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Abstract
Objective The aim of this study was to determine whether
interleukin-1 alpha (IL1α), interleukin-1 beta (IL1β), and IL1
receptor antagonist (IL1Ra) polymorphisms are implicated in
invasive pulmonary aspergillosis (IPA) pathogenesis.
Materials and Methods Subjects comprised 110 hemato-
logical patients and 148 healthy controls. Genotypic and
allelic frequencies were similar between hematological
patients and controls. IPA was diagnosed in 59 of the 110
patients according to consensus criteria published by the
European Organization for Research and Treatment of
Cancer/Invasive Fungal Infections Cooperative Group
(EORTC/IFICG).
Results and Discussions Individual locus analysis showed
that IL1α and IL1Ra polymorphisms were not associated
with the presence of IPA (p=0.560 and p=0.680, respec-
tively). However, a trend towards a higher presence of
IL1β-511TT genotype (or IL1β-511T allele) in the IPA group
than in the non-IPA patient group (p=0.092 and p=0.095,
respectively) was found. Haplotype analysis revealed that

VNTR2/-889C/-511T haplotype was strongly associated
with susceptibility to develop IPA infection (p=0.020).
Haplotype analysis also showed an association between
VNTR2/-889C/-511C haplotype and resistance to IPA
infection (p=0.028). Furthermore, patients with IL1Ra
VNTR2/2 and IL1β-511T/T genotypes had a higher positive
serum galactomannan percentage versus patients with other
genotypes. Finally, C-reactive protein (CRP) production
was significantly associated with IL1 gene cluster poly-
morphisms, although CRP values were similar between IPA
and non-IPA groups.
Conclusion These findings indicate a critical role of IL1
gene cluster polymorphisms in the susceptibility to IPA
infection and CRP production.
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Introduction

Invasive pulmonary aspergillosis (IPA) is probably the most
lethal fungal infection [1]. An intact host defense is
important to prevent disease, and individuals with depleted
immune system are highly susceptible to this opportunistic
infection [2–4]. In fact, IPA is predominantly found in
immunocompromised and hematopoietic stem cell trans-
plantation (HSCT) patients [5–11]. Despite the availability
of new antifungal drugs, the incidence of IPA infection is
rising [5, 12, 13], and there has been a steady increase in
mortality from IPA over the past decades [14]. There is
therefore an urgent need to identify biomarkers that can
reliably characterize susceptibility to develop IPA.

In humans, antifungal defense is based on mucosal
barriers and macrophage and neutrophil functions. Resident
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alveolar macrophages ingest and kill resting conidia, while
neutrophils attack hyphae via oxidative mechanisms [15].
There is also substantial evidence that local production of
proinflammatory cytokines by macrophages and neutro-
phils is relevant in host resistance to IPA [16–20].
Proinflammatory cytokines such as IL1 are involved in
enhancing inflammation and host defense. IL1 is encoded
by two separate genes, interleukin-1 alpha (IL1α) and
interleukin-1 beta (IL1β), located at chromosomal band
2q14 in a cluster that also contains the IL1 receptor
antagonist (IL1Ra) [21]. These three members of the family
are structurally related to one another and act by directly
binding to IL-1 receptors (IL1R) on cells [22, 23]. IL1α
and IL1β fold in a very similar manner and their sequence
similarity is also high, ranging from 60% to 80%. IL1α and
IL1β are potent agonists and recognize the same receptor,
type I IL1 receptor (IL1RI) [24]. IL1Ra acts as a naturally
occurring antagonist to this receptor, thereby blocking the
biological effects of agonists.

These cytokines are produced by various cell types,
including peripheral blood monocytes, human B cells,
helper T lymphocytes, and natural killer cells [23]. The
IL1α secreted by activated alveolar macrophages has
profound local and systemic effects, increasing capillary
permeability and the expression of different adhesion mole-
cules, thereby inducing extravasation of activated neutro-
phils [24]. Moreover, IL1α induces production of acute phase
protein such as C-reactive protein (CRP) that activates
complement system in response to tissue injury or infection
[25]. Activated alveolar macrophages also produce IL1β,
which participates in the recruitment of neutrophils into
acutely injured lungs. Nearly all of the cell types that pro-
duce IL1α and IL1β also produce IL1Ra. Hence, IL1 family
cytokines may play a critical role in IPA pathogenesis.

Present outcome data for IPA infection are unacceptable,
with an overall 1-year survival rate of around 20% [26].
Epidemiologic risk factors for IPA are increasingly under-
stood but only explain a portion of disease risk. Many
researchers have investigated a common set of genetic
variations in the IL1 gene cluster and its association with an
increased risk of developing rheumatoid arthritis, polyar-
thritis, coronary artery disease, and inflammatory bowel
disease, among other conditions [27–30]. Investigators are
beginning to consider the contribution of the host’s genetic
background to the risk of IPA [31, 33].

