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Abstract
Background Several primary immune deficiency disorders
are associated with autoimmunity and malignancy, suggest-
ing a state of immune dysregulation. The concept of
immune dysregulation as a direct cause of autoimmunity
in primary immune deficiency disorders (PIDDs) has been
strengthened by the recent discovery of distinct clinical
entities linked to single-gene defects resulting in multiple
autoimmune phenomena including immune dysregulation,
polyendocrinopathy, enteropathy and X-linked (IPEX)
syndrome, and autoimmune polyendocrinopathy, candidia-
sis and ectodermal dystrophy (APECED) syndrome.
Conclusion Reviewing recent advances in our understand-
ing of the small subgroup of PIDD patients with defined
causes for autoimmunity may lead to the development of
more effective treatment strategies for idiopathic human
autoimmune diseases.
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Introduction

The study of primary immune deficiency diseases (PIDD)
indicates that susceptibility to infections is the hallmark of
these disorders [1]. However, over the last decade,
autoimmune manifestations have emerged as important
symptoms of many types of PIDD, providing strong
evidence that maintaining tolerance to self is a function of
the immune system equally important as the protection
from invading microorganisms. Immune dysregulation,
polyendocrinopathy, enteropathy and X-linked—OMIM
304930 (IPEX) syndrome and autoimmune polyendocrin-
opathy, candidiasis, ectodermal dysplasia—OMIM 240300
(APECED) are examples of dysregulated immunity result-
ing in a disturbed tolerance and multiple autoimmune
phenomena.

IPEX Syndrome

Clinical Presentation

Frequently fatal in infancy or early childhood, IPEX is
caused by mutations in the FOXP3 gene located in the
centromeric region of the X chromosome [2]. Powell et al.
[3] described a large family of five generations with
multiple affected males. This observation was followed by
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numerous reports of similarly affected males from different
ethnic groups reflecting the universality of this syndrome
(Table I).

We have reviewed the clinical manifestations of 39
patients from 12 independent reports (Fig. 1) [3–14].
Diarrhea was the predominant symptom, present in all
patients except one member of the original family described
by Powell’s group. The autoimmune enteropathy starts
early in life as severe watery diarrhea that is at times
mucoid or bloody and difficult to control. A few patients
are responsive to gluten-free diet; some respond to

immunosuppressive drugs or parenteral nutrition and some
fail any drug treatment. Diarrhea was also the predominant
clinical manifestation in other reviews of IPEX being
present in almost all affected males [4, 15].

Endocrinopathy is a frequently reported complication
with insulin-dependent diabetes mellitus the most common
endocrine manifestation [4, 5]. Hyperglycemia can start as
early as the first week of life, sometimes requiring
intravenous insulin infusions to control the difficult to
treat blood glucose levels [9]. Autoantibodies against
pancreatic-islet cells, insulin, and glutamic acid decarbox-
ilase (GAD) are frequently present [4, 6, 7, 14]. Thyroid
disease, either hypo- or hyperthyroidism, was present in
30% of patients. Hypothyroidism, the more frequent
thyroid abnormality, is associated with elevated thyroid
stimulating hormone levels and/or antithyroid microsomal
antibodies [3–5, 7, 9, 11, 12, 14].

Eczema is the predominant manifestation of skin disease,
but erythematous and psoriasiform dermatitis, urticaria,
alopecia universalis, trachyonychia, and pemphigoid nod-
ularis have been described [7, 12]. Some infants present
with an erythematous rash involving the entire body, which
improves with topical steroid and immunomodulatory
agents.

Other manifestations occur less frequently, such as
lymphadenopathy, hepatosplenomegaly, cholestatic hepati-
tis, nephropathy, hemolytic anemia, thrombocytopenia,
neutropenia, seizures, sarcoidosis, vasculitis, arthralgia,
and arthritis [3, 4, 8, 9, 10, 11, 13]. As the patients get
older they develop more clinical manifestations. Comparing
reviews with larger patient numbers [4, 15, 16] for clinical
manifestations, the triad enteropathy, diabetes and skin
disease is clearly predominant.

