26, 34]. And outside the thymus, repeated peripheral an-
tigen exposure due to increased infection frequency can
lead to a chronic inflammatory status especially in Down
syndrome, which could cause a decreased sensitivity to

Treg-mediated suppression [54]. Furthermore, skewed
helper T cell profiles (towards Th1 and Th17 subpopula-
tions) and overproduction of autoimmunity-related cyto-
kines could be important factors contributing to increased
autoimmunity in Down syndrome [54].

Thymic research to help understand the underlying mech-
anisms related to increased autoimmunity in Down syndrome
could be focused on more detailed investigations of mTEC
subpopulations, including miRNAs and single cell tran-
scriptomics [55–57].

Table 1 Summary of immunologic studies in Down syndrome

Finding Reference

T cells

Total T cells Decreased 52, 66, 68–71
CD4+ T cells Decreased

CD8+ T cells Decreased (child)/normal (adult)

Naive T cells Decreased

Memory T cells Normal (abs)/increased (%)

CD4/CD8 ratio Inverted ratio

TCR-αβ Decreased (%)

TCR-γδ Increased (%)

nTreg Increased (%)/decreased function 33, 45

Th1/Th2 ratio Increased 72, 73

Mitogenic stimulation assay Decreased/normal (thymidine); increased (Ki-67) 54, 85–88

CD3 stimulation assay Decreased (thymidine); increased (Ki-67) 54, 86, 89

Antigen-specific stimulation assay Decreased response tetanus and influenza (thymidine) 91

TREC count Decreased 33, 38

Thymic anatomy Accelerated thymic involution, altered
corticomedullary thymic organization,
enlarged Hassall’s corpuscles

30–33

Thymic AIRE expression Increased early in life/decreased later in life 33, 34

B cells

Total B cells Decreased 62, 95, 97, 134, 135
Transitional B cells Normal

Naive mature B cells Decreased

Natural effector B cells Decreased

Memory B cells Decreased

Plasma cells Normal/increased

CD21low B cells Increased

KREC counts Decreased 40

Immunoglobulins

IgG Increased 62, 94, 95, 97, 99, 124, 128, 136–141
IgG1 Increased

IgG2 Decreased

IgG3 Increased

IgG4 Decreased

IgA Normal

IgM Decreased

IgD Increased 142

Total and specific IgE Decreased 62, 97, 127, 143, 144
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Down Syndrome Is Not Comparable
with Other Thymic Defects

Thymic aplasia with severe T cell lymphopenia can be caused
by 22q11.2 deletion syndrome. Fortunately, only 0.1% of
children with 22q11.2 deletions have a T-negative SCID pro-
file [58]. The majority (~ 80%) of patients have mild to mod-
erate T cell lymphopenia with normal immunoglobulin levels
and normal T cell proliferative responses. Overall, T cell num-
bers improve with age albeit with an increased functional im-
pairment due to T cell exhaustion. A small proportion of chil-
dren and adults with 22q11.2 deletion syndrome has low IgG
levels, presumed to be caused by dysfunctional B cells sec-
ondary to impaired T cell help. The clinical phenotype has
overlap with Down syndrome, showing an increased inci-
dence and severity of infections, and more autoimmune dis-
eases. As in Down syndrome, numerous anatomical and phys-
iological alterations contribute to increased incidence and per-
sistence of infections as well [59, 60].

However, there are apparent differences between 22q11.2
deletion syndrome and Down syndrome. The most common
autoimmune diseases in 22q11.2 deletion syndrome are juve-
nile idiopathic arthritis and autoimmune cytopenias [61],
where individuals with Down syndrome are particularly at risk
to develop thyroid disease, celiac disease, and type 1 diabetes.
Atopic disease is prevalent in 22q11.2 deletion syndrome and
affects up to two-thirds of these children. This is in contrast to
children with Down syndrome who have a decreased risk to
develop asthma and allergic sensitization [1, 62]. Besides
these differences in clinical presentation, the thymic alter-
ations in Down syndrome, including architecture, thymocyte
subpopulations, and AIRE expression, are different from those
found in 22q11.2 deletion syndrome [33]. In addition, Down
syndrome has distinct abnormalities in the B cell compartment
and humoral immunity which are unlike 22q11.2 deletion
syndrome (see below).

