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Abstract
Purpose Estimating the underlying demand for immunoglob-
ulin (Ig) is important to ensure that adequate provision is made
for patients with primary immune deficiency (PID) in the

context of the competing demands for Ig and to ensure optimal
therapeutic regimens. The concept of latent therapeutic demand
(LTD) was used to estimate evidence-based requirements and
compared to the actual Ig consumption in different countries.
The estimates were performed for common variable immuno-
deficiency (CVID) and X-linked Agammaglobulinaemia
(XLA), the two most commonly studied PIDs using Ig.
Methods The LTD model for CVID and XLA was derived
using decision analysis methodology. Data for the epidemiology
and treatment variables were obtained from peer-reviewed pub-
lications, clinical registries and publicly-available patient sur-
veys. Incomplete data records from registries were excluded
from analysis. The variables impacting LTD were ranked in
order of sensitivity through a tornado diagram. The uncertainty
surrounding the variables was modeled using probabilistic dis-
tributions and evaluated using Monte Carlo simulation.
Results Treatment dosage and prevalence were determined to
be the most sensitive variables driving demand. The average
potential usage of Ig for the treatment of CVID and XLAwas
estimated at 72 g per 1,000 population, which is higher than
the estimated Ig usage in CVID and XLA of 27–41 g per
1,000 population in the US.
Conclusion The potential demand for treating CVID and XLA
exceeds the currently observed usage of Ig in these disorders.
Variable usage in different countries is due to varying prevalence
and dosage practices. Under-reporting in patient registries repre-
sents a major obstacle to calculating the true prevalence of CVID
and XLA. Modeling demand relies heavily upon accurate prev-
alence and practice estimates which reemphasize the importance
of accurate registries and improved registry methods. As better
data becomes available, revision of model variables provides
opportunities to anticipate and prepare for evolving patient needs.
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Introduction

Therapeutic preparations of polyclonal immunoglobulin G
(Ig) have enhanced significantly the survival and quality of
life of patients with a number of primary immunodeficiencies
(PID) [1, 2]. The treatment of PID has evolved over the past
60 years as improvements in manufacturing technology have
allowed high concentrations of Ig to be delivered safely with
normal molecular structure and functionality [3, 4]. This has
contributed to a substantial and continuing increase in the use
of Ig over the past 20 years [5]. A number of other diseases are
treated by Ig, particularly autoimmune disorders, including
several neuropathies [6], which have resulted in this product’s
key position in the therapeutic armamentarium and in the
economics of the plasma fractionation industry.

The sourcing of Ig from human plasma makes it an inher-
ently limited resource, and its usage varies greatly between
countries [7], even when health care resources and general
economic conditions are similar. This has drawn scrutiny on
the usage of Ig and a number of guidelines have been devel-
oped, aimed at ensuring that usage is evidence-based [8, 9].

Despite data showing that usage is drawn from approved,
evidence-based indications, applications of these criteria has
not moderated the continuing increase of Ig consumption [10].
These data also demonstrate that the Ig treatment of PID
constitutes approximately 20–30 % of all Ig usage [11]. The
variation in Ig usage has led to suggestions that outcomes are
not inferior in countries which used evidence-based guidelines
to shape clinical use, and that higher than average usage
should be questioned [12]. Hence, an understanding of the
basis for Ig usage in PID is important to ensure continued
access of this therapy by the prescriber and patient communi-
ty. Given that many of the key clinical variables which may be
expected to affect usage, such as treatment dosage and disease

prevalence vary and are still subject to debate and uncertainty
[13, 14], such an estimate is challenging.

Decision analysis may be useful in making choices when
the consequences of action are uncertain [15]. We have pre-
viously described [16, 17] the use of decision analysis model-
ing to estimate the demand of coagulation Factor VIII (FVIII)
concentrate in treating hemophilia A in the event of such
treatment being unconstrained by any factors other than
evidence-based clinical and epidemiological findings. In this
study, we have applied similar methods to develop a model for
the assessment of latent clinical demand (LTD) for Ig in the
treatment of two major humoral primary immunodefi-
ciencies—common variable immunodeficiency (CVID) and
X-linked Agammaglobulinaemia (XLA). We define LTD as
the underlying demand that represents how physicians would
prescribe treatment and how patients would comply with the
prescribed treatment if ample supplies were available and
affordable, and access to therapy was unencumbered by issues
other than evidence-based clinical need, such as financial
constraints. Through this approach, we sought to relate the
estimated LTD for CVID and XLA to the current Ig consump-
tion across a range of countries.

