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Abstract
Introduction The immune response is controlled by several
inhibitory mechanisms. These mechanisms include regulatory
T cells, which exist in multiple classes. Notable among these
are Foxp3-expressing regulatory Tcells (Treg), NKTcells, and
Tr1 cells. Common to these mechanisms are inhibitory cyto-
kines such as interleukin-10 and transforming growth factor-
beta (TGF-β). TGF-β and Foxp3-expressing Treg cells are
critical in maintaining self-tolerance and immune homeostasis.
Discussions The immune suppressive functions of TGF-β
and Treg cells are widely acknowledged and extensively
studied. Nonetheless, recent studies revealed the positive
roles for TGF-β and Treg cells in shaping the immune
system and the inflammatory responses. In this paper, we
will discuss the role of these mechanisms in the control of
immunity and autoimmunity and the mechanisms that
underlie how these molecules control these responses.
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Introduction

Adaptive and innate immune strategies have evolved in
mammals to defend against foreign pathogens to maintain
health. With highly antigen-specific surface receptors, T cells
are pivotal for adaptive immune responses. Most T cells
activate immune responses. Through quasi-random recombi-
national mechanisms, thymic derived T cells potentially
possess infinite numbers of specificities toward foreign as
well as self-antigens. Dysregulated self-reactive T cells can
lead to autoimmune diseases. Multiple processes therefore
are in place to suppress the generation or the function of self-
reactive T cells. These T cells can be deleted in the thymus
and the periphery. Such elimination processes are however
incomplete, resulting in small populations of mostly low-
affinity self-reactive T cells in the periphery to potentially
initiate an autoimmune response. Fortunately, active immune
suppressive mechanisms exist to suppress the function of
these autoreactive T cells. Dysregulated immune suppression
often results in immune disorders. Autoimmunity and
inflammatory diseases can be caused by decreased immune
suppression, while cancers are often associated with in-
creased immune suppression. Great progress has been made
in understanding the cellular and molecular components of
immune suppression. Active immune suppression is mediat-
ed mostly through either cytokines or through specialized
cells. The pleiotropic cytokine, transforming growth factor-
beta (TGF-β), and the immune-suppressive cell, previously
called suppressor cells [1] and now usually termed regula-
tory T cells (Treg), play critical roles in suppressing the
immune response. For years, we have been interested in the
immune suppressive functions of TGF-β and Treg under
normal and immune-pathological conditions. Recently, our
and other studies suggest that, in a cell-type and environ-
ment-dependent fashion, TGF-β and Treg might also
positively regulate immune responses. In this paper, we will
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discuss our views on the functions of TGF-β and Treg in the
immune regulation.

TGF-β and its Signaling

Consisting of a family of pleiotropic cytokines, TGF-β
regulates multi-faceted cellular functions including prolif-
eration, differentiation, migration, and survival [2].

Among the three known isoforms of TGF-β (TGF-β1,
TGF-β2, and TGF-β3), TGF-β1 is predominantly
expressed in the immune system. TGF-β is synthesized in
an inactive form, pre-pro-TGF-β precursor. Additional
stimuli are required to liberate active TGF-β, enabling it
to exert its function by binding to its receptor [3–7]. The
active form of TGF-β can function in either a cell-surface-
bound form or a soluble form [8, 9].

Activated TGF-β binds to its receptor consisting of two
subunits, ALK5 and TGFβRII, and initiates signaling
cascades [10]. Intracellular signal transduction of TGF-β is
mediated to a great degree via Smad proteins [10, 11]. The
eight vertebrate Smads identified thus far are grouped into
three categories: five receptor-associated Smads (R-Smad1,
2, 3, 5, and 8), one common Smad (Co-Smad4) and two
inhibitory Smads (I-Smad6 and 7). Upon TGF-β stimulation,
activated ALK5 phosphorylates R-Smad-2 and R-Smad-3.
Phosphorylated R-Smads associate with Co-Smad4 and
translocate into the nucleus to bind to DNA containing a
Smad-binding element [12–15]. Smad-independent TGF-β
signaling pathways have also been reported [16, 17].
Through mechanisms yet to be determined, rapid activation
of Ras-Erk, TAK-MKK4-JNK, TAK-MKK3/6-p38, Rho-
Rac-cdc42 MAPK, and PI3K-Akt pathways occurs when
cells are treated with TGF-β [18]. MAPKs also coordinate
with Smads to modulate TGF-β responses [19–21].
Moreover, TGF-β receptors activate TRIP-1 and PP2A
through direct protein binding to regulate translation
initiation [22–24]. Therefore, TGF-β exerts its regulation
of target cell function via many different signaling pathways.
T-cell specific target genes of TGF-β are largely unknown;
however, the expression of genes important for T-cell
differentiation and function, such as GATA3, T-bet, STAT4,
interferon-γ (IFN-γ), and granzyme-B, are suppressed by
TGF-β [25–29].