Polymorphisms in genes modulating immune response
are likely to be determinants of host susceptibility to fungal
infections and may become critically important during
periods of immunosuppression. Our understanding of the
host’s genetic contribution to IPA risk and/or progression
will be improved by the detection of genetic polymor-
phisms that regulate susceptibility to this infection. In fact,
genetic association studies using polymorphic markers in

candidate genes have successfully identified a number of
genes associated with susceptibility to IPA infection. These
include immune system genes such as IL10 [31, 32] and
tumor necrosis factor receptor 2 (TNFR2) [33]. Elucidation
of the genetic susceptibility profile may allow implemen-
tation of specific prophylaxis strategies in high-risk patients
and the development of potentially novel therapies.

The capacity of the host to mount an IL1α driven
response is influenced by sequence variants in the IL1/
IL1Ra cluster. All IL1 family genes are polymorphic, and
several of their polymorphisms have been associated with a
wide number of clinical conditions, including susceptibility
to sepsis [34, 35], increased risk of death due to sepsis [36],
increased risk of febrile seizures [37, 38], and susceptibility
to tuberculosis [39, 40], malaria [41], or periodontitis [42].

Because an individual’s capability to synthesize these
cytokines can be altered by the presence of variant alleles
[43–46], genetic polymorphisms of IL1 family genes are
potential candidate genes of susceptibility to infectious
diseases. Therefore, the aim of this study was to identify
whether certain genetic variants of IL1α, IL1β, or IL1Ra
genes confer susceptibility or resistance to IPA infection. A
search of the literature revealed no previous study of these
relationships.

Materials and Methods

Study Subjects and Study Design

All determinations and genetic analyses in hematological
patients and healthy controls were performed with fully
informed written consent, and anonymity of the data was
guaranteed. The study was approved by the ethics review
board of our hospital.

The population included 110 hematological patients
admitted to our Department of Haematology between
January 2004 and June 2007. All hematological patients
in this study received a prolonged chemotherapy treatment
and were therefore considered susceptible to develop IPA.
One hundred forty-eight age-matched controls were also
enrolled from among blood donors with no history of
hematological disease or evidence of IPA infection. Patients
and healthy controls were of Spanish origin (Caucasian).

A candidate gene-association approach was used to
address the role of IL1 cluster genes in the pathogenesis
of IPA. Hematological patients were classified into two
categories (IPA and non-IPA patients) according to criteria
recently published by the European Organization for
Research and Treatment of Cancer/Invasive Fungal Infec-
tions Cooperative Group (EORTC/IFICG) [47]. The diag-
nosis was assigned by physician investigators in a blinded
fashion.
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The following single nucleotide polymorphisms (SNPs)
were selected for the study: IL1α-889 (C/T) (rs1800587) and
IL1β-511 (C/T) (rs1143627) [48, 49]. An 86-bp variable
number of tandem repeats (VNTR) in second intron of
IL1Ra gene (rs380092) was also investigated [50]. The
effect of the three polymorphisms on IPA risk was
investigated by using a retrospective cohort study.

Clinical Parameters

Clinical data were obtained by a detailed review of hospital
records. IPA diagnosis was established on the basis of
clinical, radiological, and microbiological data according to
consensus criteria [47]. Underlying disease and bone
marrow transplantation were correlated with the following
types of criteria: host factor criteria (severe neutropenia for
>10 days, persistent fever for >96 h refractory to appropri-
ate broad-spectrum antibacterial treatment in high-risk
patients, signs and symptoms indicating graft-versus-host
disease, corticoid therapy in previous 60 days, and invasive
fungal infection during a previous episode of neutropenia),
microbiological criteria (positive result for Aspergillus
antigen in ≥2 blood samples), and clinical criteria of lower
respiratory tract infection (major criteria, any of the
following new infiltrates on computed tomography (CT)
imaging: halo sign, air-crescent sign, or cavity within area
of consolidation; Minor criteria, cough, thoracic pain,
hemoptysis, pathologic pulmonary sound, and radiological
evidence suggestive of invasive infection).

Galactomannan Detection

Serum galactomannan (GM) detection has been shown to
be a useful test for the early diagnosis and follow-up of IPA
and is now included in IPA diagnosis criteria [47].
Sandwich enzyme-linked immunosorbent assay (ELISA)
has proven to offer good sensitivity to detect GM [51–54],
and GM concentration was found to correlate with the
fungal tissue burden [54–57]. In the present study, serum
GM antigen was determined twice weekly during the
hospital stay and at each outpatient visit until the end of
their immunosuppressant or chemotherapeutic treatment.
Serum GM concentrations were determined by Platelia
Aspergillus ELISA (Bio-Rad, Marnes-la-Coquette, France),
which uses a rat monoclonal antibody directed against the
(1–3)-β-D-galactofuranoside side chains of the GM mole-
cule. This antibody, produced by immunizing rats with a
mycelial extract of Aspergillus fumigatus, serves as both
capture and detection antibody in the assay, which can
detect as little as 1.0 ng/ml of circulating GM. ELISA was
carried out according to the manufacturer’s instructions. A
test sample was classified as positive when the optical
density ratio was >0.5 and two successive positive samples

indicated presence of GM in serum, a sign of IPA. A careful
review of concomitant treatments (piperacillin-tazobactam
or amoxicillin-clavulonic acid) in each patient was neces-
sary to avoid false-positive GM results. Likewise, tests
were performed on the same day to avoid sample con-
tamination and ensure accuracy of results.

