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Abstract Primary immunodeficiency diseases (PIDs) com-
prise a group of highly heterogeneous immune system dis-
eases and around 300 forms of PID have been described to
date. Next Generation Sequencing (NGS) has recently become
an increasingly used approach for gene identification and mo-
lecular diagnosis of human diseases. Herein we summarize the
practical considerations for the interpretation of NGS data and
the techniques for searching disease-related PID genes, and
suggest future directions for research in this field.
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Abbreviations
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Primary immunodeficiency diseases (PIDs) comprise a group
of highly heterogeneous genetic disorders caused by defects in
the immune system and can be categorized as lymphocyte
deficiencies (Tand/or B cell and NK cells defects), phagocytic
defects, complement deficiencies and innate immunodefi-
ciencies [1]. The prevalence of each individual PID varies in
the population [2], ranging from 1/600 for selective IgA defi-
ciency [3] to approximately 1/250,000 for chronic granuloma-
tous disease [4]. However, the prevalence of various forms of
PID is probably underestimated [5]. There are currently close
to 300 forms of PID as defined by the International Union of
Immunological Societies (IUIS) [6, 7]. However, around 3110
genes may be potentially PID-causing based on their biolog-
ical functions and human gene connectome analysis [8] sug-
gesting the existence of a large number of hitherto unrecog-
nized diseases. Some of these diseases are monogenic, but
a growing proportion are caused by a digenic/polygenic
mechanism [9, 10].

Since the first methodology paper on next generation se-
quencing (NGS) was published [11], this technology has rap-
idly advanced the discovery of genetic variants underpinning
human Mendelian disorders (MDs). Rapid advances in NGS
facilitate, at ever decreasing costs, processing and analysis of
genomic regions, ranging from targeted gene sets to high cov-
erage of whole human genomes, including linkage analysis,
homozygosity mapping and candidate gene approaches.
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Whole exome sequencing (WES) and whole genome se-
quencing (WGS) have become increasingly widespread ap-
proaches for the identification of MDs associated genes, by
sequencing trio or quartet [12] families, by sequencing several
individuals in a pedigree [13], a small patient cohort [14], or
even by only sequencing the proband [15].

Gene discovery and understanding of the molecular basis
of disease are essential starting points for making a molecular
diagnosis and providing genetic counseling [16, 17] and may
provide clues to the development of new therapeutic ap-
proaches for different diseases. In the past several years, the
molecular basis of several forms of PID and their clinical
consequences has been well documented [18–25]. However,
despite intensive work during the last decades, many forms of
PID still do not have a defined underlying genetic defect and
further exploration is needed to push this frontier forward.
There are several publicly accessible tools or bioinformatic
analysis pipelines available, which house numerous NGS
analysis scripts for data quality control (QC), as well as tools
for alignment, variant-calling, and annotation. However, a
comprehensive pipeline designed specifically for PID candi-
date gene screening has not yet been developed. Herein we
summarize practical considerations for the interpretation of
the NGS data from PID patients and provide an overview of
data and findings from our own PID cohort.

Pipeline for Screening the Candidate Gene

Next Generation Sequencing is a promising strategy for the
study of human monogenic disorders. However, pinpointing
the causal mutations in a small number of samples is still a
major challenge. A large number of variants can be detected
byWES and WGS and approximately 100,000 SNVs and 15,
000 Indels (Fig. 1) have been identified per sample using the
Agilent SureSelect Human All Exon V4 kit in our PID cohort.
They include polymorphisms, sequencing artifacts and non-
pathogenic rare mutations, and finding the causative gene re-
mains a challenge (Fig. 1).

There are several steps that may help us to reduce the num-
ber of candidate genes. Firstly, we can prioritize variants ac-
cording to their impact on the sequence of the protein product.
The majority of disease-causing variants are believed to be
amino-acid-sequence-changing, including non-synonymous
substitutions, splice site mutations and insertion/deletions as
well as truncation of proteins due to a premature stop codon.
To avoid the possibility of failure to find disease-causing mu-
tations due to the incompleteness of the available annotation
databases, using multiple databases [26] to annotate the vari-
ants to select the canonical one and the one with the most
severe consequence is recommended. However, this method
of annotation will not identify large deletions, even in a ho-
mozygous form; therefore, additional bioinformatics tools

such as Exondel [27] (for homozygous large deletion) and
FishingCNV [28] (for homozygous as well as heterozygous
large deletion) using cross-samples comparisons are required
in separate analysis step.