Regulatory T cells

Immune suppression was proposed in the early 1970s by
Gershon et al. [1, 30, 31]. It was not until the 1990s that
Sakaguchi et al. [32] identified a subset of T cells with
markedly increased expression of CD25 as suppressor T cells
and later referred to as Treg cells. In recent years, substantial

progress has been made in identifying different types of Treg
cells and in understanding how these cells are generated and
function. Based on cell surface markers or cytokine secretion
profiles, Tregs can be generally grouped into two categories:
naturally occurring Tregs (nTreg) and acquired Treg (aTreg).

Naturally Occurring Treg

A subset of CD4 T cells that develop in the thymus and con-
stitutively express cell surface IL-2 receptor α chain (CD25)
are termed as nTreg. CD4+ CD25+ nTregs comprise approx-
imately 10% of peripheral CD4 T cells in mice and humans.
nTregs are critical for maintaining self-tolerance, as disrup-
tion of thymic development or peripheral maintenance of
these cells invariably results in the development of autoim-
munity. Cell surface molecules, such as cytotoxic T lympho-
cyte antigen-4 (CTLA-4), glucocorticoid-induced tumor
necrosis factor receptor family-related gene (GITR), and lym-
phocyte activation antigen-3 have also been used to differen-
tiate nTreg from conventional Tcells [33]. TGF-β is expressed
in nTreg at high levels as a cell-surface-bound form [9, 34].
nTreg cells suppress immune responses in an antigen non-
specific fashion in vitro and in vivo [33, 35–37]. Foxp3, an
X-linked transcription factor belonging to fork-head family, is
specifically and highly expressed in nTreg. Thus, Foxp3 is
currently used as the most reliable molecular marker for nTreg.

Acquired Treg

Conventional T cells are able to gain immune-suppressive
activities and become aTreg. Tr1 and Th3 cells are two
reported types of aTreg. Tr1 cells are often found within the
intestinal mucosa and suppress immune reactions toward a
variety of cognate antigens [38]. There is no particular sur-
face marker associated with Tr1 cells. However, these cells
produce increased levels of interleukin-10 (IL-10) and TGF-
β [39]. Tr1 cells do not express Foxp3 [40], suggesting that
it is a subset of Treg distinct from nTreg. Th3 is another
aTreg subset induced primarily from naive CD4 T cells after
ingestion of a foreign antigen via the oral route, thereby
eliciting oral tolerance [41, 42]. While no particular surface
marker is associated with these cells, Foxp3 is expressed in
Th3 cells [43]. In addition, TGF-β is produced at elevated
levels by Th3 cells [42]. Whether Th3 cells form a distinct
aTreg subset or are activated nTreg remains to be evaluated.

TGF-β Regulated Immune Responses

Critical Role for TGF-β in Immune Suppression

The inhibitory effect of TGF-β on the immune system was
first described in 1986, where TGF-β was found to inhibit
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the proliferation of human B and T cells [44, 45]. However,
the definitive evidence to support the critical roles of TGF-β
in immune suppression were not presented until the analysis
of TGF-β1-deficient mice [46, 47]. Since then, using
genetic-modified mouse models, our and other laboratories
have carried out extensive studies to evaluate the immune
functions of the components of TGF-β signaling networks,
including their receptors and intracellular signaling mole-
cules, and furthered the understanding of the suppressive
role for TGF-β in the immune system. TGF-β regulates the
adaptive immunity components, such as T cells, as well as
the innate immunity components, such as natural killer
(NK) cells [48–54]. TGF-β suppresses immune responses
through at least two ways: inhibiting the function of
inflammatory cells and promoting the function of Treg cells.

Multiple types of immune cells can be regulated by
TGF-β [55]. In the early studies, TGF-β was found to
suppress T-cell proliferation by inhibiting the production of
IL-2, a lymphokine known to potently activate T cells, NK
cells, and other types of cells of the immune system. Addition
of exogenous IL-2 partially relieved TGF-β-mediated sup-
pression [45]. TGF-β suppresses IL-2 production in T cells
potentially through direct inhibition of IL-2 promoter
activity; a cis-acting enhancer DNA element was identified
to be critical in suppressing IL-2 production by TGF-β [56].
In addition, R-Smad3 is critical in mediating TGF-β
inhibited IL-2 production, as TGF-β failed to suppress IL-2
production in murine T cells that lack this gene [57].
Moreover, the Smad-binding element has been located
upstream of the human IL-2 promoter, which is important
for Smad-mediated transcriptional suppression of IL-2 [58].
Because addition of exogenous IL-2 did not fully recon-
stitute T-cell proliferation [45], TGF-β inhibits T-cell
proliferation also through yet-to-be-defined IL-2-independent
mechanisms.