About half of all children with Down syndrome suffer from
congenital heart disease which frequently requires corrective
heart surgery. Partial thymectomy during heart surgery in the
first year of life induces thymic hypoplasia and further de-
creases thymic output [63, 64]. Otherwise healthy children
undergoing heart surgery requiring partial thymectomy show
a gradual recovery towards normal T cell numbers including
naive helper T cells and cytotoxic T cells, as well as TREC
counts, in contrast to children with Down syndrome [65].

Lack of Early T Cell Expansion and Imbalanced
CD4+/CD8+ T Cell Ratio

The peripheral T cell compartment of patients with Down
syndrome has been studied in more detail over the last de-
cades. Absolute T cell counts, including both cytotoxic and

helper T cells, are decreased in all age groups in children with
Down syndrome and lack the expansion normally seen in the
first years of life [66–68]. Absolute cytotoxic T cell numbers
approach age-matched control levels towards adulthood,
whereas helper T cells continue to be decreased, causing im-
balanced CD4+/CD8+ T cell ratios in all age groups [66]. We
found higher relative counts of TCR-γδ T cells—albeit still
low—in all age groups in Down syndrome, as confirmed by
others [66, 69, 70].

Differentiation into memory T cells occurs upon antigen-
driven activation, and several studies investigating virus-
specific T cell formation show that individuals with Down
syndrome can mount good effector T cells in response to
viruses such as cytomegalovirus (CMV) and varicella zoster
virus (VZV) [52, 66].

These studies showed higher numbers of effector T cells in
CMV and VZV exposed individuals. It remains the question if
this is a requirement to ensure virus control and disease pre-
vention [52, 66], or merely a reflection of T cell dysregulation
correlated with interferon hyperactivity (see below) [54]. This
might partly explain the skewed distribution seen in the mem-
ory cytotoxic T cell compartment, with studies showing in-
creased absolute and relative counts of effector memory [66],
central memory [54, 66, 71], and normal [54, 66] to increased
[71] terminally differentiated cytotoxic T cells. Relative
counts of memory helper T cells are increased as well, but this
is mainly due to decreased relative counts of naive helper T
cells in all age groups and not due to increasing absolute
counts of helper T cells [66–68].

Pro-inflammatory Helper T Cells

The helper T cell compartment in Down syndrome shows a
skewed distribution towards increased IFN-γ producing T
helper type 1 responses [54], with a significantly higher Th1/
Th2 ratio suggestive of an imbalance towards pro-
inflammatory immune responses [52, 72, 73]. This could po-
tentially play a role in the decreased rate of allergies seen in
Down syndrome. More recent studies including Th17 show
skewed helper T cell distribution towards Th1 and Th17 sub-
populations in children with Down syndrome [52]. One study
shows a significantly decreased IL-17A expression on helper
T cells in children with Down syndrome, suggesting a role in
the immune dysregulation [74]. However, another study in
adults with Down syndrome states a clear overproduction of
IL-17A and IL-22 [54].

T follicular helper cells (TFH) in germinal centers help B
cells to generate class-switched immunoglobulins, memory B
cells, and long-lived plasma cells [75]. TFH subpopulations
show a great degree of plasticity and are able to produce cy-
tokines similar to Th1, Th2, and Th17 cytokine profiles (e.g.,
TFH1, TFH2, TFH17, respectively) [76]. Dysregulation of TFH
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function has been associated with autoimmunity [77, 78].
Overall, children with Down syndrome show smaller sized
germinal centers with reduced numbers of TFH cells [79].
Skewed TFH differentiation towards interferon (IFN)-γ TFH1

cells is found in blood of children with Down syndrome in one
study [80], which was more pronounced in children with
Down syndrome-associated arthritis in comparison to children
with Down syndrome without arthritis and children with ju-
venile idiopathic arthritis as well as healthy controls [81].

