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Abstract
In this study we present the seasonal chemical characteristics and potential sources of PM10 
at an urban location of Delhi, India during 2010˗2019. The concentrations of carbona-
ceous aerosols [organic carbon (OC), elemental carbon (EC), water soluble organic carbon 
(WSOC) and water insoluble organic carbon (WIOC)] and elements (Al, Fe, Ti, Cu, Zn, 
Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, Ca, B, Ni, Mo, V, Sr, Zr and Rb) in PM10 were 
estimated to explore their possible sources. The annual average concentration (2010–2019) 
of PM10 was computed as 227 ± 97 µg m−3 with a range of 34˗734 µg m−3. The total carbo-
naceous aerosols in PM10 was accounted for 22.5% of PM10 mass concentration, whereas 
elements contribution to PM10 was estimated to be 17% of PM10. The statistical analysis 
of OC vs. EC and OC vs. WSOC of PM10 reveals their common sources (biomass burn-
ing and/or fossil fuel combustion) during all the seasons. Enrichment factors (EFs) of the 
elements and the relationship of Al with other crustal metals (Fe, Ca, Mg and Ti) of PM10 
indicates the abundance of mineral dust over Delhi. Principal component analysis (PCA) 
extracted the five major sources [industrial emission (IE), biomass burning + fossil fuel 
combustion (BB + FFC), soil dust, vehicular emissions (VE) and sodium and magnesium 
salts (SMS)] of PM10 in Delhi, India. Back trajectory and cluster analysis of airmass parcel 
indicate that the pollutants approaching to Delhi are mainly from Pakistan, IGP region, 
Arabian Sea and Bay of Bengal.
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1  Introduction

A megacity Delhi is considered to be one of the most polluted city in the world, bear-
ing the choking level particulate matter (PM) over the city. The impact of PM on climate 
and human health have become a subject of major concern for the scientific community 
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and public powers all around the world in recent years (IPCC 2013). Carbonaceous aero-
sols (CAs) are the major fractions of PM in the atmosphere and have significant role in 
visibility degradation, alteration of atmospheric chemistry and the Earth’s radiative bal-
ance (Lim and Turpin 2002; Hansen et al. 2005; Bond et al. 2013). Various toxic gases, 
organics and hydrocarbons are produced during the combustion process/emissions of CAs 
and therefore affect the respiratory as well as cardiovascular system of the human (Lighty 
et al. 2000; Pope et al. 2009a, b). Both primary and secondary organic aerosols signifi-
cantly control of physical and chemical properties of aerosols (Kanakidou et  al. 2005) 
and influenced the formation cloud condensation nuclei (CCN), whereas EC absorb solar 
radiation and contribute for radiative change (Bond et al. 2013). PM consists of organics 
(OC, EC, and other components), mineral/crustal/soil dust, metals, non-metals, inorganic 
pollutants, sea salts and relative exuberance of these species are highly variable both spa-
tially and temporally (Ram et al. 2011; Jain et al. 2017).

Generally, the elements linked with the PM are non-volatile in nature and remain unaf-
fected even though they go for regional as well as long-range transportation (Morawska 
and Zhang 2002). Some of the transition/toxic metals (like Fe, Cu, Mn, Zn, Ni, Cr, As, 
Pb, Hg) which are coming from the various sources into the ambient air have acute toxic 
and mutagenic effects on human health, when inhaled at higher concentrations. Elements 
like Fe, Al, Si, Ca and Ti are also available in the fine and coarse mode PM is originated 
from mineral dust/crustal dust (Sharma et al. 2014a). Soluble K in PM mostly originated 
from biomass burning, however, it is also considered to be dust in PM (Viana et al. 2008), 
whereas Cl originated from sea salt is also considered from coal burning in aerosols (Pant 
and Harrison 2012). Therefore, quantification and identification of chemical species and 
sources of PM is essential to explore the appropriate mitigation option to improve the 
ambient air quality, human health and climate (Ramana et al. 2010; Cao et al. 2006; Bond 
et al. 2013; Pope et al. 2009a, b; Ramgolam et al. 2009; Sharma et al. 2018a, b).

Several studies conducted in past on carbonaceous aerosols, inorganic aerosols and 
elements of particulate matter and their potential sources in urban (Ram and Sarin, 2011; 
Mandal et al. 2014; Sharma et al. 2016; Gupta et al. 2017; 2018; Gadi et al. 2019; Shivani 
et al. 2019; Jain et al. 2020a, b), rural, remote (Begam et al. 2017) as well as high altitude 
atmosphere (Kumar and Attri, 2016; Sarkar et al. 2017; Kaushal et al. 2018; Sharma et al. 
2020a,b) of India on seasonal basis and restricted to a year long data sets, but limited study 
has been conducted on long-term basis over the IGP region of India. The atmospheric car-
bonaceous aerosols and elements in PM bear immense importance from the perspective of 
climate change and bio-geochemical cycles over the region (Sharma et  al. 2016). Hence, 
considering the importance of atmospheric carbonaceous species and elements of PM10 in 
urban area, a long-term observations has been carried out at megacity Delhi. In the present 
study, the concentrations of carbonaceous species (OC, EC, WSOC. WIOC, POC and SOC) 
and elements (Al, Fe, Ti, Cu, Zn, Mn, Cr, Ni, Mo, Cl, P, S, K, Zr, Pb, Na, Mg, Ca, and B) of 
PM10 are estimated during 2010–2019 to explore the possible sources of PM10 over Delhi.