To perform immune function, naive CD4 T cells
differentiate into three major types of effector T cells after
activation [59]. Based on their cytokine production, CD4
effector T cells, also named T helper (Th), can be
categorized as Th1, Th2, and Th17 cells [60, 61]. Th1 cells
produce IFN-γ, Th2 cells secrete IL-4, IL-13, and IL-5, and
Th17 cells express IL-17 and IL-22 [62]. While TGF-β
partially suppresses T-cell proliferation, we have found that
TGF-β potently inhibits effector T-cell functions and thus
their differentiation into Th1 or Th2 effector cells under
tissue culture conditions [63]. Further studies revealed that
TGF-β regulates effector T-cell function through multiple
mechanisms. Distinct sets of transcription factors are
preferentially expressed in and are important for Th-cell
differentiation. These include T-bet and Stat4 for Th1
differentiation and Gata-3 and Stat6 for Th2 differentiation
[59]. While the detailed mechanism remains unknown, our
and other studies showed that T-bet and Gata-3 expression

is inhibited by TGF-β [26, 27, 64, 65] possibly, in the latter
case, through a mechanism via blocking Itk kinase activity
and calcium influx [25]. Interestingly, effector cytokine
production by fully differentiated Th2 cells is unaffected by
TGF-β, while Th1 cells remain susceptible to TGF-β
suppression [66]. Therefore, TGF-β exerts most of its
inhibitory effects on the establishment of effector cell
functions. Our recent study demonstrated that Th1-polarizing
condition promotes CD122 (IL-2 receptorβ chain) expression
through T-bet [67]; thereby enhancing the clonal expansion
and survival of Th1 cells [67]. Addition of TGF-β sup-
pressed CD122 upregulation under Th1-skewing conditions.
Therefore, TGF-β also limits Th1 effector cell numbers
through inhibiting the upregulation of CD122. It was also
noted that TGF-β inhibited T-cell differentiation independent
of T-cell proliferation [68]. Thus, TGF-β potentially regu-
lates T-cell proliferation and effector functions through
discrete mechanisms with the greatest effects on suppressing
their differentiation. While TGF-β inhibits the production of
pro-inflammatory cytokines, it promotes T-cell production of
IL-10, an anti-inflammatory cytokine, likely through direct
activation of the IL-10 promoter via Co-Smad4 [69].

Besides regulating CD4 T cells, TGF-β controls CD8 T-
cell proliferation and effector functions. The expression of
effector molecules by CD8 T cells, such as IFN-γ and
perforin, is inhibited by TGF-β [70–73]. Recent studies
showed that TGF-β is important for Treg-induced inhibi-
tion of the exocytosis of granules and cytolytic function of
CD8 T cells [74].

TGF-β is critical in immune suppression under physio-
logical conditions because TGF-β1−/− mice develop a
multifocal inflammatory disease associated with increased
inflammatory cytokine production [46, 47, 75]. This
phenotype is predominantly mediated through T cells, as
depletion of CD4+ T cells or crossing TGF-β1−/− mice onto
an MHC class II null background prevented this inflamma-
tion [76]. However, from these studies, it was not clear
whether T cells are direct targets of TGF-β since TGF-β1
acts on multiple cell types. Indeed, TGF-β plays an
important role in suppressing innate immunity. By
expressing a transgene encoding a dominant negative
form of TGFRII under the control of CD11c promoter
(CD11cTGFDNR), we blocked TGF-β signaling in NK
cells and dendritic cells (DC) [51]. Blockade of TGF-β
signaling in NK cells caused the accumulation of a large
pool of NK cells secreting copious amounts of IFN-γ.
Increased IFN-γ induced Th1 differentiation of CD4 T cells
in these mice and resulted in their resistance to Leishmania
infection. However, blockade of TGF-β signaling in DC
from these mice did not affect DC homeostasis or
interleukin 12 production, suggesting that TGF-β differen-
tially affects NK and DC cells. In addition, TGFβRII
deletion facilitated generation of a highly pathogenic T-cell
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subset exhibiting hallmarks of NK cells. These TGFβRII-
deficient NK-like T cells highly elevated IFN-γ expression
[77]. Further studies are warranted to elucidate TGF-β
function in the generation and function of innate compo-
nents and the underlying mechanisms.

To further investigate the intrinsic function of TGF-β in
T cells, several groups including ours have used transgenic
approaches to block TGF-β signaling in T cells by
expressing dominant negative TGF-β receptors [50, 52].
In this effort, we generated mice expressing a dominant-
negative form of TGFβRII from the CD4 promoter (CD4-
dnTβRII), whose CD4 and CD8 T cells are refractory to
TGF-β signaling. These mice developed an autoimmune
inflammatory phenotype associated with uncontrolled
CD4+ T-cell differentiation into Th1 effector cells [50].
Without TGF-β signaling, both CD4 and CD8 T cells from
CD4-dnTβRII mice displayed increased effector functions,
which led to drastically increased immune rejection of B16
melanoma and EL4 lymphoma in vivo [78]. Nonetheless,
CD4-dnTβRII mice displayed much less immune pathology
than TGF-β1−/− mice. This is possibly due to insufficient
expression of the transgenes or incomplete inhibition of
TGF-β signaling. Subsequent studies demonstrated that
deletion of TGF-βRII in the bone marrow cells results in
an immune pathology similar to that found in TGF-β1−/−