Secondly, as most of the PIDs are relatively uncommon, and
supposedly caused by rare mutations, mutations found at poly-
morphic sites can be excluded by removal of mutations found in
public or in-house databases and have a frequency of more than
1 %. The available public databases include the 1000 Genomes
Project (KG) (2500 samples; http://www.1000genomes.org/), the
Exome Variant Server (ESP) (6500 WES samples; http://evs.gs.
washington.edu/EVS/) and the Exome Aggregation Consortium
(ExAC) (60,706 samples; http://exac.broadinstitute.org/). It
should be noticed that the ESP and ExAC database are mix of
healthy individuals and patients, which should be carefully used
when there is any patient affected by the studied disease in the
database. In-house databases are often helpful to exclude
platform-specific false positives or background noise. Analysis
of the frequency of PID-related variants downloaded from public
databases, including 5206 PID causative variants (selected sub-
stitutions or Indels from 7561 records), the Resource of Asian
Primary Immunodeficiency Diseases (RAPID) http://web16.
kazusa.or.jp/rapid/ database [29] and 4203 variants in PID
genes [6] from The Human Gene Mutation Database (HGMD)
http://www.hgmd.cf.ac.uk/ac/index.php database, show that
most causative PID variants have an allele frequency of less
than 1 % (Fig. 2 a,b). This also provides the rationale for exclu-
sion of polymorphisms in the candidate mutation prioritization.

Examining the consistency of the inheritancemodel of disease
and zygosity of the mutation is another important step to identify
causative variants. It is rational to examine known genes with
biallelic variants for a recessive model, hemizygous variants for
an X-linked model in male patients, and heterozygous variants
for a dominant model. Classification update of PID from IUIS in
2015 shows that, approximately 70 % are inherited as autosomal
recessive, 20 % as autosomal dominant and 5 % as X-linked
disorders [6] and the percentage of new autosomal dominant
etiologies is increasing more than other types, however, it should
be noted that sporadic PID cases are not uncommon [30]. These
cases could be due to de novo dominant heterozygous mutations.
We hypothesize that the penetrance of the disease is high for a
family only has single or limited affected members. Hence, it is
rational to hypothesize that unaffected members carry no disease
predisposing/causing variant that is consistentwith an inheritance
model. Some complicated algorithms based on genetic rules
could help us to narrow down the candidate gene list. For in-
stance, WES data enable haplotype analysis based on identical
by descent (IBD) information, which could be employed to pin-
point chromosomal segments that may harbor disease-causing
mutations and performing homozygosity mapping (using
HomSI, AutoSNPa and AgileVariantMapper et al. [21, 31]) will
facilitate disease gene identification in consanguineous families
as they are likely to be located in homozygous regions. In
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addition, multiple software tools such as pVAAST [32] and
VarScan trio family calling [33] can be used to identify genetic
variant(s) that directly influence disease risk in both consanguin-
eous and non-consanguineous family data. VarScan trio support
single family analysis while pVAAST provide probabilistic pre-
dictions of the disease- risk variants from single to multiple fam-
ilies’ data.

Most of the MDs causing mutations are supposed to be
functionally critical and located in sites that are evolutionarily
conserved. Several software tools have been developed based
on this theory and may provide helpful information on the
severity of impact of the variants. These tools include
CADD, SIFT, Po lyPhen2 , GERP, GWAWA and
MutationTaster, all of which predict the biological effect of
the variants. These tools are powerful, but they do not catego-
rize all variants correctly and sometimes they are inconsistent
with each other. Both SIFTand PolyPhen2 have a difficulty in
predicting stop-gain variants. Prediction of the severity and
functional impact of known PID-causing variants show that
a majority are predicted to be damaging, but some are predict-
ed to be benign while others cannot be evaluated (Fig. 2c, d).
Known PID genes can be utilized for training for some pre-
diction models, which prioritize candidate genes according to
the connection between the function, pathway, expression in-
formation on candidate genes and phenotype, including
VASST, eXtasy, PHEVOR, Phen-Gen, Phenolyzer,
Phenomizer, GeneCards and PosMed [8, 34–36].