Materials and Methods

Model Structure

The LTD for Ig in CVID and XLA was modeled using
decision analysis methodology. The variables determined to
influence LTD are shown in Table I, while their relationships
within the model are shown in the influence diagram (Fig. 1).
The model identifies nine random variables, seven of which
influence (or are influenced by) other variables (e.g., patient

Table I Variables that influence latent therapeutic demand (LTD) for Ig in CVID and XLA

Variable Description Influences

Prevalence Number of diagnosed patients with CVID and XLA
per 100,000 population

Age group of patients Percent of CVID and XLA patients in the following age
groups: 12 years and under, 13–17 years, 18–29 years,
30–44 years, 45–64 years, 65 years and older

Patient weight

Patient gender Percent of CVID and XLA patients that are male or female Patient weight

Patient weight Kilogram of body weight

Treatment rate Percent of CVID and XLA patients that are prescribed Ig treatment

Route of administration Percent of CVID and XLA patients treated intravenously (IVIG)
or subcutaneously (SCIG)

Treatment compliance, treatment
dosage, and treatment frequency

Treatment dosage Amount of treatment dose (milligrams per kilogram of patient weight)
for IVIG and SCIG

Treatment frequency Number of treatments per year for IVIG and SCIG

Treatment compliance Percent of CVID and XLA patients that comply with prescribed
treatment for IVIG and SCIG
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weight is influenced by patient gender and age group of
patient). The remaining two random variables, prevalence
and treatment rate, do not influence other random variables
in Fig. 1. Data obtained for the epidemiological-related vari-
ables were used to calculate the number of patients with CVID
and XLA. Data obtained for treatment-related variables were
used to calculate the treatment volume (Ig consumed) per
patient. LTD was derived from the product of the number of
patients and treatment volume per patient.

The analysis was performed in Microsoft Excel and the
decision analysis software DPL (Syncopation Software, Inc.
DPL 7.0 Professional, 1623 Main Street Concord, MA 01742
USA 2008). Excel was used to provide the organizational
structure of the data obtained for the epidemiological-related
and treatment-related variables. Excel was also used to pro-
vide the equations for calculating the number of patients,
treatment volume per patient, and the LTD. DPL provided
the tree diagram structure for Fig. 1, generated the tornado
diagram from the data obtained, and generated probability
distribution for LTD using the Monte Carlo simulation feature
of DPL.

Data Sources

Data for the epidemiological-related and treatment-related
variables were extracted from the peer-reviewed medical lit-
erature, and from patient registries and surveys. The patient

registry of the European Society for Immunodeficiencies
(ESID) [18, 19] was the main source of registry data. ESID
maintains an internet-based database for clinical and research
data on patients with primary immunodeficiency diseases.
Anonymous treatment data from the ESID Registry was pro-
vided by the Plasma Protein Therapeutics Association in
accordance with the ESID Database data access and publica-
tion rules. The analysis was approved by the ESID Registry
Steering Committee (see www.esid.org/registry for respective
documents). Patient surveys were primarily drawn from the
publically-available data of the United States patient advocacy
group—Immune Deficiency Foundation (IDF) [20–24].

Treatment data (route of administration, treatment dosage,
treatment frequency, and treatment compliance) were obtained
from the ESID Registry on Sep. 14, 2011 [18]. At the time of
this study, the ESID Registry included 4,016 clinical records
for 2,065 patients with CVID and 1,151 clinical records for
623 patients with XLA. A patient can have multiple clinical
records in the ESID Registry (e.g., when they change Ig
treatment). To reduce the size and complexity of this large
body of clinical records, specific inclusion criteria were de-
veloped (Fig. 2a and b). For example, the most-recent clinical
record for each patient was included, thus eliminating multiple
clinical records. Only clinical records that had complete treat-
ment information were included. This resulted in 748 clinical
records of CVID patients that were treated with IVIG (79 %)
and 200 clinical records of CVID patients that were treated

Latent
Therapeutic

Demand
(LTD)

Number of
Patients

Treatment
Volume

per Patient

Age
Group of
Patients

Patient
Weight

Patient
Gender

Prevalence

Treatment
Rate

Treatment
Compliance

Treatment
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Fig. 1 The influence diagram
model estimates the latent
therapeutic demand (LTD) of
CVID and XLA (amount of
grams of Ig treatment for CVID
and XLA consumed per 1,000
population) by multiplying the
number of patients with CVID
and XLA and the Ig treatment
volume per patient (ovals
correspond to uncertainties and
rounded rectangles are equations)
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with SCIG (21 %), as well as 305 clinical records of XLA
patients that were treated with IVIG (73 %) and 114 clinical
records of XLA patients that were treated with SCIG (27 %).