Despite recurrent infections being the hallmark of
primary immunodeficiencies, not all IPEX patients pre-
sented with this manifestation. Torgerson and Ochs [17]
reported that approximately half of 50 patients with
mutations of FOXP3 had a history of multiple severe
infections such as sepsis, meningitis, pneumonia, and

Table I Facts/Features of IPEX and APECED

IPEX APECED

OMIM 304930 240300
Gene FOXP3 AIRE
Onset of symptoms Infancy Childhood
Infections Staphylococcus,

Enterococcus species,
CMV, Candida
(infrequent)

Candida
(up to 100%)

Auto-immune
enteropathy

Frequent 10%

Skin involvement Frequent Frequent
Alopecia Rare 30%
Vitiligo Rare 15%
Nail dystrophy Rare 50%
Enamel hypoplasia Absent 75%
Insulin-dependent
diabetes mellitus

Frequent 20%

Autoimmune
thyroiditis

Frequent 6%

Hypoparathyroidism Absent 85%
Adrenal failure Rare 70%
Ovarian failure Absent 60%
Autoimmune liver
disease

Common 15%

Renal disease Common * Absent
Autoimmune
hematologic
diseases

Frequent Rare

IgG, IgA, IgM Normal Normal
IgE Elevated Normal
Eosinophils Increased Normal
CD3, CD4, CD8,
CD19

Normal Normal

Autoantibodies Frequent 100%
Antibody
production

Normal Normal

Treatment Immunossupressive
agents HSCT

Antifungal
Hormonal
replacement

Lethality at early
age

High Low

* It is unclear if this is autoimmune or secondary to treatment with
cyclosporin A

0% 20% 40% 60% 80% 100%

enteropathy

diabetes

skin disease

failure to thrive

thyroiditis

 recurrent infections

Fig. 1 Main clinical manifestations of 39 IPEX patients from 12
independent reports. Data presented as percentage of patients present-
ing the different clinical features
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osteomyelitis. The most common pathogens observed were
Enterococcus, Staphylococcus species, Cytomegalovirus,
and Candida spp. These infections seem to be as much
related to a decreased barrier function of the skin and the
gut as to an underlying immune defect.

Laboratory Findings

Serum immunoglobulin levels except for elevated IgA and
IgE are generally within normal values. The numbers of
neutrophils and lymphocytes are normal, but eosinophilia is
frequently observed [15]. Patients are able to make
protective antibody responses to immunization [3], but
studies are limited because most patients are treated with
immunosuppressive drugs. Because of immune dysregula-
tion, IPEX patients generate a variety of autoantibodies
against a long list of antigens affecting different organs and
cell types including the small intestine, pancreatic islet
cells, thyroid, kidney, neutrophils, platelets, and erythro-
cytes [4, 5, 8, 9, 11, 13].

CD3+T lymphocytes including CD4+ and CD8+ subsets
are present in normal numbers and proliferation to
mitogens, and specific antigens are normal or slightly
decreased [5]. Bakke et al. [8] observed, in a prospective
study of one patient, a decreased number of B cells, a
normal number of CD8+, and variations in CD4+ T cell
numbers with a high frequency of HLA-DR+ and CD25+

cells. The latter finding can be attributed to the absence of
FOXP3 function and lack of regulatory T cells, leading to
autoaggressive lymphoproliferation [15]. Despite this acti-
vation, cells from IPEX patients have defective IL-2, IFN-γ
and TNF-α production [7, 18]. The relative proportion of
naïve and memory T cells varies between reports [8, 14].
Foxp3 gene transfer confers suppressor function upon naïve
human CD4+T cells and a diminished suppressor activity in
memory T cells [19], suggesting that Foxp3-dependent
implementation of a functional Treg cell program represents
a differentiation pathway distinct from those directing TH1,
TH2 or memory T-cell fate [20].

Pathology

The IPEX phenotype variably affects multiple organs
resulting in tissue damage and severe functional deficits.
The most striking and consistent feature is the loss of
normal small bowel mucosa caused by total or partial
villous atrophy. Involvement of the large intestine is
common with lymphocytic (predominantly CD3+) and
plasma cell infiltrates in the lamina propria [3, 6, 10, 21];
eosinophils may also be present [13]. There is mucosal and
submucosal destruction throughout the intestine but the
muscular layer is not involved [10]. The diagnosis of

Crohn’s disease, ulcerative colitis or celiac disease is often
suggested and disaccharidase deficiency was mentioned in
one report [3–5, 7, 10] leading to specific treatment of these
conditions. Improvement of the diarrhea can usually be
achieved only with immunosuppressive agents.