Chronic Interferon Hyperactivity

Genes coding for 4 of 6 IFN-receptors are Hsa21-derived:
type I (IFNAR1, IFNAR2), type II (IFNGR2), and type III
(IL10RB). These genes are overexpressed in all individuals
with Down syndrome, regardless of sex, age, or ethnicity
[82]. Mass cytometry of 100 different immune cell types in
adults with Down syndrome revealed global immune dysreg-
ulation with multi-lineage cell-type-specific hypersensitivity
to interferon-α [83]. Genomic and transcriptomic analyses in
various Down syndrome cell lines, including T cells, reveal
that the interferon signaling cascade is consistently activated
in Down syndrome. However, downstream signaling effects
on IFN-activated transcription factors (e.g., IRF3, IRF5, IRF7,
STAT1) and expression of IFN-stimulated genes (e.g., APP,
IDO1) show great inter-individual variation [82], which may
contribute to the clinical heterogeneity.

A number of Down syndrome traits overlap with disease
pathology seen in the type I interferonopathies. For example,
Aicardi-Goutières syndromes (AGS), a disorder caused by a
continuous activation of the intracellular DNA/RNA
sensoring pathway, is characterized by consistent interferon
signaling. Their clinical presentation consists of progressive
encephalopathy, intracranial calcification, cerebral atrophy,
and thrombocytopenia, as well as systemic lupus erythemato-
sus, chilblains, and spastic paraparesis depending on the dif-
ferent monogenic mutations involved (type 1–7; mutations for
example in ADAR1, TREX1, RNASEH2A) [19]. Examples of
comorbidities in Down syndrome that at least in part could be
related to interferonopathy are transient myeloproliferative
disorder, leukemias, autoimmunity, periodontal disease, and
various neurological abnormalities [82], although additional
factors are likely to contribute to these conditions.

Down syndrome mouse models show that reduction of
interferon or interferon receptors improve growth and brain
development, but less emphasis has been placed on immune-
mediated diseases thus far [84].

Overall, interferon-driven immune dysregulation is likely
to contribute to immune-mediated diseases in Down syn-
drome and warrants more research to improve understanding
and investigate potential therapeutic targets.

Inconsistent T Cell Proliferation Data in Down
Syndrome

In recent studies, in vitro T cell assays with phytohemagglu-
tinin (PHA) and with cytomegalovirus (CMV) antigen stimu-
lation in children [71], and in vitro anti-CD3/CD28 monoclo-
nal antibody stimulation in adults with Down syndrome [54],
show normal [52] to increased production of cytokines as well
as increased expression of T cell activation markers and in-
creased relative counts of effector T cells [52, 54, 71].
Furthermore, T cell proliferation in response to PMA/
ionomycin—using Ki-67 expression instead of 3H-thymidine
incorporation—shows increased proliferation of both cytotox-
ic and helper T cells in adults with Down syndrome in com-
parison to healthy controls [54]. These recent data are sugges-
tive of a highly activated T cell repertoire with normal to
increased proliferative ability.

This seems to be in sharp contrast with older studies inves-
tigating in vitro T cell proliferation using 3H-thymidine incor-
poration, which show decreased proliferation in children and
adults with Down syndrome [85–91], with some exceptions
[45, 91]. It is known that there is poor correlation between the
Ki-67 expression and 3H-thymidine incorporation techniques
[92]. The specific different antigenic or mitogenic stimuli used
can further complicate comparison. Furthermore, most older
studies did not allow for detailed analysis of specific T cell
subpopulations, while recent studies are able to measure ex-
tensive cytokine and chemokine profiles as well as expression
of various T cell (activation) markers in different T cell
subpopulations.

In general, most studies have small study sample size, and
age ranges and control groups vary widely between the differ-
ent studies. Therefore, we would suggest to expand these re-
cent T cell studies to larger cohorts that include different age
groups (including neonatal, infant, children) before more final
conclusions can be drawn regarding T cell proliferation in
Down syndrome. In addition, the study of the in vivo replica-
tion history in T cell subsets may be helpful in further under-
standing T cell proliferation [93].