Some genes are prone to enrich phenotype-irrelevant muta-
tions due to their long coding sequences [37] and evolutionary
pressure [38]. It should be noted that these genes are the source
of many false positive results. Fortunately, there are some tools
or databases available to reduce noise, including Gene Damage
Index (GDI) [38], a tool to indicate the degree of mutation
enrichment in diseases under different inheritance models.
Another available tool is Frequently Mutated Genes (FLAGS)
[37], which provides a list of genes that are enriched for neutral
mutations. For a given sequencing platform, a database of genes
that are enriched in neutral mutations could provide helpful
information in order to reduce platform-specific false variants.

On the other hand, internal homozygous exon deletion may
be investigated using Exondel [27], a tool that use exons as a unit
to examine deletions at the gene level. By comparison with mul-
tiple controls and in-house databases, the pipeline is able to iden-
tify disease-associated large exon deletions within a gene region.

In our cohort study, sequencing reads were aligned to the
human reference genome (NCBI build 37.1, hg19) using both
SOAPal igner and BWA with defaul t parameter.
Approximately 1,000,000 SNV and 100,000 Indels for the
cohort have been detected by using SOAPsnp and GATK.
After several steps of filtering such as removal of polymorphic
site with frequency more than 1% in public database, keep the
amino acid changing variants, there were still some mutations
that were found in a majority of the sequenced samples and
were predicted to be highly deleterious. These included 61

Fig. 1 Pipeline of NGS-based
gene identification in PID. The
bar chat indicates the remaining
number of variants after each pri-
oritization step
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SNVs and 217 InDels and were carried by more than 50 % of
the samples (206 patients) and 50 % of our PID controls (27
normal individuals from the patients’ families) in our cohort
(data not shown), suggestive of platform association errors.

Here we summarize some of the variants that were found
among our patients, including variants reported in our previ-
ous studies (Table 1), hypomorphic variants causing an
incomplete phenotype (F3, F9, F12, F15, F16), a new or
unexpected clinical presentation in known PID genes (F10,
F19), variants in known genes but technically failed in
Sanger screening (F11, F13, F14, F16), a large deletion
mutation spanning an exonic region (F17) and mutations in
potential modifier genes result in different phenotypes in two
siblings with a same causative mutation (F7, F12, Table 1).

The strategies described above to prioritize detected gene
variants are commonly used. Although for many rare diseases,
filtering variants with a frequency of greater than 1 % is reason-
able, it may not be suitable for every PID, especially for reces-
sive diseases with a relatively high incidence [5]. It should also
be noted that their frequency may vary in different ethnic groups
and some databases, for instance, dbSNP, should be used with
caution, since it is built from a myriad of sources which do not
only include polymorphisms but also disease-causingmutations.
In-house databases could provide a suitable filter to remove
platform or laboratory-specific artifacts. However, the sample
size of the database and the population structure of samples
has an impact on the sensitivity and specificity of the filter. For
instance, if the in-house database only contains samples from a

Fig. 2 Frequency and predicted functional impact of the known PID
variants. (a) (b) Number of PID variants with different ranges of
frequencies where variants were downloaded from the RAPID (http://
web16.kazusa.or.jp/rapid/) database and the HGMD (http://www.hgmd.
cf.ac.uk/ac/index.php) database, respectively. The frequency data are
based on our in-house database, ExAC (http://exac.broadinstitute.org/),

ESP (http://evs.gs.washington.edu/EVS/) and KG (http://www.
1000genomes.org/) databases, ‘NA’ represents variants not present in
the corresponding database. (c) (d) Number of variants fall into
different categories of functional impact based on prediction using
different software, ‘NA’ represents the severity of functional impact of
the variants that could not be predicted by the software
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few big families, it could be enriched for rare, disease-associated
heterozygous variants, which may lead to the exclusion of re-
cessive disease-causing homozygous variants.