Histologic examination of the pancreas typically reveals
lymphocytic infiltrates with destruction of exocrine tissue
(in addition to loss of islet cells) with the rare chromogra-
nin, synaptophysin, and insulin positive cells replaced by
loose fibrosis [2–4, 6, 9, 10, 14]. The extensive lympho-
cytic infiltrate observed in the pancreas suggests an
autoimmune mechanism mediated by T cells. The lympho-
cytic infiltrates observed in the thyroid gland also suggest a
T-cell mediated autoimmune mechanism, but antithyroid
antibodies have been found in some patients [2].

The thymus, often atrophic or dysplastic, cannot easily
be distinguished from the mediastinal fat and may be
depleted not only of lymphocytes but may also show an
absence or severe reduction of Hassall’s corpuscles [3, 10,
14]. Recently, Watanabe and colleagues [22] suggested that
Hassall’s corpuscles express and secrete thymic stromal
lymphopoietin (TSLP) leading to the activation of dendritic
cells. TSLP are instrumental in the differentiation of
CD4+CD25+ Foxp3+Tregs.

Treatment

Immunosuppressive drugs such as cyclosporine A, tacroli-
mus (FK506), sirolimus, and steroids have been used with
some success [13, 17]. Unfortunately, these drugs do not
maintain long-term remission of symptoms, and chronic
immunosuppressive therapy may be toxic and may facilitate
opportunistic infections.

Hematopoietic stem cell transplantation (HSCT) is the
best option for a cure. Originally, the results were not
favorable [4, 6], but complete remission of symptoms after
HSCT and reduced-intensity conditioning has recently been
reported in four patients [23]. If performed early, this
therapy can avoid organ toxicity and the increased risk of
infections associated with chronic immunosuppression. It
may also prevent autoimmune endocrine organ destruction.
Identification of the FOXP3 mutation in a kindred allows
carrier diagnosis, prenatal testing, and early postnatal
treatment with HSCT [24].

IPEX-like Phenotype

Recently, Zuber et al. [25] described a young female patient
from a Turkish consanguineous family, with a polyautoim-
mune syndrome resembling a mild form of IPEX, associ-
ated with susceptibility to infections. Autoimmune
enteropathy was diagnosed at the age of 16 years, accom-
panied by vitiligo and an interstitial nephritis. Anti-islet cell
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antibodies were detected. The patient showed a reduced
number of CD4+FOXP3+ T cells in the circulation and in
the highly inflamed intestinal mucosa affecting in particular
the FOXP3highCD25highCD127low subset. Other individuals
with an IPEX-like phenotype and normal FOXP3 by
sequence analysis have been recognized [26]. Recently,
Caudy and collaborators [27] identified a patient with
CD25 (IL-2 R alpha) deficiency caused by a compound
heterozygous mutation of CD25, who presented with
clinical features similar to IPEX, but with autosomal
recessive inheritance. This patient had severe, chronic
diarrhea and villous atrophy in infancy, early onset
insulin-dependent diabetes mellitus, autoantibodies and
multiorgan lymphoid infiltrates. In addition to these
IPEX-like autoimmune features, this and another patient
described earlier by Roifman’s group [28] had a significant
T-cell deficiency and developed opportunistic infections
including CMV pneumonitis, as a result of defective
signaling via the IL-2 receptor complex.

Chronic Mucocutaneous Candidiasis and APECED/APS-1

Chronic mucocutaneous candidiasis (CMC) is a clinical
syndrome with selectively altered immune responses
against Candida. Patients with CMC display recurrent or
persistent yeast infections of the skin, nails, and mucous
membranes caused by organisms of the genus Candida,
mainly Candida albicans. Several unique syndromes are
part of this entity based on the extent and locations of the
Candida infections and characteristic associated findings
such as polyendocrinopathies, autoimmune disorders, thy-
moma, and interstitial keratitis. CMC may be sporadic or
familial. Isolated familial CMC is distinct from candidiasis
with endocrinopathy and can be autosomal recessive
(OMIM 212050) or autosomal dominant (OMIM 114580).
Frequently, CMC is associated with isolated thyroid
disease (OMIM 606415), or with endocrine and autoim-
mune disorders, such as autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED) syndrome
(OMIM 240300) [29, 30, 31] suggesting immune dysre-
gulation as part of the syndrome. The age at onset and the
clinical spectrum of Candidal infections are variable. The
prognosis of isolated CMC is relatively good because
candidiasis can generally be controlled by antifungal drugs;
for this reason, prophylaxis with imidazol derivatives is
recommended. The clinical manifestations seem to be more
severe in patients who present early in infancy [32, 33],
especially if they have disseminated disease, a rare event [34,
35]. Intracranial mycotic aneurysms have been reported [36].
CMC affects both sexes, with a discrete predominance of
females (1.4:1) in the variants associated with endocrinopa-
thies. Most reports suggest a cellular immune defect
affecting the specific responses to antigens of Candida