Plasma IL1α and IL1β Levels

Plasma samples were obtained by centrifugation of ethyl-
enediaminetetraacetic acid blood at 1,800 rpm for 15 min
and stored at −20°C until required. Plasma IL1α and IL1β
levels were determined in both IPA and non-IPA groups.
Plasma samples of patients with IPA infection were
analysed after detection of positive GM. IL1α and IL1β
levels were quantified using both human IL1α and IL1β
ELISA kits (BLK Diagnostics, Barcelona, Spain) according
to the manufacturer’s instructions.

C-reactive Protein Levels

CRP data were available in 101 patients. CRP values were
determined by Synchron LX®I 725 Ingegrated Chemistry/
Immunoassay System (Beckman Coulter). Serum sample
for CRP analysis was collected at appearance of respiratory
symptoms. CRP values were collected restrospectively by
review of clinical records.

Polymorphism Analysis

IL1α, IL1β, and IL1Ra polymorphisms were detected in
samples from hematological patients and controls by
polymerase chain reaction (PCR) using previously reported
primers [48–50] that amplified a short fragment of DNA
containing the polymorphism (Table I). PCR amplifications
were carried out in a total volume of 50 μl using an
identical reaction mixture containing approximately 50 ng
genomic DNA, 1 U GoTaq Flexi DNA polymerase
(Promega, Madison, WI, USA), 0.5 μM of each primer
(Genotek, Bonsai Technologies Group, Madrid, Spain), 5×
green buffer (Promega), 1.5 mM MgCl2 (Promega),
200 μM of each deoxyribonucleotide triphosphate (Gene-
Craft, Münster, Germany), and H2O. Thermal cycling
parameters were optimized for use with a Px2 Thermal
Cycler (Thermo Electron®, Göttingen, Germany). Amplifi-
cation conditions for IL1α, IL1β, and IL1Ra SNPs are also
shown in Table I. The two alleles at each polymorphic site
were identified by incubating the PCR product with a
restriction enzyme selected to cut one of the two alleles
(Table I), followed by electrophoresis on 3% agarose gel.
IL1Ra VNTR alleles were also determined by identifying
the number of repeats of an 86-bp sequence directly by
electrophoresis on 3% agarose gel.
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Statistical Analysis

Distributions of genotypes of IL1α, IL1β, and IL1Ra
polymorphisms were examined to determine whether they
followed the Hardy–Weinberg equilibrium, using the chi-
square (χ2) test. Results obtained for each genotype were
compared with these expected data. Allele frequencies were
calculated by direct gene counting. Results were analyzed
by constructing contingency tables to determine differences
in genotypic and allelic frequencies of studied polymor-
phisms among IPA patients, non-IPA patients, and controls.
The IPA risk associated with the genotypes was estimated
using odds ratios (OR) and 95% confidence intervals. ORs
were adjusted for possible confounders (age and gender).
P<0.05 was considered significant.

The SNPStats program (Institut Català d’Oncología,
Hospital Duran i Reinals, Barcelona, Spain; http://bioinfo.
iconcologia.net/snpstats/start.html) was used for the data
analysis [58].

Clinical characteristics were compared among groups by
using the chi-square test. Clinical, radiological, and
microbiological characteristics of the infection were sum-
marized using descriptive statistics. Clinical data were
compared among groups by using Tabulated Data Epide-
miological Analysis (EPIDAT) 3.1 version for Windows.
CRP values were analyzed and graphically represented
using the System Package for Statistical Software (SPSS)
15.0 version for Windows.

LD and Haplotype Analysis

Based on the genotype data of the IL1α, IL1β, and IL1Ra
polymorphisms, linkage disequilibrium (LD) analysis was
performed using the SNPStats program [58]. Haplotype
frequencies were implemented with SNPStats software
using the expectation–maximization (EM) algorithm. This
approach has a high predictive value and shows good
concordance (90–98%) with pedigree data and simulated
sample set analysis [59, 60].

Results

Hematological Patient and Control Populations:
Clinical Characteristics

The hematological and control populations did not differ in
gender or age. Hematological disorders were distributed as
follow: 18 (16.36%) cases of acute lymphoid leukemia, 42
(38.18%) of acute myeloid leukemia, 10 (9.09%) of
Hodgkin’s disease, 27 (24.55%) of non-Hodgkin’s lympho-
ma, ten (9.09%) of multiple myeloma, and three (2.73%) of
aplastic anemia. There were no differences in the distribu-
tion of underlying disease between IPA and non-IPA
patients. Out of the 110 patients studied, 79 (71.81%)
developed neutropenic fever with a duration of ≥2 weeks.
Fifty-nine patients were diagnosed with IPA infection
according to EORTC/IFICG and the National Institute of
Allergy and Infectious Disease Mycoses Study Group
(NIAID/MSG) criteria [47], and the remaining 51 showed
no evidence of IPA. Gender or age distributions were
similar among IPA and non-IPA patients. Table II shows
clinical comparisons between IPA and non-IPA patients. As
expected, cough, pathologic pulmonary sound, and hemop-
tysis were significantly more frequent in IPA patients
versus non-IPA patients. Thoracic pain did not significantly
differ between the groups but showed a trend towards an
increased frequency in IPA versus non-IPA patients.
Radiological infiltrates and pathological CT imaging were
significantly more frequent in IPA patients versus non-IPA
patients. The main risk factors (severe neutropenia and
corticoid therapy) were homogeneously distributed between
IPA and non-IPA patients (Table II). There were no
differences in the distribution of underlying disease
between IPA and non-IPA patients.