Analysis of Individual Variables

The sensitivity analysis of the LTD to the epidemiological-
related and treatment-related variables was assessed by deci-
sion analysis. One-way (i.e., one variable at a time) sensitivity
analysis was used to identify the variables that have the largest
impact on LTD for CVID and XLA. The minimum and
maximum values from the data obtained for each variable
were used to analyze the sensitivity on LTD for each variable.
The sensitivity of LTD from these variables was determined
using a tornado diagram [25].

Probabilistic analysis of the epidemiological-related and
treatment-related variables was used to generate a probability
distribution of LTD. Table II describes the probability methods
used for modeling the epidemiological-related and treatment-

related variables. The uncertainty about a variable that has a
discrete number of possible outcomes was modeled using a
discrete probability distribution (e.g., patient gender). When the
uncertainty about a variable has a continuum of possible out-
comes the variable was modeled using a continuous probability
distribution. For a continuous random variable when the data
obtained were limited, the uniform or the triangular probability
distribution was used (e.g., prevalence). For a continuous ran-
dom variable when data were available, an empirical probability
distribution of the data was derived and the extended Swanson-
Megill approximation [26] was applied (e.g., treatment dosage).
The extended Swanson-Megill approximation uses the 10th,
50th, and 90th percentiles of a probability distribution for a
continuous random variable resulting in a three-point discrete
probability distribution of the 10th, 50th, and 90th percentiles
that are assigned probabilities of 0.3, 0.4, and 0.3, respectively.

Prevalence Prevalence (the number of people alive diagnosed
with CVID and XLA at a certain point in time) is expressed in

4,016 clinical records of CVID
patients identified from ESID

2,065 unique clinical
records retrieved for review

1,951 duplicate clinical  
records removed

1,117 incomplete clinical
records removed

948 complete clinical
records included

748 clinical records of CVID 
patients treated with IVIG

200 clinical records of CVID 
patients treated with SCIG

1,151 clinical records of XLA
patients identified from ESID

623 unique clinical
records retrieved for review

528 duplicate clinical  
records removed

204 incomplete clinical
records removed

419 complete clinical
records included

305 clinical records of XLA 
patients treated with IVIG

114 clinical records of XLA 
patients treated with SCIG

a

b

Fig. 2 a Process of selecting
IVIG and SCIG treatment data for
CVID b Process of selecting
IVIG and SCIG treatment data for
XLA
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Table II Modeling the variables that influence latent therapeutic demand (LTD) for CVID and XLA

Variable CVID XLA Sources

Prevalence (per 100,000 population) Triangular (0.11,13.94, 30.01) Uniform (0.09,11.25) [13, 32, 34, 36]

Age group of patients Age group Low Base High Age group Low Base High [18, 21, 24]
12 & under 27 % 9 % 10 % 12 & under 27 % 35 % 10 %

13–17 11 % 8 % 8 % 13–17 11 % 18 % 8 %

18–29 15 % 19 % 12 % 18–29 15 % 30 % 12 %

30–44 18 % 21 % 16 % 30–44 18 % 13 % 16 %

45–64 25 % 30 % 39 % 45–64 25 % 4 % 39 %

65 & over 4 % 13 % 15 % 65 & over 4 % 0 % 15 %

Patient gender Outcome Probability Outcome Probability [27, 43]
Male 50 % Male 85 %

Female 50 % Female 15 %

Patient weight (kg) Male Percentiles Same as CVID [44]
Age group 10 50 90

12 & under 12.0 22.7 46.9

13–17 43.9 66.3 101.3

18–29 58.1 81.1 111.5

30–44 67.1 85.9 114.0

45–64 69.1 88.7 113.1

65 & over 65.4 83.8 104.5

Female Percentiles Same as CVID [44]
Age group 10 50 90

12 & under 10.9 21.1 49.5

13–17 44.0 57.6 81.0

18–29 50.9 65.3 98.6

30–44 54.1 70.2 106.6

45–64 54.7 73.7 106.3

65 & over 49.8 68.3 91.2

Treatment rate Uniform (78 %, 92 %) Uniform (88.9 %, 94 %) [20, 21, 37]

Route of administration Outcome Probability Outcome Probability [18]
IVIG 79 % IVIG 73 %

SCIG 21 % SCIG 27 %

Treatment dosage (mg/kg) Percentiles Percentiles [18]
10 50 90 10 50 90

IVIG 187 382 546 296 400 617

SCIG 48 105 179 60 122 256

Treatment frequency Outcome Probability Outcome Probability [18]
IVIG 12 0.45 12 0.63