Impaired Survival of the Naive B Cell
Compartment

The peripheral B cell compartment of individuals with Down
syndrome shows many changes, which resulted in increased
attention over the last decade (see Fig. 2 and Table 1).
Absolute B cell counts are decreased in patients with Down
syndrome [40, 52, 68, 94–97]. While healthy children show
an expansion of their B cell compartment in the first year of
life, this phenomenon is lacking in Down syndrome [62, 68,
98]. Only one study reports an inverse correlation between
hospitalization rate for infectious diseases and absolute B cell
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count [94]; however, this could not be confirmed by others
[62, 95, 96, 99].

B cells enter the peripheral blood from the bone marrow as
transitional B cells, and shortly thereafter, develop into naive
mature cells. Individuals with Down syndrome have normal
numbers of transitional B cells, but decreased naive mature B
cell numbers [95]. Potential causes for this finding include
decreased bone marrow output, impaired B cell homeostasis,
and decreased survival.

As of yet, there are no bone marrow studies to characterize
the antigen-independent development of B cells in otherwise
healthy individuals with Down syndrome. Peripheral blood
lymphocytes in Down syndrome are prone to DNA damage
in conjunction with impaired DNA repair [100], and it is pos-
sible that the B cell development in bone marrow is altered to
some degree, analogous to DNA repair disorders such as
Nijmegen breakage syndrome (NBS) and ataxia
teleangectasia (AT) [101, 102]. This could allow for
autoreactive B cells to enter the blood and predispose the
development of autoimmune diseases, which is seen in DNA
repair disorders as well. In contrast to NBS and AT, homeo-
static proliferation of the naive B cell compartment is not
increased in Down syndrome, showing that there is no com-
pensatory proliferation as a response to decreased B cells [95,
101, 102].

B cells of individuals with Down syndrome show higher
rates of apoptosis [95, 103]. B cell survival depends on B cell-
activating factor (BAFF), which has been found in higher
levels in Down syndrome, potentially as a compensatory re-
sponse to the B cell lymphopenia [95, 104]. Extracellular sig-
nals can induce apoptosis via interaction with the FAS

receptor (CD95). However, the expression of this cell marker
is normal in Down syndrome [95]. Another pathway that can
induce apoptosis involves the mitochondria. It is known that
mitochondrial morphology as well as function are altered in
Down syndrome, potentially due to underexpression of > 65
mitochondrial-related genes on the whole genome [105]. This
can result in increased oxidative stress and subsequent down-
regulation of energymetabolism [106]. In addition, mitochon-
dria in Down syndrome are more susceptible to the effects of
damaging agents [107, 108]. Recent studies in healthy con-
trols show a higher dependence of B cells on their mitochon-
drial energy production compared to T cells [109], which war-
rants further studies on the mitochondrial functioning in im-
mune cells of individuals with Down syndrome.

B Cell Activation Is Abnormal in the Absence
of T Cell Help

Differentiation into memory B cells occurs upon antigen-
driven activation of naive mature B cells via the B cell recep-
tor (BCR) complex and co-stimulatory signals. Small expres-
sion differences of BCR complex cell markers (i.e., CD19,
CD21, and CD81) were found previously in Down syndrome
[62, 98], but patients lack the hypogammaglobulinemia that is
seen in patients with CD19, CD21, or CD81 deficiency [19].

T cell-independent signaling pathways, including TACI-
BAFF/APRIL and pattern recognition molecules (i.e., Toll-
like receptors [TLRs]), are important for the formation of
two memo ry B ce l l s ub s e t s : CD27 − I gA+ and
CD27+IgM+IgD+ “natural effector” B cells [110]. Both of

naive mature
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Fig. 2 Alterations of the B cell response in Down syndrome. Individuals
with Down syndrome have normal numbers of transitional B cells but
decreased naive mature B cells, without increased homeostatic
proliferation. The germinal center composition is normal but affinity
maturation is impaired in IgA memory. Generation of IgG+ memory is
normal, but absolute number of memory B cells is decreased. Natural