IL1α, IL1β, and IL1Ra Polymorphisms

No deviations from Hardy–Weinberg equilibrium were
observed for IL1α, IL1β, and IL1Ra polymorphisms in

Table II Clinical Characteris-
tics of Hematological Patients

Data are expressed as n (%).
*p<0.05 was considered
significant

All patients
(n=110)

Patients with IPA
(n=59)

Patients without IPA
(n=51)

p values

Clinical variables
Cough 45 34 (54.84) 11 (22.92) 0.0003*
Pathological pulmonary sound 44 32 (50.00) 12 (25.00) 0.0020*
Hemoptysis 15 12 (19.35) 3 (06.25) 0.0543
Thoracic pain 18 14 (20.97) 4 (10.42) 0.0469*
Pathological chest radiograph 38 28 (41.94) 10 (20.83) 0.0042*
Pathological CT imaging 30 25 (38.71) 5 (12.50) 0.0003*
Risk factors
Severe Neutropenia 79 44 (55.70) 35 (44.30) 0.6319
Corticoid therapy 25 17 (27.42) 8 (16.67) 0.1585
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hematological patients or healthy controls. The distribution
of IL1Ra VNTR, IL1α-889(C/T) or IL1β-511(C/T) genotypes
and the corresponding allelic frequencies of 148 healthy
blood donors are summarized in Table III. These frequen-
cies are similar to previous reports [50, 61–64]. Only four
out of the possible five alleles were found in our controls.
In this healthy population, IL1Ra VNTR distribution of 1/1,
1/2, 2/2, 1/4, and 1/3 genotype frequencies were 0.540,
0.324, 0.094, 0.013, and 0.020, respectively. The genotype
and allele frequencies of the hematological patients are
summarized in Table III. Alleles 3, 4, and 5 of IL1Ra
VNTR were not represented in the hematological patient
groups. The distribution of 1/1, 1/2, and 2/2 genotype
frequencies were 0.536, 0.354, and 0.110, respectively. No
significant differences between hematological patients and
healthy controls were found in the genotype and allelic distri-
butions of IL1Ra VNTR or IL1α-889(C/T) and IL1β-511(C/T)

polymorphisms (Table III).
No significant difference in any genotype was found

between the IPA and non-IPA patient groups. Similar data
were obtained with recessive or dominant models. IL1α-889

(C/T) distribution of C/C, C/T, and T/T genotype frequencies
was 0.457, 0.407, and 0.136, respectively, in IPA patients
and 0.529, 0.314, and 0.157, respectively, in non-IPA

patients. Allele frequency of IL1α-889C was 0.661 in IPA
patients versus 0.686 in non-IPA patients (p=0.799, OR=
0.89, 95% CI, 0.49–1.63; Table IV). IL1β-511(C/T) distribu-
tion of C/C, C/T, and T/T genotype frequencies was 0.288,
0.559, and 0.152, respectively, in IPA patients and 0.431,
0.510, and 0.059, respectively, in non-IPA patients (p=
0.110). However, using a recessive model analysis, trend
was found toward a higher presence of IL1β-511TT genotype
in IPA group than in non-IPA patient group (p=0.092).
Allele frequency of IL1β-511C was 0.568 in IPA patients
versus 0.686 in non-IPA patients (p=0.095; OR=0.60; 95%
CI, 0.33–1.08; Table IV). To conclude, IL1Ra VNTR
distribution of 1/1, 1/2, and 2/2 genotype frequencies was
0.508, 0.390, and 0.102, respectively, in IPA patients and
0.569, 0.314, and 0.118, respectively, in non-IPA patients.
Allele frequency of IL1Ra1 was 0.703 in IPA patients
versus 0.726 in non-IPA patients (p=0.832; OR=0.90; 95%
CI 0.48–1.68; Table IV).

Linkage Disequilibrium Analysis and Haplotype Analysis

As expected, IL1α-889(C/T), IL1β-511(C/T), and IL1Ra poly-
morphisms were in LD in our hematological patients
(IL-1α-889(C/T) versus IL-1β-511 (C/T): D′=0.2483 and

Table III IL1 Cluster Gene
Polymorphisms in Hematologi-
cal Patients (n=110) and
Controls (n=148)

Data are expressed as n (%)
and have been adjusted by age
and gender. The p value was
calculated by using the χ2 test
with 2×2, 2×3, and 2×4
(alleles and genotypes) contin-
gency tables. p<0.05 was con-
sidered significant.
IL Interleukin, IL1Ra interleu-
kin 1 receptor antagonist, VNTR
variable number of tandem
repeats, OR odds ratio, CI con-
fidence interval
a Allele 3 and 4 were excluded
from the analysis.