17 0.45 17 0.34

24 0.10 24 0.03

SCIG 24 0.03 24 0.04

52 0.87 52 0.88

156 0.10 156 0.08

Treatment compliance Probability Values Probability Values [18]
IVIG Excellent 0.43 Uniform (95 %, 100 %) 0.43 Uniform (95 %, 100 %)

Good 0.47 Uniform (90 %, 95 %) 0.47 Uniform (90 %, 95 %)

Ok 0.08 Uniform (75 %, 90 %) 0.07 Uniform (75 %, 90 %)

Poor 0.02 Uniform (50 %, 75 %) 0.01 Uniform (50 %, 75 %)

Very poor N/A N/A 0.02 Uniform (0 %, 50 %)

SCIG Excellent 0.66 Uniform (95 %, 100 %) 0.40 Uniform (95 %, 100 %)

Good 0.32 Uniform (90 %, 95 %) 0.50 Uniform (90 %, 95 %)

Ok N/A N/A 0.09 Uniform (75 %, 90 %)

Poor 0.02 Uniform (50 %, 75 %) 0.01 Uniform (50 %, 75 %)

Very poor N/A N/A N/A N/A
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this paper as the number of people with CVID and XLA per
100,000 population. The true prevalences of CVID and XLA
are not known [13, 27, 28]. Table III shows country-specific
prevalence data that were obtained either directly as reported
in the literature or determined by dividing the number of
patients with CVID and XLA in the country by its total
population [29]. The minimum and maximum values from
the prevalence data obtained in the open literature ranged from
0.11 to 30.01 per 100,000 population for CVID [13, 20,
30–42] and 0.09 to 11.25 per 100,000 population for XLA
[30–35, 37–42]. These values were used in the one-way
sensitivity analysis. The uncertainty about CVID prevalence
was modeled with the triangular distribution using the above
range for CVID and the epidemiological-based study of Joshi
et al. [13] as the most-likely estimate (Table II). This model
was used in the probabilistic analysis. There were no XLA
cases reported in Joshi et al. [13] (personal communication,
Joshi to Stonebraker, June 11, 2013). Since there was not an
obvious most-likely estimate from analyzing the observed
XLA prevalence data (Table III), the uncertainty about XLA
prevalence was modeled with the uniform distribution using
the above range estimates for XLA (Table II). This model was
used in the probabilistic analysis.

Age Group of Patients The age group classification in the IDF
surveys [21–24] was used ≤12 years, 13–17 years, 18–
29 years, 30–44 years, 45–64 years, and ≥65 years. The
percentage of patients in each age group was determined from
these surveys [21, 24] and the ESID data [18] and used in the
one-way sensitivity analysis. The IDF age group data were
from the total PID patient population, whereas the ESID age
group data were specifically CVID and XLA patients. The
uncertainty about the age group of CVID and XLA patients
was modeled as a discrete random variable using the percent-
age of patients in age category from the ESID Registry [18]
(Table II). This model was used in the probabilistic analysis.

Patient Gender Patients with CVID and XLA are male or
female. Gender data were obtained from the open literature
[20–24, 27, 30, 35, 37, 40–43]. Since patient gender has
binary outcomes, the percentage of male CVID and XLA
patients was varied from 0 % (no males) to 100 % males in
the one-way sensitivity analysis. The uncertainty about patient
gender was modeled as a discrete binary random variable
using the percentage of male CVID and XLA patients [27,
43] (Table II). This model was used in the probabilistic
analysis.

Patient Weight The weight distribution data from the Centers
for Disease and Control (CDC) [44] was used, broken down
by gender and age group. To address the discordance in
alignment between the CDC general population age break-
down and the IDF age group data used for CVID and XLA

Table III Prevalence (per 100,000 population) data and total observed Ig
usage by country

Country Prevalence

CVID XLA Source Total observed
Ig usage [7]

Australia & New Zealand 1.88 0.32 [37]a 120.7

Canada 1.31 0.22 [39]b 140.1

France 0.72 0.26 [31]c 97.4

Germany 0.63 0.09 [34]d 41.5

Ireland 0.70 0.63 [30]e

Israel 0.58 0.23 [35]f

Japan 0.11 [36]g 26.5

Norway 2.11 0.25 [42]h

Spain 0.54 0.12 [38]i 69.6

Switzerland 0.89 0.34 [41]j

United Kingdom 1.29 0.19 [33]k 58.3

United States 1.97 [20]l 137.5

United States (New York State) 1.27 0.12 [40]m 137.5

United States 0.79 0.13 [39]n 137.5

United States 30.01 11.25 [32]o 137.5

United States (Olmsted
County, MN)