effector B cells show decreased proliferation, somatic hypermutations
(SHM). The selection of IgM+/IgA+ memory is impaired. Higher
numbers of plasma blasts are found in Down syndrome. The aberrant
development of CD21low B cells is increased in Down syndrome. All
abnormalities are shown in red. Figure reproduced from Verstegen
(2014) [152].
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these subsets show significant reductions in Down syndrome
with CD27−IgA+ and natural effector B cell numbers that are
~ 15% and ~ 50% of control values, respectively [95]. Further
analysis of natural effector B cells shows a decreased replica-
tion history of ~ 5 cell divisions instead of ~ 9–10 cell divi-
sions in controls, as well as decreased somatic hypermutations
(SHM) that results from reduced activation-induced cytidine
deaminase (AID) activity [95]. However, B cells in Down
syndrome show normal TACI expression and, as described
before, BAFF levels are slightly increased rather than de-
creased [95].

TLR activation results in downstream signaling via
MyD88-TIRAP-IRAK4, which is required for natural effector
B cell homeostasis. Patients with monogenetic PIDs that affect
the MyD88-TIRAP-IRAK4 pathway have decreased natural
effector B cells similar to numbers found in Down syndrome,
but show normal SHM [111, 112]. In contrast to individuals
with Down syndrome, patients with IRAK4 or MyD88 defi-
ciency do not develop autoantibodies or autoimmune diseases,
despite the crucial role of these pathways in the removal of
autoreactive B cells [113].

Individuals with Down syndrome have normal T cell-
dependent co-stimulatory signaling. Genetic mutations in
AICDA that cause reduced activity of activation-induced cyti-
dine deaminase (AID) or mutations that affect signaling
through CD40-CD40L, ICOS-ICOSL, and IL21-IL21R result
in class switch recombination disorders with altered immuno-
globulin levels and SHM [19]. Patients with class switch dis-
orders have absent germinal center configurations and de-
creased IgG [114]. This is in contrast with individuals with
Down syndrome who have germinal centers, although their
number and size is decreased [79, 95]. In addition, individuals
with Down syndrome actually have increased IgG levels (see
below). In Down syndrome, normal SHM in memory B cells
as well as unaffected class switch recombination profiles have
been found [95]. One study reported normal AID expression
in germinal centers, but lower levels of expression in memory
B cells, in the context of upregulated miR-155 expression
which is known to suppress AID [79]. Other subsets, includ-
ing naïve B cells, germinal center B cells, and plasma cells,
showed unaffected miR-155 expression [79].

Reduced Memory B Cell Compartment
with Impaired IgA Memory Selection

With the exception of CD27+IgM+IgD− “IgM only” memory
B cells, absolute numbers of all memory subsets are decreased
in Down syndrome [95, 97]. In addition, they lack the expan-
sion of the memory B cell compartment that normally occurs
in the first few years of life [62, 98].

In depth analysis of the memory B cell compartment shows
decreased proliferation as well as decreased somatic

hypermutations [95]. Whereas IgG+ memory B cells show
normal positive selection for replacement mutations in
complementarity-determining region (CDR), the selection
strength was significantly lower in IgA+ memory B cells
[95]. Other selection mechanisms include IGHV4-34 usage
and IGH-CDR3 length in memory B cells, compared to naive
B cells and centroblasts, respectively. Increased IGHV4-34
usage and IGH-CDR3 length are both related to the develop-
ment of autoimmune diseases and seen in IgG+ memory B
cells of patients with common variable immunodeficiency
(CVID) [115–117]. Besides increased IGH-CDR3 length in
IgA+ memory B cells, no significant differences were found
in individuals with Down syndrome [95]. As of yet, it is un-
clear if these—relatively small—differences have any effect
on mucosal immunity or the development of autoimmune
disease.