Hematological patients Controls P value OR (95% CI)

Genotype frequencies
IL1a-889
C/C 54 (49.09) 68 (45.94) 0.140 1.00
C/T 40 (36.36) 68 (45.94) 1.35 (0.77–2.37)
T/T 16 (14.55) 12 (08.12) 0.60 (0.24–1.47)
IL1b-511
C/C 39 (35.45) 65 (43.92) 0.357 1.00
C/T 59 (53.64) 71 (47.97) 0.72 (0.41–1.26)
T/T 12 (10.91) 12 (08.11) 0.60 (0.22–1.60)
IL1Ra VNTR
1/1 59 (53.64) 80 (54.05) 0.445 1.00
1/2 39 (35.45) 48 (32.43) 0.91 (0.51–1.61)
2/2 12 (10.91) 14 (09.46) 0.86 (0.34–2.16)
1/4 0 (0.00) 2 (01.35) –
1/3 0 (0.00) 3 (02.03) –
2/3 0 (0.00) 1 (00.00) –

Allele frequencies
IL1a-889
C 148 (67.27) 204 (68.92) 0.763 1.00
T 72 (32.72) 92 (31.08) 0.93 (0.63–1.37)
IL1b-511
C 137 (62.27) 201 (67.91) 0.216 1.00
T 83 (37.72) 95 (32.09) 0.78 (0.53–1.14)
IL1Ra VNTR
1 157 (71.36) 213 (71.96) 0.672a 1.00
2 63 (28.64) 77 (26.01) 0.90 (0.60–1.36)
3 0 (0.00) 4 (01.35) –
4 0 (0.00) 2 (00.68) –
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r=−0.1348; IL-1α-889 (C/T) versus IL-1Ra VNTR: D′=
0.0704 and r=0.0639; IL-1β-511 (C/T) versus IL-1Ra VNTR:
D′=0.2668 and r=−0.2171). Haplotype frequency estimates
are shown in Table V. Eight haplotypes were identified in the
hematological patients. Haplotype frequency analyses with

the EM algorithm showed that the haplotype distribution
significantly differed between IPA and non-IPA groups.
Haplotype analysis revealed a significantly higher presence
of VNTR2/-889C/-511T haplotype in the IPA group than in
the non-IPA group (p=0.020; Table V). Hence, the VNTR2/-

Table IV IL1 Gene Cluster
Polymorphisms in Hematolog-
ical Patients with and without
IPA

Data are expressed as n (%)
and have been adjusted by age
and gender. The p value was
calculated by using the χ2 test
with 2×2 and 2×3 (alleles and
genotypes, respectively) con-
tingency tables. p<0.05 was
considered significant
IL interleukin, IL1Ra interleu-
kin 1 receptor antagonist,
VNTR variable number of tan-
dem repeats, OR odds ratio, CI
confidence interval

Patients with IPA (n=59) Patients without IPA (n=51) p value OR (95%CI)

Genotype frequency
IL1a-889
C/C 27 (45.76) 27 (52.94) 0.560 1.00
C/T 24 (40.68) 16 (31.37) 1.54 (0.67–3.56)
T/T 8 (13.56) 8 (15.69) 0.99 (0.32–3.06)
IL1b-511
C/C 17 (28.81) 22 (43.14) 0.110 1.00
C/T 33 (55.93) 26 (50.98) 1.68 (0.74–3.82)
T/T 9 (15.24) 3 (05.88) 4.16 (0.96–18.03)
C/C+C/T 50 (84.74) 48 (94.12) 0.092 1.00
T/T 9 (15.26) 3 (05.88) 3.04 (0.77–12.02)

IL1Ra VNTR
1/1 30 (50.84) 29 (56.86) 0.680 1.00
1/2 23 (38.99) 16 (31.37) 1.44 (0.63–3.29)
2/2 6 (10.17) 6 (11.77) 1.06 (0.30–3.74)

Allele frequency
IL1a-889
C 78 (66.10) 70 (68.63) 0.799 1.00
T 40 (33.90) 32 (31.37) 0.89 (0.49–1.63)
IL1b-511
C 67 (56.78) 70 (68.63) 0.095 1.00
T 51 (43.22) 32 (31.37) 0.60 (0.33–1.08)
IL1Ra VNTR
1 83 (70.34) 74 (72.55) 0.832 1.00
2 35 (29.66) 28 (27.45) 0.90 (0.48–1.68)

Table V Haplotype Association with IPA Infection

Haplotypes All patients
(n=110)

IPA patients
(n=59)

Non-IPA patients
(n=51)

OR (95% confidence interval) p value

IL-1Ra VNTR IL-1α -889 (C/T) IL-1β -511 (C/T)