mice [79]. However, the contribution of T cells to such a
phenotype remained undetermined. Recently, more definitive
studies from our laboratory have uncovered the essential role
of TGF-β signaling in controlling the development, homeo-
stasis, and tolerance of T cells through both Treg-dependent
and Treg-independent mechanisms [67]. Mice with T-cell
specific TGF-βRII deletion (4cre-RII/RII) developed a
progressive wasting disease and succumbed to death by
5 weeks of age. In these mice, a great number of leukocytes
infiltrated into multiple non-lymphoid organs, autoantibody
levels were elevated, and peripheral T cells displayed
activated phenotypes. In addition, deficiency of TGF-βRII
caused mice to develop fatal autoimmune diseases similar to
the TGF-β1−/− mice. This phenotype can be attributed to
hyperactivation and exaggerated Th1 effector functions of
immune cells, especially T cells [67, 79]. These findings are
in accordance with the results from Rudensky’s laboratory,
where a different strain of T-cell specific TGF-βRII
knockout mice were used [77].

T-bet encoded by the Tbx21 gene is a transcription factor
that is critical for IFN-γ production and Th1 differentiation
of CD4+ T cells [80]. We attempted to alleviate/rescue the
Th1-type immune disorder observed in 4cre-RII/RII mice
by creating 4cre-RII/RII mice deficient in the Tbx21
gene. Much to our surprise, CD4+ T cells from 4cre-RII/
RII-Tbx21−/− mice remained activated but with much less
IFN-γ production. Therefore, TGF-β suppresses T-cell
activation through a T-bet-independent mechanism, while

T-bet remains essential for IFN-γ expression. In addition,
CD4+ T-cell numbers were found to be decreased in these
mice, likely due to decreased expression of CD122 (IL-
2Rβ), a receptor that is important for both IL-2 and IL-15
signaling. Further analysis revealed that Th1-skewing
conditions preferentially upregulated CD122 on CD4+ T
cells in vitro in a T-bet dependent manner [67]. More
interestingly, addition of TGF-β inhibited the upregulation
of CD122 on CD4+ T cells, suggesting that physiologi-
cally TGF-β limits CD4+ effector T-cell numbers through
controlling IL-2- and IL-15-driven T-cell expansion. As
TGF-β potently inhibits T-bet expression in Th1 cells
[26], it remains to be addressed whether TGF-β inhibits
CD122 expression through T-bet-dependent and/or T-bet-
independent mechanisms.

Activation of T cells in 4cre-RII/RII mice might be due to
decreased Treg numbers in the periphery [67]. However,
using a transfer model, we and others found that spontaneous
activation of T cells lacking TGF-βRII is refractory to Treg
suppression [67, 81]. It thus suggests that wild-type Treg are
not able to suppress T cells that cannot respond to TGF-β.
This conclusion is consistent with previous reports [9, 82, 83].
It does not however establish a Treg-independent role of
TGF-β in controlling T-cell activation, since Treg-mediated
suppression might be through a TGF-β-dependent mecha-
nism. Compelling evidence to support that TGF-β controls
T-cell activation through Treg-independent fashion came
from the analysis of 4cre-RII/RII mice with the OTII T cell
receptor (TCR) transgene on a Rag1−/− background, where
endogenous Foxp3+ Treg cells failed to develop. Substantial
portions of T cells from these mice displayed an activated
phenotype, while only a small percentage of these cells
produced effector cytokines, which could be due to lack of
stimulation from cognate antigens. Treg-independent TGF-
β-dependent regulation of immune functions is an area that
is poorly understood, and future studies are needed to pursue
the mechanisms involved.

Leukocytes and stromal cells are both able to generate
TGF-β; which source of TGF-β is important and whether
TGF-β regulates T-cell function as an autocrine, a para-
crine, or an endocrine cytokine are interesting questions.
We generated T-cell specific TGF-β1 knockout mice and
addressed contribution of T-cell-made TGF-β1. These mice
developed lethal immunopathology in multiple organs,
associating with enhanced T-cell proliferation, activation,
and differentiation. In a transfer model, TGF-β1 produced
by Treg cells was shown to be required for Th1-cell
differentiation and the onset of inflammatory bowel disease,
while TGF-β1 generated by conventional T cells also
contributed to the inhibitory effects [84]. These findings
demonstrated that, to regulate T cells, TGF-β1 functions
through an autocrine or a paracrine but may not be an
endocrine mechanism. Whether such a mechanism could be
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applied to other leukocytes or non-lymphoid cells and what
mechanisms are involved in achieving localized effects of
TGF-β are important questions to be addressed in the future.