species [37]. However, defects of macrophage chemotaxis
[38] and humoral immunity—IgA and IgG2/IgG4 deficien-
cies—were described [39]. An acquired form of asplenia has
been observed in some patients with APECED [40]. A
decreased production and secretion of IL-2, IFN-gamma and
other lymphokines, when patients’ lymphocytes were stim-
ulated with Candida antigens has been reported [41–43].
However, the central mechanisms leading to CMC are
unknown. The diagnosis of CMC is suggested by a history
of persistent candidiasis affecting skin, appendages, and
mucous membranes. An important differential diagnosis of
CMC is myeloperoxidase deficiency (OMIM 254600),
which is characterized by mucocutaneous candidiasis and
Candida abscesses [44], sometimes associated with diabetes
mellitus [45]. It is essential to rule out other diseases such as
AIDS, Di George syndrome, severe combined immunodefi-
ciency, diabetes mellitus, cancer, and other conditions that
could cause persistent mucocutaneous candidiasis [46].

APECED

Amolecularly defined group of patients with CMC also suffer
from autoimmune polyendocrinopathy and ectodermal dys-
plasia (APECED). This rare autosomal recessive disorder,
also known as autoimmune polyglandular syndrome type 1
(APS-1), has a high incidence in certain isolated populations
such as Finns (1:25,000 individuals), Iranian Jews (1:9,000),
and Sardinians (1:14,500) [47, 48]. The first description of
this syndrome with hypoparathyroidism and CMC was
reported by Thorpe and Handley [49] in 1929. In 1938,
Söderlund reported a patient with insulin-dependent diabetes
mellitus and candidiasis [50]. Subsequent case reports
confirmed the association of endocrine disorders such as
hypoadrenalism, hypoparathyroidism, and hypothyroidism
with chronic mucocutaneous candidiasis [51–53]. Over the
years, the classic triad of APECED—hypoparathyroidism,
hypoadrenalism, and CMC—has been expanded to a highly
variable combination of autoimmune diseases affecting
endocrine and non-endocrine organs, including the parathy-
roid glands, adrenal cortex, gonads, pancreatic β-cells, and
gastric parietal cells. This expanded phenotype is often
associated with ectodermal manifestations such as dystrophic
dental enamel and nails. The clinical features of APECED
have been reviewed by Ahonen et al. [54] and are compared
to those of IPEX in Table I.

Autoantigens as Targets of Autoimmune Attack
in APECED

A characteristic finding relevant to the endocrinopathies of
APECED is the existence of high-serum antibody titers
reacting specifically with components of the affected
endocrine organs (Table II). Using a human fetal cDNA
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expression system, antibodies against the key enzyme in
steroid biosynthesis, 17 alpha-hydroxylase (P450c17) were
identified in serum from patients with APECED, strongly
suggesting that this enzyme acts as an autoantigen and is
involved in the pathogenesis of adrenocortical failure in
APECED [55]. Subsequently, three enzymes, P450c17,
P450c21 and P450scc, belonging to the cytochrome P450
superfamily and involved in steroid synthesis, were found
to be targets of autoantibodies present in sera from
APECED patients with Addison Disease (81%), but less
frequent in those without this complication (21%). Whereas
P450c21 is adrenal cortex specific, P450c17 and P450scc
are specific for all steroid producing cells and are also
expressed in gonads. The presence of autoantibodies to the
latter two enzymes was strongly associated with hypogo-
nadism in patients with APECED [56]. Many other
autoantibodies have been reported in APECED patients,
often associated with a particular clinical manifestation.
These include autoantibodies to pancreatic islet-cell specific
autoantigens such as GAD65, insulin, and IA2 in those
with type 1 diabetes, thyroid peroxidase, and thyroglobulin
in patients with thyroiditis, and possibly to parathyroid
antigen (calcium-sensing receptor) in some patients with
hypoparathyroidism [57]. Antibodies to another pancreatic
islet cell protein, aromatic L-amino acid decarboxylase,
were identified in sera from the majority of APECED
patients with chronic active hepatitis, vitiligo, or type 1
diabetes [58]. Interestingly, malabsorption appears to be the
result of intestinal endocrine cell destruction as gastrointes-
tinal dysfunction in APECED patients was strongly
associated with the presence of antitryptophan hydroxylase
in serotonin-producing enterochromaffin cells in the gastric
antrum [59] and antihistidine decarboxylase in histamine
producing enterochromaffin-like cells in the gastric fundus
[60]. Importantly, patients with autoantibodies against these
enzymes lacked serotonin and histamine producing entero-
chromaffin-like cells in the gut mucosa.