Increased Plasma Cells

While the memory B cell compartment shows significant abnor-
malities compared to healthy controls, it is surprising that indi-
viduals with Down syndrome have higher numbers of plasma
cells in blood as well as tonsils [95, 97]. Memory B cells in
Down syndrome have a decreased tendency to proliferate and
differentiate upon stimulation with CpG [79, 95]. Several factors
play an important role in proliferation and differentiation of B
cells, including memory B and plasma cell formation. As de-
scribed before, miR-155 expression is increased in memory B
cells of individuals with Down syndrome, but not in other sub-
sets [79]. This pattern has also been found in patients with rheu-
matoid arthritis. In these studies,miR-155was suppressed, which
resulted in decreased antibody production via PU.1 upregulation
[118]. PU.1 maintains the expression of PAX5. This results in
suppressed PDRM1 expression, which is a crucial step in plasma
cell differentiation [119]. Thus, increased miR-155 expression
leads to a predominant shift towards plasma cell differentiation,
supporting the higher plasma cell numbers in Down syndrome.
Interestingly, in one small study, the expression of PRDM1,
BCL-6, and PAX5 was studied in naive, germinal center and
memory B cell subsets as well as plasma cells, which did not
show altered expression compared to controls [79]. It would be
of interest to investigate this in more detail and include other
plasma cell–related transcription factors such as IRF-4 and
XBP-1. Of note, as described before, the abnormalities in TFH
could further add to these altered responses.

CD21low B Cells

Patients with autoimmune disease (e.g., systemic lupus ery-
thematosus) as well as CVID have increased numbers of
CD21low B cells, which express autoreactive antibodies and
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are functionally anergic [120, 121]. More recently, it was
shown that CVID patients with CD21low B cells have an
IFN-gamma-associated immune dysregulation with increased
numbers of TFH1 cells [122]. Individuals with Down syn-
drome have higher percentages of CD21low B cells, increased
percentages of TFH1 cells, and higher rates of autoimmune
disease too [62, 95]. It is unknown how CD21low B cells relate
to the development of these conditions, although they could
potentially be useful as a marker for increased susceptibility to
autoimmunity [122].

Is Down Syndrome a Predominant Antibody
Deficiency Syndrome?

It is tempting to compare Down syndrome to patients with
CVID since they have significant similarities in their clinical
presentation such as high rates of respiratory tract infections as
well as features of immune dysregulation (i.e., autoimmune
conditions and hematologic malignancies). Although com-
pared to individuals with Down syndrome, patients with
CVID have higher rates of lymphoma, solid tumors, and gran-
ulomatous diseases [123].

Serum immunoglobulin levels show a distinct pattern in
Down syndrome [62, 94, 95, 97, 99, 124]. During the first
years of life, total IgG increases and then remains high-
normal throughout life (> 10 g/L), in the absence of mono-
or oligoclonal M-proteins [62]. IgG1 and IgG3 subclasses are
generally increased (> 7 g/L and > 0.6 g/L, respectively),
whereas IgG2 is decreased (< 2 g/L). While IgG4 deficiency
is common in the general population, more individuals with
Down syndrome have very low levels of this immunoglobulin
subclass. Furthermore, individuals with Down syndrome have
normal IgA levels, decreased IgM levels (< 1 g/L), and low
serum IgE levels [62, 97]. Thus, in contrast to many PIDs that
are characterized by hypogammaglobulinemia, including
CVID, individuals with Down syndrome actually have in-
creased IgG levels.

In contrast to patients with predominant antibody deficien-
cies, immunization studies in Down syndrome show protec-
tive antibody responses to pneumococcal and tetanus immu-
nizations (see Table 2). Nevertheless, it should be noted that
overall antibody levels in response to vaccinations are lower
and seem to decline faster than in individuals without Down
syndrome, which has been studied best in the context of
Hepatitis B [125–131]. Repeated (booster) vaccinations, as
part of national immunization programs, have shown to im-
prove qualitative and quantitative antibody responses in chil-
dren with Down syndrome [132, 133]. These findings are
independent of the type of vaccine used (e.g., protein, poly-
saccharide, conjugated), suggesting that both T cell-
dependent and T cell-independent responses are affected. It
is unclear whether individuals with Down syndrome would

benefit from additional immunization boosters in addition to
the standard immunization programs.