Another mechanism by which TGF-β inhibits immune
responses is through promoting the generation of Treg cells
by inducing Foxp3 expression. Early studies demonstrated
that TGF-β was necessary and sufficient for human CD8+

T cells to acquire suppressive activities [85]. In addition,
regulatory activity was induced in human naive (CD45RA+

RO−) CD4 T cells by TGF-β after stimulation [86]. TGF-β
was subsequently demonstrated to induce the expression of
Foxp3 in CD4+ CD25− human T cells [87] and in activated
murine CD4+ and CD8+ T cells as well. In the presence of
TGF-β1, Staphylococcus endotoxin-B-activated CD8 T
cells inhibited the proliferation and effector functions of
CD4+ and CD8+ T cells. This was accompanied by elevated
levels of IL-10 and TGF-β1 [88]. TGF-β was later
demonstrated to convert mouse CD4+ CD25− into CD4+

CD25+ T cells with elevated Foxp3 expression [87, 89].
Studies demonstrated that TGF-β is able to convert CD4+

CD25− non-Treg into CD4+ CD25+ Treg cells, and this was
accompanied with increased Foxp3 expression [87, 89].
However, a substantial portion of Foxp3+ Treg cells are
negative for CD25 [90, 91]. In these studies, it was not
distinguished whether such conversion is due to preferential
expansion/survival of the existing Foxp3+ CD25− popula-
tion or due to de novo Foxp3 expression in the Foxp3−

CD25− population. Evidence for TGF-β promoting the
conversion of Foxp3− cells into Foxp3+ cells came from our
study using Foxp3-monomeric red fluorescent protein
(mRFP) knockin mice, where Foxp3-expressing cells are
marked by mRFP expression [91]. TGF-β induced de novo
Foxp3 expression in Foxp3− CD4 T cells. Furthermore,
only Foxp3+ CD4+ cells but not Foxp3− CD4+ counterparts
possessed regulatory activities [91].

Although TGF-β promotes Treg generation in vitro, it has
been controversial whether TGF-β is involved in the
generation or maintenance of Foxp3-expressing Treg under
physiological conditions. Transient expression of TGF-β by a
transgene specifically expressed in islets promotes the
generation of CD4+ CD25+ Treg in situ with high Foxp3
expression in diabetes-predisposed non-obese diabetic
(NOD) mice [92]. This observation correlated with the
suppression of diabetes. In addition, induced Treg cells
suppressed the onset of diabetes after adoptive transfer of
these cells into NOD mice [92]. These findings demonstrated
that TGF-β is sufficient to promote the generation of Treg
under physiological conditions. Conflicting results have been
presented with regards to whether TGF-β is essential for the
development and maintenance of nTreg. In one study, the
CD4+ CD25+ Treg population was shown to be decreased in
adult mice transgenic for a dominant negative form of TGF-
β receptor II [93] under the control of the CD2 promoter

(hCD2-ΔkTβRII). After being transferred into mice sub-
jected to dextran sodium sulfate-induced colitis, hCD2-
ΔkTβRII transgenic CD4+ CD25+ cells proliferated poorly
compared with wild-type CD4+ CD25+ nTreg cells, thus
suggesting that TGF-β signaling was required for the
maintenance and expansion of CD4+ CD25+ nTreg in vivo
[94]. However, in another transgenic model where a similar
form of TGFDNR (dnTβRII) is expressed under the control
of the CD4 promoter [50], CD4+ CD25+ nTreg cells in CD4-
dnTβRII transgenic mice developed normally. A slightly
increased number of nTreg were found in the periphery of
these mice compared to their wild-type counterparts ([83]
and our unpublished observation). Peripheral but not thymic
nTreg were found to be reduced in 8- to 10-day-old TGF-
β1−/− mice [81], suggesting an essential function for
endogenous TGF-β1 in the maintenance of the peripheral
population of Treg. These results contrast that of an earlier
study where no defect of Treg development or maintenance
was observed in TGF-β1−/− mice [95]. A more recent
definitive study from our laboratory demonstrated that
Foxp3-expressing nTreg cells that lack TGFβRII developed
normally in the thymus but were poorly maintained in the
periphery [67]. Interestingly, in the same study, TGFβRII-
deficient Treg proliferated faster than the wild-type counter-
parts in the periphery despite that lower numbers of
TGFβRII-deficient Treg cells were found, suggesting that
TGF-β signaling is required to promote the survival of
peripheral Treg [67]. The reasons for these discrepancies are
unknown but may be related to the different experimental
systems and mouse genetic backgrounds used. In addition,
because CD25 is also expressed by activated T cells, CD4+

CD25+ Treg identified in these studies may have been
contaminated by activated T cells to varying degrees in the
earlier studies. With the development of enhanced green
fluorescent protein (EGFP)-Foxp3 and Foxp3-mRFP
knockin mice and Foxp3 intracellular staining, these poten-
tial complications can be circumvented by identifying Treg
based on Foxp3 expression [67, 90, 91]. It is coming to a
consensus that TGF-β is required for the maintenance of
Treg in the periphery. We investigated whether T-cell-made
TGF-β is required for Treg maintenance by studying mRFP-
expressing Treg cells from mice lacking TGF-β1. We found
that T-cell-produced TGF-β1 is dispensable for the develop-
ment and maintenance of Treg cells [84], despite the fact that
TGF-β1-deficient Treg cells lost their suppressive activities in
a transfer model. Thus, self-made TGF-β1 appears to be
required for Treg function, while it remains an open question
as what source of TGF-β is required for Treg maintenance.

TGF-β Promotes Certain Immune Responses

As discussed above, TGF-β is prevalently viewed as an
immune suppressive cytokine. However, as a ploeitropic
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cytokine, TGF-β has been found to exhibit immune-
promoting properties, which has recently attracted much
attention.