13.94 [13]p 137.5

a Calculated from 464 CVID and 80 XLA patients identified and Austra-
lia & New Zealand population of 24.7 million [37]
b Calculated from 452 CVID and 77 XLA patients in Canada identified
[39] and the 2011 population [29] of Canada 34.487 million
c Calculated from 441 CVID and 161 XLA patients identified and France
population of 61 million [31]
d Calculated from 512 CVID patients and 73 XLA patients identified and
German population of 81.751 million [34]
e Calculated from 28 CVID and 25 XLA patients identified and Ireland
population of 4.6 million [30]
f Calculated from 35 CVID and 14 XLA patients identified and Israel
population of 6 million [35]
g Calculated from 136 CVID patients identified [36] and Japan population
of 127.319 million [29]
h Calculated from 94 CVID and 11 XLA patients identified and Norway
population of 4.45 million [42]
i Calculated from 213 CVID and 49 XLA patients identified [38] and
Spain population of 39,421,000 [29]
j Calculated from 57 CVID and 22 XLA patients identified and Switzer-
land population of 6,423,100 [41]
k Calculated from 810 CVID and 120 XLA patients identified and United
Kingdom population of 63 million [33]
l Calculated from 5,291 CVID patients identified [20] and United States
population of 268,040,000 [29]
mCalculated from 242 CVID and 22 XLA patients identified and New
York State population of 19.1 million [40]
n Calculated from 2,501 CVID and 425 XLA patients in the United States
identified [39] and the 2011 populations [29] of United States 314.92 million
o Calculated from 8 self-reported CVID and 3 self-reported XLA patients
in a telephone survey of 26,657 [32]
p Calculated from 19 CVID patients identified [13] and Olmsted County,
Minnesota (MN) 2006 population of 136,260whichwas linearly interpolated
between the US Census of 2000 (124,277) and 2010 (144,248) [13]
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patients, the technique of Klein and Schonborn [45] was used
by dividing the age-specific counts in the CDC data [44] by
the total counts in that age group. An empirical probability
distribution for patient weight was derived for each male and
female age grouping. The 10th and 90th percentiles were
determined from this distribution and were used in the one-
way sensitivity analysis. The uncertainty about patient weight
by gender and age group was modeled using the extended
Swanson-Megill [26] (Table II). This model was used in the
probabilistic analysis.

Treatment Rate Data for the proportion of patients treated
with CVID and XLA were obtained from the open literature
[19–24, 37, 46–48]. The minimum and maximum values from
the treatment rate data ranged from 78 % to 92 % for CVID
and 88.9 % to 94 % for XLA. These values were used in the
one-way sensitivity analysis. The uncertainty about treatment
rate was modeled with the uniform distribution using the
above range (Table II). This model was used in the probabi-
listic analysis.

Route of Administration The routes of administration for
treating CVID and XLA are IVIG and SCIG. Since the route
of administration has binary outcomes, the proportion of
CVID and XLA patients was varied from 0 % (no IVIG,
i.e., all SCIG treatment) to 100 % IVIG treatment in the one-
way sensitivity analysis. The uncertainty about the route of
administration was modeled as a discrete binary random var-
iable using the proportion of CVID and XLA patients treated
with IVIG from the ESID Registry [18] (Table II). This model
was used in the probabilistic analysis.

Treatment Dosage Data for the treatment dosage (milligrams
of Ig per kilogram of patient weight) for patients with CVID
and XLA was obtained from the ESID Registry [18]. The
minimum and maximum values for IVIG treatment dosage
ranged from 49 to 1,091 for CVID and 104 to 1,036 for XLA.
The minimum and maximum values for SCIG treatment dos-
age ranged from 24 to 291 for CVID and 21 to 589 for XLA.
These values were used in the one-way sensitivity analysis.
An empirical probability distribution was derived from the
data obtained for each treatment dosage (e.g., IVIG treatment
dosage for CVID) and modeled by approximating the distri-
bution using the extended Swanson-Megill [26] (Table II).
This model was used in the probabilistic analysis.

Treatment Frequency Data for the number of treatment epi-
sodes per year was obtained from the ESID Registry [18]. The
minimum and maximum values for IVIG treatment frequency
ranged from 6 to 26 for CVID and 4 to 26 for XLA. The
minimum andmaximum values for SCIG treatment frequency
ranged from 24 to 365 for CVID and 12 to 208 for XLA.
These values were used in the one-way sensitivity analysis.