Down Syndrome Should Be Considered
as a Non-monogenic Primary
Immunodeficiency Disorder

By comparing the composition and function of the T and B
cell compartment inDown syndromewith patients who have a
well-defined monogenic PID, we have illustrated that many
cellular processes are affected in Down syndrome. However,
we also show that their defects are generally milder than those
seen in these PIDs. While the question is often asked to iden-
tify the one mechanism that can explain the immunologic
abnormalities in Down syndrome, the answer is far more com-
plex. First, Down syndrome is a condition that is caused by the
additional presence of a large amount of extra genetic materi-
al, which has been shown to affect the whole genome. The
direct effect of dysregulated gene expression may impact on
intracellular pathways and impair common cellular processes
such as cell division and mitochondrial function as well those
specific for immune cells. Second, since virtually all aspects
of the immune system show abnormalities to some degree,
impaired cellular communication may contribute to decreased
function and dysregulation. Third, the local milieu (i.e., pro-
inflammatory cytokine profile, chronic interferon activity, in-
creased oxidative stress conditions) has an important role in
the development and function of immune cells. These three
mechanisms can affect cellular development as well as impact
on their function and survival. As such, the clinical phenotype
of Down syndrome results from the compounded effect of a
myriad of alterations, small and large.

Individuals with Down syndrome have higher numbers of
infections, which are related to significant mortality. The
question remains to what extent these are the results of im-
paired immunity as it is clear that many other factors will
contribute to their development, including anatomical varia-
tions and impaired physiological function of the respiratory
tract. With regard to the development of malignancies, it is
unclear if these result from impaired immunosurveillance or
from a higher risk of mutagenicity. In contrast, the increased
rate of inflammatory conditions—in particular those that are
related to specific autoantibody production—is a striking fea-
ture consistent with immune dysregulation that affects at least
half of the individuals with Down syndrome.

There are parallels in the clinical profile and immunological
changes betweenDown syndrome, aging, andwell-known PIDs.
However, in each comparison, there are obvious differences. We
conclude that individuals with Down syndrome have a pattern of
combined immunodeficiency and immune dysregulation, and
we suggest that Down syndrome should be considered as a
non-monogenic PID, just like 22q11.2 deletion syndrome [19].
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Future Perspective

In the past decades, enormous progress has been made regard-
ing our knowledge of genomics and immunology. Alongside,
our current understanding of immunodeficiency and immune-
mediated diseases in Down syndrome has increased by nu-
merous studies. It is clear that individuals with Down syn-
drome have also profited immensely from the progress made
in health care; however, the life expectancy of approximately
65 years of age is still well below that of the general popula-
tion [6].

Despite the known genetic cause of Down syndrome (tri-
somy 21), and their effect on the up- and downregulated genes
throughout the genome, there is a significant inter-individual
variation in downstream signaling effects, which leads to a
highly variable morphologic and clinical phenotype. While
abnormalities in virtually all components of the immune sys-
tem in Down syndrome have been identified, no clear corre-
lation with clinical features for individual cases has been
established. Some features of Down syndrome are considered
disease hallmarks (e.g., specific dysmorphic features, cogni-
tive impairment), other features are highly prevalent (e.g.,
congenital heart defects, Alzheimer’s-like dementia), or spe-
cific for Down syndrome but less common (e.g., Down
syndrome-associated arthritis, TMD). Clinicians caring for
children and adults with Down syndrome are therefore not

able to predict who will suffer from immune-mediated disor-
ders such as hematologic malignancies, autoimmunity, and
autoinflammatory diseases or identify patients who are more
likely to develop severe infections. As a result, there are lim-
ited options for preventive strategies, targeted screening pro-
grams, or treatment optimization.

With increasing knowledge on the immune system in gen-
eral, as well as emerging technical opportunities including
machine learning, this is the time to start the next level of
Down syndrome research to unravel the underlying mecha-
nisms of the immune defects in this condition and connect
these findings to the complex genotype and phenotype of
these individuals.