In early studies, TGF-β was found to enhance the
proliferation of mouse CD8+ cells under certain conditions
[96] and to increase TNF-α production by both CD4+ and
CD8+ cells [97]. TGF-β accelerates T-cell death in some
studies [98, 99], while an anti-apoptotic role for TGF-β has
also been documented [100, 101].

Interestingly, TGF-β was recently identified to be
important for the induction of IL-17-producing cells under
inflammatory conditions [102–105]. Th-17 cell is a new
class of effector T cells that is gaining increasing attention.
Th-17 cells produce IL-17 and IL-22 and are critical for the
induction of experimental autoimmune encephalomyelitis
(EAE) in mice. Under culture conditions, TGF-β in
combination with IL-6 promotes Th-17 differentiation. In
addition, TGF-β is important for the generation of Th-17
cells and the induction of EAE in mice [103, 106]. By
deleting the TGF-β1 gene specifically in T cells, we found
that T-cell-made TGF-β1 is required for the induction of
pathogenic Th-17 cells in the intestines and in the spinal
cord. myelin oligodendrocyte glycoprotein-induced EAE is
drastically ameliorated when T cells cannot generate TGF-
β1 [84]. Considering that TGF-β1 can be generated by
conventional and Treg cells, it would be important to
discern whether either type of cells is required for the
generation of Th-17 cells and the induction of EAE in mice.

The lack of TGF-β signaling is often associated with
increased proliferation and effector function of immune
cells. However, two recent independent studies demonstrat-
ed that TGF-β might promote proliferation and survival of
immune cells under certain conditions. The numbers of
canonical CD1d-dependent natural killer (NK1.1+) T cells
and CD8+ T cells were decreased upon TGF-βRII deletion,
suggesting a positive role for TGF-β signaling in their
development [67]. In the absence of TGF-β signaling, OT-
II CD4 T cells, which only responded to OVA peptide from
chicken ovalbumin, were prone to apoptosis in the
periphery and failed to differentiate into effector cells. This
phenotype correlates with reduced expression of CD122 on
these cells. It suggests that TGF-β signaling is required for
the survival of some cells. However, it remains to be
addressed as to what is the relationship among TGF-β
promoted T-cell survival, CD122 expression, and Th1
differentiation.

Collectively, these studies highlight the multi-faceted
effects of TGF-β on various immune functions and
emphasize the importance of cellular and environmental
contexts in directing the discrete roles of TGF-β. What
triggers and mediates TGF-β to perform such a broad
spectrum of functions needs to be elucidated in the years to
come.

Treg-Controlled Immune Responses

Early studies showing that thymectomy of neonatal rodents
within 3 days after birth led to lethal autoimmunity
suggested that a set of thymus-derived cells are important
to maintain self-tolerance in the periphery [107, 108]. Upon
identification of CD4+ CD25+ as markers for Treg cells,
Sakaguchi’s group used anti-CD25 antibody to deplete
these cells, and such manipulation led to lethal autoimmu-
nity due to the loss of peripheral tolerance in adult mice
[33]. In 2003, an X-linked forkhead family transcription
factor named Foxp3 was identified to be expressed
specifically in nTreg among the lymphocyte populations
[35, 109, 110]. Spontaneous monogenetic mutation in the
Foxp3 gene results in systemic autoimmunity in Scurfy mice
and IPEX (X-linked neonatal diabetes mellitus, enteropathy,
and endocrinopathy syndrome) patients [111–115]. The
disease manifested in Scurfy mice was attributed to Treg
deficiency. However, T-cell extrinsic elements were reported
to contribute to the Scurfy phenotype [116], while counter-
evidence were also presented [117]. In addition, targeted
deletion of Foxp3 gene in mice led to a phenotype
reminiscent of Scurfy mice with undetectable CD4+ CD25+

T cells [118–120]. Moreover, ectopically overexpressed
Foxp3 gene endowed immune suppressive activities to
conventional CD4 and CD8 T cells [112, 113, 120].
Therefore, Foxp3 controls the development and function of
nTreg cells, a type of suppressor T cells that are essential in
maintaining self-tolerance and immune homeostasis.