The uncertainty about treatment frequency was modeled as a
discrete random variable using the data obtained from ESID
[18] (Table II). This model was used in the probabilistic
analysis.

Treatment Compliance Compliance describes a patient’s be-
havior in adhering to a physician’s prescribed treatment and is
rarely reported in the literature because of the difficulty in
obtaining compliance data from physicians and/or patients.
For example, CVID treatment compliance was reported in
only one study [49]. Data from the ESID Registry [18] were
obtained on the treatment compliance and the minimum and
maximum values from these data were used in the one-way
sensitivity analysis. The uncertainty about treatment compli-
ance was modeled as a mixed (a discrete component and a
continuous component) random variable using the data ob-
tained from ESID [18] (Table II). This model was used in the
probabilistic analysis.

Results

One-Way Sensitivity Analysis

To analyze the impact on LTD of the epidemiological-related
and treatment-related variables, each variable was varied one
at time using its minimum and maximum values while leaving
the other variables set at their base-case values. The use of
minimum and maximum values rather than a point estimate to
describe the possible outcomes of a variable addresses the
level of uncertainty for each variable. In the tornado diagram
(Fig. 3), the length of the bar for each variable represents how
sensitive LTD is to each variable. The tornado diagram is
arranged such that the variable with the greatest impact on
LTD is the longest bar and it is located at the top whereas the
least sensitive is shown at the bottom of the diagram. Figure 3
demonstrates that the most sensitive variables are treatment
dosage, prevalence, and treatment frequency. In contrast,
changes in patient gender (male or female), treatment rate,
age group of patients, and route of administration (IV or SC)
will have little impact on LTD. Since the tornado diagram
provides one-way sensitivity analysis, a probabilistic analysis
was used to provide a coherent, comprehensive way of char-
acterizing the uncertainty of LTD by evaluating all the possi-
ble outcomes of the variables simultaneously.

Probabilistic Analysis

Probabilistic analysis (Monte Carlo simulation) evaluated LTD
for all of the uncertain outcomes of the epidemiological-related
and treatment-related random variables, including the influenc-
ing relationships among the variables in Fig. 1. Using the
modeling inputs from Table II in the model depicted in Fig. 1
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resulted in a probability distribution of LTD for CVID and
XLA. The mean and standard deviation of the probability
distribution of LTD for CVID and XLA are 72±40 g per
1,000 population (with the LTD for CVID and XLA averaging
52 and 20 g per 1,000 population, respectively). Figure 4
compares this distribution to the total observed Ig usage for
various countries [7]. The total observed Ig usage in most of the
countries in Fig. 4 was less than the median (64 g per 1,000
population) of LTD for CVID and XLA. In some countries, the
total observed Ig usage is less than the lower quartile of the
probability distribution of LTD for CVID and XLA, whereas
the total observed Ig usage for Canada (140.1 g per 1,000
population), United States (137.5 g per 1,000 population),
Australia (120.7 g per 1,000 population, and France (97.4 g
per 1,000 population) exceeded the upper quartile. However,
all of the countries in Fig. 4 include not only Ig usage for CVID
and XLA, but also Ig usage in other diseases. It has been
observed that approximately 20–30 % of the total observed Ig

usage is attributed to CVID and XLA [11]. If this is factored in,
then all of the countries shown in Fig. 4 would be less than the
median of LTD for CVID and XLA. For example, the Ig usage
for CVID and XLA of Canada would be approximately 28 to
42 g per 1,000 population.

Discussion

High-dose immunoglobulin therapy has evolved into an ac-
cepted strategy for a number of diseases. Analysis of Ig usage
in a number of advanced economies suggests that the treat-
ment of PIDs now constitutes a minority of the use [50]. The
significant variation between different countries suggests that
therapy across the range of Ig indications is still not uniform
despite the presence of similar consensus guidelines on Ig use
in immunodeficiency [1, 9, 47] and high Ig usage neurological
indications [10, 51–53].