1 C C 0.3142 0.2840 0.3313 1.00 –
1 C T 0.1794 0.1707 0.1977 0.63 (0.22–1.81) 0.690
1 T C 0.1777 0.2079 0.1602 0.94 (0.37–2.41) 0.980
2 C T 0.1056 0.1685 0.0267 15.36 (1.38–171.23) 0.020a

2 C C 0.0736 0.0378 0.1306 0.13 (0.02–0.78) 0.028b

2 T C 0.0573 0.0381 0.0642 0.96 (0.22–4.19) 0.920
2 T T 0.0499 0.0522 0.0531 1.27 (0.29–5.64) 0.810
1 T T 0.0424 0.0408 0.0363 0.98 (0.13–7.46) 0.860
Global haplotype association p value: 0.026c

Data are expressed as n (%) and have been adjusted by age and gender. Haplotype frequencies and p values were estimated using the
implementation of the EM algorithm coded into the SNPStats. The most frequent genotype among patients served as the referent. p<0.05 was
considered significant.
IL1α Interleukin-1 alpha, IL1β interleukin-1 beta, IL1Ra interleukin 1 receptor antagonist, VNTR variable number of tandem repeats, OR odds
ratio, C cytosine, T thymidine, C/T cytosine to thymidine substitution
a 2CT haplotype was associated with susceptibility to develop IPA.
b 2CC haplotype was associated with resistance to develop IPA.
c Significant global haplotype association p value
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889C/-511T haplotype was associated with IPA susceptibili-
ty. Furthermore, haplotype analysis showed a significantly
higher presence of the VNTR2/-889C/-511C haplotype in the
non-IPA group than in the IPA group (p=0.028; Table V).
Therefore, VNTR2/-889C/-511C haplotype was associated
with resistance to IPA. The global haplotype association p
value was 0.026, showing a significant global association of
IL1 cluster genes with IPA susceptibility (Table V).

IL1α and IL1β Levels

IL1α levels were similar between patients with and without
IPA (2.71±0.82 versus 2.53±0.79 pg/ml), and no differ-
ences were found as a function of genotype (data not
shown). IL1β levels were similar between IPA and non-IPA
groups. Plasma IL1β levels were below the assay limit in 45
of IPA patients (n=59) and 33 of non-IPA patients (n=51).

GM Antigen Analysis

GM levels were detected in serum at an early stage of
disease, often before clinical clues and radiological features.
A mean of 24.12 determinations were performed in
duplicate for each IPA patient and a mean of 4.39
determinations in duplicate for each non-IPA patient. A
total of 1,647 assays were performed in duplicate, and 262
(15.91%) were positive. No significant association was
found between positive GM percentage distribution and

IL1α-889(C/T) genotypes (Fig. 1a). However, a significantly
higher positive GM percentage was observed in patients with
IL1β-511(C/T) genotype TT than in those with IL1β-511 (C/T)

genotypes CC or CT (p=0.0015 and p<0.0001, respectively;
Fig. 1b). Likewise, a significantly higher positive GM
percentage was observed in patients with IL1Ra genotype
2/2 than in those with IL1Ra genotype 1/1 or 1/2 (p=0.0024
and p=0.0266, respectively; Fig. 1c). Taken together, these
results strongly suggest that both IL1β-511(C/T) and IL1Ra
polymorphisms may have a relevant role in IPA susceptibility
and possibly in infection disease progression.

CRP Analysis

CRP values were significantly higher in patients with
IL1Ra genotype 2/2 than in those with IL1Ra genotypes
1/2 or 1/1 (p<0.0001 and p<0.0001, respectively; Fig. 2a).
CRP values were also significantly higher in patients with
IL1α-889(C/T) genotype CC than in those with IL1α-889(C/T)

genotypes CT or TT (p<0.0001 and p=0.0210, respective-
ly; Fig. 2b). Likewise, a significantly higher CRP level was
observed in patients with IL1β-511(C/T) genotype TT than in
those with IL1β-511(C/T) genotype CT or TT (p=0.0722 and
p=0.0012, respectively; Fig. 2c). Taken together, these
results strongly suggest that IL1 gene cluster polymor-
phisms are involved in the modulation of CRP levels.
Further, CRP levels were similar between IPA and non-IPA
groups (9.73 versus 9.30 mg/dl, respectively).