Disease-causing genes may not be found in all studied fam-
ilies, for instance, in our study, disease-causing candidate genes
were only identified in 134 of 183 families sequenced, (134
patients in a total of 206 cases). Failure in identification of
causative genes in the remaining families could be due to many
reasons, one being that some genes or exons are not well cov-
ered or included in the capture arrays, including some known
PID genes (LAMTOR2, EPG5, IGKC, IGHG1, IGHG2,
IGHG3, IGHG4, IGHA1, IGHA2, IGHE and IL36RN). Large
insertions or deletions, copy number variations or structural
variations are also not easily traceable using short read ap-
proaches. In addition, some under-investigated disease-associ-
ated variants like SNPs in the UTR region, long non-coding
RNAs and non-canonical or deep intronic splicing elements
may not be detected by WES or targeted region sequencing.
The advance of sequencing technologies and the improvement
of capture may narrow this gap, and carefully making choices
according to the characteristics and preferences of the different
platforms may also be helpful in order to improve the success
rate of genetic studies [45]. Beside all these technical limitation,
new genetic etiologies that may be unrelated to the previous
known genes/pathways, that is beyond our hypothesis, and is
not easy to be identified, especially when the subjects are spo-
radic or a very small number of patients are available in family.

If no good candidate is found, revisiting all assumptions in
the screening pipeline and analysis of the parameters is essen-
tial for finding themissing pathogenic variants. To reduce false
positive variant calling in the homogenous regions of the ge-
nome, we only use unique mapping reads to call variants, and
as a result, call variants in homogenous regions may be
missed. If no good candidates are found, we can review vari-
ants in the homogeneous regions by analyzing all reads, in-
cluding reads mapping to multiple regions, for variant calling.

Although the variant prioritization methods described
above are able to exclude most of the irrelevant mutations,
accurately identifying disease-causing mutations in the re-
maining patients is still a challenge. Some novel methodolo-
gies to assist the variant prioritization process could be very
helpful. One possible way is to prioritize genes based on their
position in a pathway, the hypothesis being that genes in the
same or a related pathway are more likely to be relevant to the
same disorder. Mapping knownMDs genes into pathways and
assessing their relative position is essential to test this hypoth-
esis. If it holds true, we will be able to relax the filtering
criteria, to reduce false negative results in disease gene
identification.

During the past decades, much effort has been devoted to
unravelling the genetic basis of different forms of PID, and the
etiology of manymonogenic diseases have now been identified
[6]. However, even in some disorders with a presumed

monogenic origin, and in most patients with a disease of
digenic or polygenic origin, little progress has been made to
date. The genetic analysis is also hampered by a variable clin-
ical picture, where patients with mutations in recognized PID
genes that are known to result in a given clinical phenotype,
may, in fact, have features characteristic of a broad spectrum of
different PIDs [18–24]. In addition, family members carrying
the same Bpathogenic^ mutation as the proband may be
healthy, suggesting an influence of modifying genes in the
former, beside, factors other than genetic one can make a con-
tribution to the development of disease, which include environ-
mental factor, age, diet et al.

Mutations in several genes that are potentially disease-
causing have been observed in patients with common variable
immunodeficiency (reviewed in [6]). However, these only ac-
count for a minority of cases (10–15 %), suggesting that ad-
ditional genes contribute to the development of the defect. The
same issue is noted in patients with IgA deficiency, the most
common form of PID in Caucasians, where several genes [25]
have been found to be associated with the deficiency, yet, the
associated variants are only found in a minority of patients.
Thus, a search for additional disease-causing genes is clearly
warranted in patients with different forms of PID. However,
although the methodology (from single gene sequencing, to
exome sequencing and ultimately whole genome sequencing)
has improved the success rate in finding disease-causing mu-
tations, we strongly feel that a multi-omics approach (includ-
ing epigenetics, transcriptomics, proteomics, functional path-
way testing and analysis of the microbiome) is now needed to
supplement the genetic data and thus, to further the PID field.
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