Treatment Dosage

Prevalence

Treatment Frequency

Treatment Compliance

Patient Weight

Patient Gender

Treatment Rate

Age Group of Patients

Route of Administration

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Latent Therapeutic Demand for CVID and XLA (grams per 1,000 population)

Fig. 3 The tornado diagram
shows the changes in latent
therapeutic demand (LTD) of
CVID and XLA that result from
varying each variable sequentially
over its range of possible
(minimum and maximum) values
while leaving the other variables
set at their base-case values

0

25

50

75

100

125

150

175

CVID 
and XLA 

LTD

Canada United 
States

Australia France Spain United 
Kingdom

Italy Germany Japan Turkey Brazil China Russia

1,000 grams per 
population

Fig. 4 The box-and-whisker plot shows the median value, interquartile
range (box), and the 5th and 95th percentiles (whiskers) for the probabil-
ity distribution of latent therapeutic demand (LTD) for CVID and XLA
when compared to the total observed immunoglobulin usage for various

countries (shown as dots). The median is 64 g per 1,000 population, 25th
and 75th percentiles are 43 and 92 g per 1,000 population, and the 5th and
95th percentiles are 23 and 148 g per population. The mean and standard
deviation of the distribution are 72±40 g per 1,000 population
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In a recent study comparing United States and European
practice [48], concordance was found in the types of disease
treated, but significant differences were reported on dosage
and frequency of Ig treatment. Intriguingly, dosages and fre-
quencies tended to be higher when recommended by
European specialist physicians, despite the lower Ig usage in
Europe compared to the United States. The most striking
difference in this comparative study involved the perception
of the risk to patients resulting from effects of reimbursement
processes on the access to Ig therapy, with strong concerns
reported by United States, but not European physicians.

Such concerns may be due to the overall higher Ig use, and
higher costs, in the United States coupled with the predomi-
nantly private-insurance-based reimbursement in that country
compared to the government-based reimbursement in Europe.
However, treatment access pressures are highly visible also in
Europe, whose payers, such as the United Kingdom govern-
ment [51] have instituted demand management strategies
aimed at ensuring that reimbursed Ig usage is evidence-
based. In this climate of pressure on usage, estimating the
underlying demand for Ig in PID is important to ensure that
adequate provision is made for patients with immunodeficien-
cy in the context of the competing demands for Ig.

We chose to model the LTD for two primary immunodefi-
ciencies which utilize Ig – CVID and XLA – as these are the
commonest PIDs which consume Ig. An estimate of the
potential demand is a good indicator for the Ig needs for
PID. Our choice of using decision analysis to model LTD
for CVID and XLAwas based on the uncertainty surrounding
two key factors influencing usage of Ig in PID. The sensitivity
analysis (in Fig. 3) demonstrates that CVID and XLA Ig
dosage and prevalence are highly influential to LTD. For
example, if the level of Ig treatment increases there would
be an increase in the LTD of CVID and XLA. Similarly, if the
actual prevalence of CVID and XLA is higher than what has
been observed, there would be an increase of LTD.

Despite more than three decades of use, the optimal dose of
Ig treatment for PIDs that is needed to minimize infection in
most patients remains uncertain [1, 14, 47] with estimates
ranging from 200 to 1200 mg/kg body weight [49]. The
recommended dose is 400 mg/kg [54], to result in trough
levels with IVIG of 500 mg/dl. However, a number of studies
have demonstrated improved outcomes with higher doses
[55–57].With both IVIG and SCIG [14, 58], analysis of many
trials demonstrates that lower infection rates continue to be
experienced as the trough level (IVIG) and steady state
(SCIG), respectively, are increased through dosages of 800–
1000 mg/kg. Classifying the clinical phenotypes of CVID
continues to be pursued as a possible route to identifying
which patients benefit from particular approaches to Ig thera-
py. Quinti et al. [59] have proposed an approach including
factors such as patient IgA levels, response to vaccination and
loss of memory B cells [60], in addition to clinical features and

IgG levels as proposed by Chapel et al. and others [61–63].
The role of diagnostic variation has also been demonstrated
[64]. So far, these approaches and a large European trial
[65] have failed to yield a reliable parameter as to
which disease phenotype predicts the need for/approach
to Ig therapy.

The true prevalence of CVID and XLA is uncertain. CVID
constitutes a heterogeneous group of diseases whose genetic
basis is in the majority unknown and likely to be polygenic
[66] and whose disease prevalence has varied considerably
(see below). As shown in Table III, there is high variability of
the prevalence data reported in the literature. For example,
other than the CVID prevalence data of 13.94 and 30.01 per
100,000 population from Joshi et al. [13] and Boyle and
Buckley [32], respectively, the rest of the literature reported
CVID prevalence data from registries that were under-
reported and clustered around 1.0 per 100,000 population. In
addition, the XLA prevalence data were under-reported and
clustered around 0.2 per 100,000 populationwhereas the XLA
prevalence from Boyle and Buckley [32] was 11.25 per
100,000 population. Incomplete records have introduce a bias
in the prevalence data, and that for such data registries/studies
specifically targeting prevalence (e.g., Joshi et al. [13]) are
more reliable if they give more complete prevalence data even
in the absence of more detailed clinical data.