Fig. 1 a Distribution of positive GM percentage by IL1α genotypes.
‡Comparison of positive GM percentage in CC genotype versus CT
genotype patients (p=0.1311).*Comparison of positive GM percent-
age in CC genotype versus TT genotype patients (p=0.9661).
+Comparison of positive GM percentage in CT genotype versus TT
genotype patients (p=0.4201). b Distribution of positive GM percentage
by IL1a genotypes. ‡Comparison of positive GM percentage in CC
genotype versus CT genotype patients (p=0.3513).*Comparison of

positive GM percentage in CC genotype versus TT genotype patients
(p=0.0015). +Comparison of positive GM percentage in CT genotype
versus TT genotype patients (p<0.0001). c Distribution of positive GM
percentage by IL1Ra genotypes. ‡Comparison of positive GM
percentage in 1/1 genotype versus 1/2 genotype patients (p=0.5097).
*Comparison of positive GM percentage in 1/1 genotype versus 2/2
genotype patients (p=0.0024). +Comparison of positive GM percentage
in 1/2 genotype versus 2/2 genotype patients (p=0.0266)
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Discussion

Aspergillus, an ubiquitous fungus, poses a major health
threat to an increasing number of cancer patients and
transplant recipients, causing an IPA characterized by
invasion and destruction of pulmonary tissue [5–11]. An
intact host defense is important to prevent this infection,
and individuals with impaired immunity are susceptible
[65–68], showing a high incidence of IPA and an associated
mortality of up to 90% [69]. Patients with identical
malignant diseases, clinical conditions, and treatments are
known to differ in their susceptibility to IPA and in the
severity of the disease, and the contribution of the host’s
genetic background to IPA risk is attracting research
interest. However, a large proportion of the genetic
background of IPA remains unidentified, and only a few
cytokine gene polymorphisms (IL10, TNFα, TNFR2, and
IL6) have been studied [32, 33, 70].

In the present study, genes located in the IL1 cluster
were selected as candidates for screening. IL1α and IL1β
are major inducers of proinflammatory immune responses,
and there is substantial evidence that local production of
these cytokines is very important in host resistance to IPA.
The immune response against Aspergillus conidia is mainly
produced via Th1 and is mediated by a range of cytokines,
including IL1, IL6, IL12, TNFα, and IFNγ [71–74]. These
cytokines regulate not only their own levels of expression
by autocrine pathways but also downstream cytokine
expression, thereby amplifying the proinflammatory re-
sponse. IL1 and TNF mediate the Th1 immune response
after IPA infection. In fact, bronchoalveolar macrophages
stimulated by Aspergillus conidia produce both IL1α and
IL1β cytokines, promoting recruitment of neutrophils and
monocytes into acutely injured lungs by induction of E-
and P-selectin receptors on venule endothelial cells [71–
73]. Secretion of IL1 also induces production of acute
phase proteins such as CRP [75] and regulates proliferation
and activation of T lymphocytes, which have a relevant role
in clearance of Aspergillus spp. from the lungs [74].

The IL1 cluster genes are polymorphic. A biallelic (C/T)
SNP has been identified in the 5′ regulatory region of the
promoter at position -889 [48]. Recent transfection studies
demonstrated that the -889TT construct had significantly
higher expression than the -889CC construct [76]. More-
over, peripheral blood mononuclear cells of TT genotype
carriers produced higher IL1α mRNA and protein levels
than did cells of CC genotype carriers [76]. Likewise, the
capacity of the host to mount an IL1β driven response is
influenced by sequence variants in the IL1 cluster [45, 46,
77] Polymorphism in the IL1β and IL1Ra gene was also
found to influence the encoded cytokines. Rare alleles of
these polymorphisms (IL1β-511T and IL1Ra allele 2)
correlated with higher IL1β secretion in vitro [45] and in

Fig. 2 a Distribution of CRP values by IL1Ra genotypes. ‡Compar-
ison of CRP values in 1/1 genotype versus 1/2 genotype patients (p=
0.1477). *Comparison of CRP values in 1/1 genotype versus 2/2
genotype patients (p<0.0001). +Comparison of CRP values in 1/2
genotype versus 2/2 genotype patients (p<0.0001). b Distribution of
CRP values by IL1α genotypes. ‡Comparison of CRP values in CC
genotype versus CT genotype patients (p<0.0001). *Comparison of
CRP values in CC genotype versus TT genotype patients (p=0.0210).
+Comparison of CRP values in CT genotype versus TT genotype
patients (p=0.8743). c Distribution of CRP values by IL1β
genotypes. ‡Comparison of CRP values in CC genotype versus CT
genotype patients (p<0.0001). *Comparison of CRP values in CC
genotype versus TT genotype patients (p=0.0012). +Comparison of
CRP values in CT genotype versus TT genotype patients (p=0.0722)
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vivo [77]. Importantly, these polymorphic variants in the
IL1 gene cluster may affect not only the primary inflam-
matory response but also the post-amplification response.
This was demonstrated by the association between variants
of these genes or the receptor antagonist molecule and
infectious disease susceptibility or resistance, observed in
septic shock [34, 35], tuberculosis and malaria [39–41],
periodontitis [42], and viral infections caused by cytomega-
lovirus [78], Epstein–Barr [79], and HIV [80], among
others. Hence, IPA pathogenesis may also be affected by
variations in these genes.

To our knowledge, this is the first report of a candidate
gene-association approach to address a role for IL1 cluster
genes in the pathogenesis of IPA, evaluating the role of
IL1α-889(C/T) and IL1β511(C/T) promoter polymorphisms in
IPA susceptibility. The association of IPA susceptibility
with a VNTR in the second intron of IL1Ra gene was also
investigated.