It has been hypothesized that autoantibodies are induced
in response to tissue destruction, whereas the pathogenic
effect is mediated by T cells. Little is known, however,
about the role cell mediated immunity plays in the
pathogenesis of APECED. Nevertheless, autoantibodies
are useful diagnostic markers as there is generally a good
correlation between the presence of autoantibodies and
clinical disease, and their appearance often precedes the
clinical manifestation.

Genetics of APECED

APECED results from mutations in the autoimmune
regulator (AIRE) gene [30, 31, 62]. There are hotspot
mutations that can be related to a founder effect, such as
the nonsense mutation (R257X) prevalent in the Finnish
and Eastern European population, the Y85C missense
mutation observed in an isolated Iranian Jewish commu-
nity [63, 64] and a nonsense mutation (R139X) frequently
found among Sardinian patients [48]. The 13-bp deletion
in exon 8 (1085–1097(del)) is ubiquitous and can be found
in Norwegians, British, and North Americans [64] as well
as South Americans (Moraes-Vasconcelos, personal ob-
servation). The missense mutation G228W in exon 6 of
AIRE was found in an Italian kindred with an autosomal
dominant (AD) form of APECED [65]. Ilmarinen et al.
[66] analyzed multiple proteins with amino acid substitu-
tions in the SAND domain of AIRE and found that only
the G228W mutation, when coexpressed with wild type,
changed the subcellular localization and severely disrupted
the transactivating capacity of wild-type AIRE. They
concluded that the G228W protein acts with a dominant-
negative effect by binding to wild-type AIRE, preventing
the protein from forming the complexes needed for
transactivation.

Another form of CMC associated with hypothyroidism,
apparently with AD inheritance, has been mapped to

APECED components Tissue Antigens

Addison’s disease Adrenals (cortex) P450c21, P450c17a, P450scc
Hypoparathyroidism Parathyroid glands Ca++ sensing receptor*

Hypothyroidism Thyroid gland Thyroid peroxidase, Thyroglobulin
Type 1 diabetes Endocrine pancreas GAD65, GAD67, ICA, IA-2 tyrosine

phosphatase like protein, L-amino acid
decarboxylase (L-AADC)

Autoimmune hepatitis Liver P450 CYP1A2, P450 CYP2A6, L-AADC
Vitiligo Skin SOX10, L-AADC
Alopecia Scalp Tyrosine hydroxylase
Malabsorption Gastrointestinal tract Tryptophan hydroxylase

Histidine decarboxylase
Autoimmune gastritis Stomach H+K+ ATPase
Pernicious anemia Gastric mucosa, red blood cells Intrinsic factor

Table II Autoantigens in
APECED (Modified from [61])

*
This autoantigen has not been

unequivocally proven in
APECED [57]
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chromosome 2q (OMIM 606415) [67]. None of the other
variants of CMC has been molecularly defined [68, 69],
and are lumped into the category of chronic and recurrent
mucocutaneous infections by Candida species [33].