The initial development of the LTD model reported at
conferences [67] included cases of XLA from Joshi et al.
[13]. Subsequent confirmation indicated that there were no
XLA cases (personal communication, Joshi to Stonebraker
June 11, 2013) requiring that the modeled maximum value
of XLA be adjusted from 26.6 per 100,000 population to
11.25 per 100,000 population [32]. This resulted in a substan-
tial decrease of the LTD of XLA from 48 g per 1,000 popu-
lation as initially reported [67] to 20 g per 1,000 population in
this study. This results in a more robust estimate of XLA LTD,
and illustrates the difficulty in acquiring reliable data of prev-
alence for PIDs to inform models such as ours.

Difficulties in determining true prevalence place limita-
tions on such models, but our results have implications for
policy makers and others involved in the delivery of immu-
noglobulin therapy. The finding that the potential usage of Ig
for PID (CVID and XLA) averages 72 g per 1,000 population
suggests that Ig usage in most countries is still considerably
below the potential demand. For example, when using its
published CVID and XLA prevalence [39] the mean LTD
for Canada was 5.5 g per 1,000 population. This represents
only 3 % of Canada’s total Ig usage of 140.1 g per 1,000
population. The total observed Ig usage values in Table III
include the Ig usage for CVID and XLA and other disease
indications [7], but data from a range of sources indicates that
PIDs account for 20–30 % of overall use [11]. Hence, using
published data for specific countries’ prevalence generated
frommost current mechanisms projects lower Ig consumption
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than is actually observed, even in a clinical landscape of
potentially higher LTD.

Analysis of Ig usage data from Australia, a country with a
high overall Ig usage of 120.7 g per 1,000 population [10] and
a strictly monitored evidence-based issue policy shows that
the total Ig usage for PIDs is around 15 % of this amount at
21 g per 1,000 population, about a third of the estimated latent
demand for the two main primary immunodeficiencies. The
prevalence of CVID and XLA in Australia has been reported
as 1.88 and 0.32 per 100,000, respectively [37]. The estimate
for XLA is of the order reported globally and used in our
study. However the estimate for CVID is considerably lower
than our base case [13]. This Australian study reports from a
patient registry with the possible under-reporting discussed
above and it is therefore possible that these prevalence esti-
mates are masking the true prevalence and the potential de-
mand for Ig for CVID. Appropriate provision of Ig therapy is
of the essence and depends upon robust diagnostic criteria that
grow along with the immunologic and genetic understanding
of the diseases. These are evolving towards less nebulous
guidance withmore specific structuring of certain components
such as the interpretation of response to vaccination [64]. The
differences between the different geographic regions demon-
strate, even if there were to be substantive present under-
reporting, that LTD is still substantive.

This accentuates the importance of improving diagnosis as
a component to ensuring disease delivery, but the use of
incomplete data in devising policy and planning treatment is
fraught with risk. Recently, Germany has been proposed as an
example of a socially sensitive wealthy social market health
care system in which Ig consumption is considerably below
that of the higher usage countries such as the United States,
Canada and Australia [12]. It was suggested that health out-
comes for patients in low usage countries are not inferior to
those of high usage countries. That said, the potential benefits
of higher usage may take years to become apparent and
require robust data capture longitudinally [14]. Moreover,
the PID landscape in Germany includes certain barriers in
diagnosis and treatment (as can also found in other countries),
particularly in transitioning pediatric patients into adult care
[68]. This has perhaps resulted, amongst other features, in a
remarkably lower prevalence of CVID and XLA in Germany
[34] than in similar countries (Table III).

Conclusion

In summary, the present study suggests that, using literature-
based data for the inputs proposed in our LTD model, the
potential demand for treating the two main Ig-consuming
PIDs approaches levels which exceed the usage of Ig for these
disorders as currently recorded. The central finding of this
research is that the average potential usage of Ig for the

treatment of CVID and XLA is 72 g per 1,000 population,
which is higher than the estimated Ig usage in CVID and XLA
of 27–41 g per 1,000 population in the US. The US has the
second highest total observed Ig usage of 137.5 g per 1,000
population [7]. Furthermore, the results from the LTD model
exceed the total Ig usage in most countries where these data
are available. Hence continued efforts to increase the supply
of Ig through increasing the supply of plasma and the effi-
ciency of manufacture are required. Ensuring that Ig treatment
is focused on evidence-based indications is also an essential
part in managing this precious resource.
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