Mechanisms of Treg-Mediated Immune Suppression

The essential role of Treg in immune suppression is
indisputable. Yet, the mechanisms by which Treg cells carry
out their function remain ill-defined. Nevertheless, it is
generally agreed that Treg suppress immune responses
through multiple mechanisms including cell contact depen-
dent and independent mechanisms. Several surface molecules
preferentially expressed by Treg cells are proposed to be
important for their function. For example, CD25, a high-
affinity IL-2 binding receptor, is highly expressed by the
nTreg cells [121]. In addition, the peripheral maintenance of
nTreg is dependent on IL-2 signaling [122–124], which is
also important for the proliferation and survival of activated
effector T cells. It is therefore hypothesized that one
mechanism of nTreg suppression of conventional T-cell
activation is through competition for IL-2 consumption
[125, 126]. Under culturing conditions, such competition
may result in effector T cell death due to deprivation of
growth factors, such as IL-2 [127]. However, studies
showing that CD25-deficient nTreg cells possess intact
suppressive activity question the validity of this hypothesis
[123]. CTLA-4, another surface molecule preferentially
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expressed by nTreg, is important for inhibiting immune
activation by competing for costimulatory ligands on T cells
[128] and inhibiting the function of antigen-presenting cells
[129, 130]. Thus, it is suggested that CTLA-4 is important
for nTreg-mediated immune suppression. Genetic evidence
however argues against the critical roles for CTLA-4 in
nTreg function, as the function of CTLA-4−/− nTreg
functioned normally in vitro and in vivo [131, 132].
However, antibody-mediated blockage of CTLA-4 abrogated
nTreg function [131, 132], while it remains unknown
whether this is due to a non-specific effect or due to a
simultaneous block of CTLA-4 and its potential homolog
with redundant functions by the antibodies.

Recent studies have unraveled important roles of cytokines
in nTreg function. TGF-β appears to be critical in mediating
nTreg function, as T cells from CD4-dnTβRII mice that are
unresponsive to TGF-β are refractory to nTreg-mediated
suppression in vitro and in vivo [9, 82, 83]. Despite the fact
that TGF-β mRNA is not elevated in nTreg cells, it is
suggested that the membrane bound form of TGF-β is
increased in nTreg cells and is important for their function
[9, 34]. IL-10 is another immune suppressive cytokine
preferentially expressed in Treg [133, 134] and is important
in mediating the functions of these cells [134, 135]. Besides
suppress effector T cell functions directly, recent study
suggests that nTreg dampens immune responses through
regulating innate component, such as DC. nTreg can
potentially induce tolerogenic DC through CTLA-4 engage-
ment induced tryptophan catabolism [136]. In addition, it
appears that nTreg destabilize the interaction between
antigenic DC with conventional T cell to prevent the
activation of T cells [137]. It is clear now that multiple
mechanisms are involved in Treg-mediated immune suppres-
sion. Cell-contact-dependent and cell-contact-independent
mechanisms critical for controlling Treg function remain to
be identified in the future.

Foxp3 Controls Treg Function

As a single molecule that controls the development and
function of Treg, Foxp3 has been under close scrutiny since
its discovery. We and others have developed knockin
mouse models to track Foxp3-expressing cells with
fluorescent proteins [90, 91]. Foxp3 can be expressed in
thymic-derived Treg cells; its expression can also be
induced in conventional T cells in vitro by TGF-β
regardless of their proliferation status [91]. In addition,
Foxp3 expression can be induced in vivo in conventional T
cells under suboptimal stimulation [138]. More importantly,
in these studies, Foxp3 expression has always been
associated with the immune suppressive function. Thus, it
is generally thought that Foxp3 serves as an on-and-off
switch to positively regulate Treg function in a binary

fashion. However, a transient increase of Foxp3 expression
in human CD4 T cells did not result in suppressive
function. In addition, in many cases of human IPEX
patients, functional Foxp3 protein is made but at much
reduced levels [139]. Moreover, emerging evidence asso-
ciates decreased Foxp3 expression in Treg cells with
various human autoimmune disorders, such as graft-
versus-host disease [140], autoimmune myasthenia gravis
[141], and multiple sclerosis [142]. We have also found that
intra-islet Treg cells expressed lower levels of Foxp3 than
Treg cells from other peripheral lymphoid organs in
diabetic NOD mice, while the frequencies of Foxp3-
expressing Treg cells among the different compartments
were comparable. Thus, Foxp3 may control Treg function
in a dose-dependent, non-binary fashion, and decreased
Foxp3 expression could lead to impaired Treg function and
be causal for immune disorders.

Studying of a mouse model where attenuated Foxp3
expression is serendipitously achieved, we found that
reduced Foxp3 expression led to the development of a
lethal aggressive lymphoproliferative autoimmune syn-
drome reminiscent of Scurfy mice [143] and T-cell-specific
Foxp3 knockout mice [120]. Compared with WT Treg
cells, the surface expression of ‘signature genes’ for Treg
cells, such as CD25, CTLA-4, and GITR [32, 144, 145],
were decreased in these mice [146]. Thus, Foxp3 programs
the gene expression of Treg in a tunable and dose-
dependent fashion [146].