Role of AIRE in Autoimmunity

The genesis of autoimmunity involves environmental and
genetic mechanisms, both contributing to the disruption or
imbalance of central or peripheral tolerance, allowing
autoreactive T- and B-cell clones to escape negative
selection or post thymic deletion. Among genetic factors,
mutations of the autoimmune regulator gene, AIRE,
correlate with the development of organ-specific autoim-
mune diseases with monogenic autosomal recessive inher-
itance. The AIRE gene, approximately 13 kb in length,
contains 14 exons that encode a polypeptide of 545 amino
acids (Fig. 2). Initial characterization of the AIRE protein,
based on the amino acid sequence, revealed a conserved
nuclear localization signal (NLS) in the N terminus followed

by a SANDdomain; two plant homeodomain (PHD) type zinc
fingers located in the C terminus and a proline-rich region
lying between the two PHDs; and four LXXLLmotifs, typical
of nuclear receptor binding proteins [30, 31, 70]. It was soon
discovered that the N terminus of AIRE also harbors a
homogeneous staining region (HSR) domain, which defines
a protein family including speckled protein 100 (SP100) that
mediates homodimerization [71]. The AIRE protein under-
goes homomultimerization and functions as a transcription
factor. The PHD1 domain of AIRE, which contains a
leucine zipper motif, acts as an E3 ubiquitin ligase,
mediating transfer of ubiquitin to specific proteins, which
results in proteasome degradation, downregulation of cell
surface receptors, and proteolysis-independent activities
[72]. AIRE expression is limited to medullary thymic
epithelial cells (mTECs) and cells of the monocyte/
dendritic cell lineage of the thymus, where it is thought to
play a unique role in the establishment of immune tolerance
[73]. Interestingly, mTECs express MHC class II (MHC-II)
and the costimulatory molecule CD80, and are endowed
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with the remarkable ability to “promiscuously” express a
wide array of tissue-restricted antigens (TRAs) derived
from nearly all organs in the body [74]. TRAs comprise
self-proteins with patterns of expression restricted to a
single or small handful of organs. Self-reactive thymocytes
develop naturally as a consequence of random T-cell
receptor (TCR) gene rearrangement, and TRA expression
in the thymus probably serves as an important source of
self-antigens responsible for the negative selection of
autoreactive T cells [75]. Both mTEC and thymic mono-
cyte/dendritic cells are considered to play a major role in
the establishment of self-tolerance by eliminating auto-
reactive T cells (negative selection) and/or by producing
immunoregulatory FOXP3+ T cells, which prevent CD4+ T-
cell-mediated organ-specific autoimmune diseases [76]
(Fig. 3). It has been demonstrated that AIRE regulates
thymic expression of several mRNA genes of ectopic
peripheral proteins including many TRAs [77] in a
dosage-dependent manner [78]. Therefore, a decrease in
AIRE function can consequently lead to a decrease in the
expression of tissue restricted antigens in the thymus,
allowing the escape of autoreactive T-cell clones into the
periphery [79]. Deficiency of AIRE expression affects
negative selection in a aire −/− mouse model by complete
failure to delete organ-specific thymocytes [78].

Conclusions

The rare syndromes of IPEX and APECED prove to be
unique models to study immune tolerance—AIRE contribut-
ing primarily to central tolerance mechanisms and FOXP3 to
peripheral tolerance mechanisms. Recent findings demon-
strating that AIRE controls thymic expression of peripheral
self-antigens have opened new directions in research, but also
raised important questions [80]. Considering that AIRE is
regulated by the lymphotoxin–RelB pathway in thymic
epithelial cells, other members of this pathway may
influence the ectopic expression of self-antigens in the
thymus. In addition to central tolerance, the possible role
of AIRE in peripheral tolerance, presumably by its expres-
sion in dendritic cells of secondary lymphoid organs,
requires further study [81]. The recognition that AIRE
expression is sustained by effective thymopoiesis has
recently led to investigations of AIRE expression in the
thymus of human severe combined immunodeficiency
(SCID) patients. These studies suggest that the autoimmunity
observed in Omenn syndrome, a combined immunodeficien-
cy caused by defective V(D)J recombination, may result from
defective expression of AIRE in the thymus [82]. In the case
of FOXP3, understanding the mechanism by which it
confers a regulatory phenotype upon T cells will be an
ongoing focus of future investigation. Understanding the

molecular mechanisms of autoimmunity by studying these
rare monogenic syndromes has important implications for
the way we approach autoimmune phenomena both in
immunocompetent and immune compromised hosts and
may lead to novel therapeutic opportunities.
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