Ideally, to understand the immunological alterations and
related disorders in Down syndrome, we would need an ex-
tensive international collaboration involving patients, clini-
cians, and researchers, aiming to establish a large prospective
Down syndrome birth cohort with structural longitudinal
follow-up and standardized data collection, which should in-
clude (1) extensive clinical data including laboratory investi-
gations, (2) blood samples to assess innate and adaptive im-
munity at sequential time points, including “omics” (e.g., ge-
nomics, transcriptomics, proteomics, metabolomics), and (3)
non-blood samples collected in a biobank, such as bone mar-
row aspirates, thymic tissue, tonsils, spinal fluid, and synovial
fluid for detailed immunologic studies. It will be important to

Table 2 Immunization responses

Immunization Vaccine type Response compared to controls Comments Protective (%) Reference(s)

Tetanus Protein Normal/decreased Normal IgG response
Decreased IgG2/IgG4 response and

avidity/improves with booster

94% 133, 145

Diphtheria Protein Normal IgG N/R 145

Polio (oral) Protein Normal/decreased Subtype-dependent IgG response N/R 146

Pertussis (acellular) Protein Decreased IgG 100% 147

Measles Protein Normal IgG N/R 145

Mumps Protein Normal IgG N/R 145

Rubella Protein Normal IgG N/R 145

Hepatitis A Protein Normal IgG 100% 148

Hepatitis B Protein Normal/decreased Variable conversion rate and IgG titer
Earlier decline of titer
Impaired response in males and aging

50–100% 125–131

Meningococcal C Conjugated Decreased IgG, IgA, and IgM response 100% 149

Influenza A/B Protein Normal/decreased IgG
Switched memory B cells reduced after

initial immunization/improves after booster

N/R 124, 145

Pneumococcal Polysaccharide Normal/decreased Subtype-dependent IgG
Normal opsonophagocytosis

65–100% 132, 150, 151

Pneumococcal Conjugated Normal/decreased IgG Opsonophagocytosis
Switched memory B cells reduced

after initial immunization/
improves after booster

61–89% 124, 132

N/R not reported
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study the impact of trisomy 21 during all developmental
stages of life.

The ultimate goal should be to create a personalized
genotype-phenotype fingerprint for individuals with Down
syndrome that will predict disease trait variations and support
clinical decision-making for individuals, including the appli-
cation of personalized targeted therapies, as well as to develop
new treatment modalities specific for Down syndrome and its
related immunological and non-immunological diseases.

CME Questions

1. Which of the following statements about immunizations
in Down syndrome is correct?

A. Individuals with Down syndrome have normal serocon-
version rates and adequate functional responses to
immunizations

B. Individuals with Down syndrome have normal serocon-
version rates, but inadequate functional responses to
immunizations

C. Individuals with Down syndrome have abnormal sero-
conversion rates, but adequate functional responses to
immunizations

D. Individuals with Down syndrome have abnormal sero-
conversion rates and inadequate functional responses to
immunizations

E. No immunization responses have been tested specifically
for individuals with Down syndrome

2. Which of the following immunological finding is not as-
sociated with normal aging?

A. The absolute B cell count remains stable with aging
B. The T cell repertoire shifts towardsmemory compartment

with aging
C. The B cell repertoire shifts towards memory compart-

ment with aging
D. All immunoglobulin levels decrease with aging, requir-

ing additional immunizations to increase immunoglobu-
lin levels

E. Some immunization seroconversion rates wean with ag-
ing, requiring additional booster immunizations to in-
crease antibody responses

3. Which of the following immune-mediated conditions are
diagnosed less frequently in Down syndrome?

A. Solid tumors
B. Hematologic malignancies
C. Celiac disease
D. Diabetes mellitus type 1

E. Eczema

4. Which of the following immunologic changes in Down
syndrome is not related to autoimmunity?

A. Decreased regulatory T cell function
B. Increased Th2 cytokine production
C. Dysregulated AIRE expression in thymus
D. Increased numbers of CD21low B cells
E. Increased interferon activity

5. Based on the clinical profile and immunological changes
described in this article, Down syndrome fits the descrip-
tion of a

A. predominantly antibody deficiency disorder
B. thymic defect disorder
C. immunosenescence
D. type 1 interferonopathy
E. combined immunodeficiency with immunodysregulation
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