Further investigation revealed interesting phenotypic
changes in the functions of Treg cells, which express
decreased Foxp3. Foxp3 is required for the development
and maintenance of Treg cells [120]. However, decreased
Foxp3 expression did not lead to defective thymic develop-
ment of Treg cells. This result agrees with the results from a
separate study, where GFP complementary DNA was
inserted into endogenous Foxp3-coding region to mark T
cells with Foxp3 promoter activity but fail to produce
functional Foxp3 protein [147]. Substantial numbers of
GFP-expressing thymocytes were also detected in these
mice [147]. By adoptive transfer assays, we found that
attenuated Foxp3 expression did not result in intrinsic
defects in the homeostatic expansion/maintenance of Treg
cells in the periphery. Extra-thymic generation of Foxp3-
expressing T cells can be promoted in vitro by TGF-β
[89, 91, 106].TGF-β induced de novo Foxp3 expression
normally in T cells with attenuated Foxp3 expression.
Therefore, decreased Foxp3 expression did not affect the
development, homeostatic expansion/maintenance, or TGF-β
driven de novo generation of Foxp3-expressing T cells [146].
These findings present a possibility that defective and even
ablated Foxp3 expression might not result in the total
elimination of the “Treg lineage.” Indeed, Foxp3-null mice
generated “Treg lineage” cells in the thymus and can be
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maintained in the periphery [147]. Thus, in Scurfy mice and
IPEX human patients, Foxp3-expressing T cell subsets are
likely to be generated in the thymus and maintained in the
periphery. Further studies are warranted to identify and char-
acterize these “Treg lineage” cells lacking functional Foxp3.

In vitro, hypoproliferative (‘anergic’) and immune-
suppressive activities are two defining properties for
Foxp3-expressing Treg cells that are thought to go hand-
in-hand [33]. Intriguingly, upon TCR stimulation in vitro,
while Foxp3 low-expressing T cells remained anergic; their
immune-suppressive activities were greatly impaired. Thus,
anergy and immune suppression are two separable properties
of Treg cells that are affected differentially by the expression
levels of Foxp3 [146]. In addition, in a T-cell transfer
model, the immune-suppressive activities of Foxp3 low-
expressing T cells were abolished in vivo, although these
cells infiltrated efficiently into lymphoid and non-lymphoid
organs. Thus, the suppressive function of Treg requires
high level Foxp3 [146]. Interestingly, agreeing with these
findings, Foxp3-deficient “Treg lineage” cells remain
anergic but without immune suppressive function [147].
Therefore, unlike what has been recognized, Foxp3 may
not be the “grand-master” of Treg development. It is
emerging that Foxp3 appears to be required for stabilizing
“regulatory function” of already differentiated “Treg line-
age” cells in vivo or TGF-β induced Treg cells in vitro
[147–149]. The molecular master-switch controlling the
commitment of “Treg lineage” remains to be discovered. In
addition, despite the fact that multiple molecules, such as
CTLA-4 and CD25, have been suggested to contribute to
the suppressive activities of Treg, it remains unsolved
whether any of them may be sufficient to render Treg-
suppressive function. It would be interesting to investigate
whether any of these genes are able to reconstitute the Treg
function in the aforementioned mouse models. Genomic-
scaled DNA binding profiling studies have been performed
to identify Foxp3-specific target genes that might be crucial
for Treg function. Over 700 potential targets including
promoters, intragenic regulatory elements, and small mod-
ulatory RNA/small interfering RNA have been identified
[150]. Future efforts are need to sieve through these
candidates to pinpoint the critical Foxp3 target genes in
controlling the immune suppressive function of Treg cells.

Positive Roles for Treg in Inflammation

Treg contribute to inflammation by inducing Th-17 indi-
rectly through TGF-β. TGF-β appears to be critical for the
induction of Th-17 cells according to our and other studies
[105]. High levels of TGF-β, probably existing as a
membrane bound form, are found on Treg cells. Therefore,
Treg cells have been identified to be an important inducer
for Th-17 cells in vitro. Using TGF-β1 knockout mice,

future studies need to be performed to address whether Treg
is the critical source of TGF-β in Th-17 cell induction and
thus the onset of EAE.

Foxp3-expressing cells can convert into effector cells.
Analysis of Foxp3 low-expressing cells revealed that they
developed effector functions producing large amounts of
type 2 effector cytokine, such as IL-4, while the changes of
IL-2, IFN-γ, or IL-17 expression were modest [146]. In
another study, “Treg lineage” cells without functional
Foxp3 were able to express Th1, Th2, and Th17 effector
cytokines [147]. These findings present an interesting
possibility that Foxp3-expressing cells might not always
suppress but rather, in some cases, can foster the immune
response, e.g. under inflammatory conditions. In fact, TNF-
α, a pro-inflammatory cytokine, has been shown to repress
the expression of Foxp3 in human Treg cells [151]. It is
reasonable to believe that in a highly inflammatory
microenvironment, residential Treg decrease their Foxp3
expression, subsequently lose their suppressive function,
and might even be converted into effector cells to
contribute to the immune responses. Upon resolution of
infection, inflammatory cytokines would subside and
Foxp3 levels and suppressive activity would be restored.

Conclusions

The importance of active immune suppression is widely
acknowledged. Studies on TGF-β and Treg have shed light
on how immune suppression functions. Advances in these
areas have been and are being translated into clinical
benefits. Further investigations are warranted to elucidate
the mechanism through which TGF-β and Treg control
immune responses. In addition, we are starting to realize
that under certain conditions, TGF-β and Treg can both
serve as promoting factors to direct immune responses. To
facilitate designing immune therapies against inflammatory
diseases and cancers, more studies are needed to reveal
alternative functions of TGF-β and Treg.
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