No significant differences in IL1α, IL1β, or IL1Ra
genotype distributions or in allele carriage rates were
observed between the hematological patients and healthy
controls. Moreover, the distribution of IL1α-889(C/T),
IL1β-511(C/T), and IL1Ra VNTR genotypes and the cor-
responding allelic frequencies in these controls were similar to
reports in other Caucasian populations [50, 61–64]. Inter-
estingly, no differences were observed between IPA and non-
IPA patients in the distribution of the underlying disease.
Therefore, in this population of hematological patients, IL1
gene cluster polymorphisms were not associated with
susceptibility to a specific hematological malignancy.

Analysis of individual loci failed to show any significant
effect of IL1 gene polymorphisms on IPA susceptibility. No
evidence was found of a single-marker association between
IL1α, IL1β, or IL1Ra polymorphisms and risk of IPA. No
significant differences in genotype or allele frequencies for
IL1 cluster polymorphisms were found between the IPA
and non-IPA cohorts. Nonetheless, using a recessive
analysis model, a trend towards a higher presence of
IL1β-511T allele in the IPA group than in the non-IPA
patient group (p=0.092) was found. Because individual IL1
cluster polymorphic loci seems not to be clearly associated
with IPA, a haplotype analysis was performed with an EM
algorithm to assess whether the combined effects of the
IL1Ra, IL1α, and IL1β genotypes also influenced IPA
susceptibility. The EM algorithm allows determination of
haplotype frequencies and maximizes the probability of
obtaining the observed genotypes. Haplotype analysis is
considered useful to identify both rare and common disease
genes and has frequently been proven more powerful than
analysis of a single polymorphism [81, 82]. The present
haplotype analysis revealed a significant association be-
tween VNTR2/-889C/-511T haplotype and IPA infection.
Surprisingly, haplotype analysis also showed a significant

association between VNTR2/-889C/-511C haplotype and
resistance to IPA. The p value for the global haplotype
association was 0.026, showing a significant global
association of IL1 cluster genes with IPA susceptibility.

Taken together, these associations with IL1 gene cluster
polymorphisms provide further evidence of a role for the
IL1 gene cluster in IPA susceptibility, although the precise
mechanisms by which these gene haplotypes influence
disease susceptibility remain unclear. We cannot rule out
the possibility that these haplotypes may be in linkage
disequilibrium with unidentified susceptibility genes/poly-
morphisms that are responsible for the significant associa-
tions observed. These results confirm the importance of
including a haplotype-based analysis, as others have
recommended [83, 84], for adequate assessment of multi-
locus genetic association [84, 85] .

ELISA analysis of IL1α and IL1β showed that their
levels were similar between IPA and non-IPA patients
and did not significantly correlate with IL1α-889(C/T) or
IL1β-511(C/T) genotypes or clinical symptoms. There may be
several possible reasons for this absence of correlations.
First, IL1α remains primarily cell-associated and is found
mainly in cytosol and plasma membranes of cells; there-
fore, its plasma levels are not usually detectable. Second,
dexamethasone, used in the general treatment of many of
our hematological patients, is known to suppress IL1 pro-
duction [86]. Third, a single point measurement is probably
inadequate to assess changes that might be associated with
underlying genetic variations. For these reasons, our study
only analyzed polymorphisms that genetically determine
both IL1α and IL1β expression [72].

There have been several reports on the relationships
between IL1 gene cluster polymorphisms and CRP [87]. In
this study, we observed statistical association between
higher CRP levels and IL1α-889CC, IL1β-511TT, and
IL1Ra2/2 genotypes, reflecting the importance of these
IL1 gene cluster variants in CRP production. However,
CRP values were similar between IPA and non-IPA
patients. In agreement with others [88], our results suggest
that measurement of CRP may not be considered to be
useful to diagnosis and follow-up of fungal infection.

Another interesting finding of this study was the
significantly greater positive GM percentage in patients
with high-secretory phenotype (TT genotype) of IL1β-511

SNP than in those with low-secretory phenotype (CC
genotype). Likewise, a significantly greater positive GM
percentage was observed in patients with high-secretory
phenotype (2/2 genotype) of IL1Ra SNP than in those with
low-secretory phenotype (1/1 genotype). These data sup-
port the hypothesis that the IL1 gene cluster may determine
susceptibility to IPA infection and suggest a protective
effect of IL1β-511C/C and C/T genotypes and IL1Ra 1/1 and
1/2 genotypes against IPA (expression of positive GM).
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Conclusions

This is the first study to describe an association between
IL1 cluster polymorphisms and haplotypes and IPA
infection. The most important finding was that the risk of
developing IPA is influenced by inter-individual variation
in inflammatory response, through a combination of the
effects of IL1Ra, IL1α, and IL1β genotypes. Confirmation
of these results in a multicenter study would rule out the
possibility of any center effect on our findings. Likewise,
studies of larger numbers of patients from different
populations are warranted to assess whether IL1 cluster
gene polymorphisms and related haplotypes could serve as
susceptibility or resistance markers for IPA infection. IL1
cluster gene polymorphisms analysis may become a useful
tool to identify high-risk hematological patients.
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