2 � Materials and methods

2.1 � Description of study site

Delhi is situated in northern part of India and it is considered to be one of the most 
polluted megacity in the world with annual average PM10 concentration approaching 
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more than 10-times the WHO (world health organization guideline: 25 μg m−3). Delhi 
has currently 31.2 million population (WRP  2021) and over ~ 11 million registered 
vehicles (Statistical Abstract of Delhi 2020). PM10 samples were collected periodically 
at CSIR-National Physical Laboratory (CSIR-NPL), New Delhi (28°38′N, 77°10′E; 
218  m amsl) during January, 2010, to December, 2019. The study site represents an 
urban background surrounded by nearby traffice and Indian Agricultural Research 
Institute (IARI) in north and south-west direction (Fig.  1). A year long meteorology 
of Delhi is divided into four (as per India Metrological Department (IMD), New Delhi 
classification) distinct seasons: winter (January ˗ February), summer (March ˗ May), 
monsoon (June ˗ September) and post˗monsoon (October ˗ December). Winter months 
are chilly (temperature: ~ 2 °C) and observe intense fog and haze. Summers are gener-
ally very hot and dry (temperature: 47 °C) and observe frequent dust storms (soil and 
mineral dust). A detailed description of sampling site is discussed in our previous pub-
lication (Sharma et al. 2018a).

Fig. 1   Map of the study site in Delhi ( Source: Google maps)
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2.2 � Sample collection and analysis

Coarse mode particulate matter (PM10) samples (n = 674) were collected periodically (2 
samples in a week) on pre-combusted (at 550 °C) Pallflex tissue quartz filters using Respir-
able Dust Sampler (flow rate:1.2 m3 min−1 ± 2%), for 24 h from January 2010-December 
2019 (except January-December 2012). The details of the instrument used for PM10 sam-
ple collections are depicted in Table S1 (in supplementary information). The sampler was 
installed at the rooftop of CSIR-NPL, New Delhi at 10 m height (above the ground level: 
AGL). The gravimetric mass (in µg) of PM10 was estimated by the difference between final 
and initial weight (weighing balance: M/s. Sartorius, resolution: ± 10 µg) of the filter. PM10 
concentrations (in µg m−3) was further computed by dividing the PM10 mass to the total 
volume of air passed during 24 h (sampling period). Prior to chemical analysis the samples 
were stored in deep freezer at −20 °C.

OC and EC concentrations of PM10 were analyzed by Thermal/Optical Carbon Ana-
lyzer (Model: DRI 2001A) applying IMPROVE-A Protocol (Chow et al. 2004). Ther-
mal/Optical Carbon Analyzer is working on the preferential oxidation of OC and EC 
at different temperatures (140, 280, 480, 580, 740 and 840  °C). The instrument ana-
lyzes the OC fractions (OC1, OC2, OC3 and OC4), pyrolyzed carbon fraction (OP) 
and EC fractions (EC1, EC2 and EC3), respectively in helium and helium + oxygen 
environment (Chow et  al. 2004; Sharma et  al. 2014a, b). A proper punch of ~ 0.536 
cm2 area of the PM10 filter was cut and analyzed in triplicate along with field blank 
filters. The standard calibration for peak area verification was performed daily using 
5% CH4 + balance helium gas. Calibration of the OC/EC analyzer was performed by 
4.8% of CO2 + balance He gas along with known amounts of KHP (potassium hydro-
gen phthalate) and sucrose solution. In the present case, repeatability error of OC and 
EC analysis were estimated as 3–7% (n = 3). To account for the unmeasured H, O, N, 
and S in organic compounds, a conversion factor (or multiplier) is used to transform 
OC to OM (OM = f × OC). The f multipliers of 1.4 and 1.8 are depending on the extent 
of OM oxidation and secondary organic aerosols (SOA) formation. The  values of  f 
vary from 1.2 for fresh aerosol in urban areas (Chow et al. 2004) to 2.6 for aged aero-
sol (Robinson et al. 2007). In the present case, TCA of PM10 is computed as OM + EC 
[(OM = 1.8 × OC) + EC] (Rengarajan et  al. 2007; Srinivas and Sarin 2014). The 
detailed analytical and calibration procedures of Thermal/Optical Carbon Analyzer is 
described in our previous publication (Sharma et al. 2014a, b).

The 10 ml filtered extract of PM10 samples were analyzed to estimate the concentra-
tions of WSOC and WIOC using a TOC analyzer working on catalytically-aided com-
bustion oxidation method (Model: Shimadzu TOC-L CPH/CPN, Japan). Briefly, sample 
extracts were injected and sprayed onto high temperature platinum catalyst at 680◦ C to 
convert total carbon to CO2 and measured by NDIR detector. Consecutively, inorganic 
carbon in the water extract was determined after acidification of another aliquot of the 
sample of PH 2 with 25% phosphoric acid and measuring the evolved CO2. The NDIR 
detector response for inorganic carbon was calibrated with a Na2CO3 standard. The 
water-soluble organic carbon was assessed from the difference between the total carbon 
and the inorganic carbon. The repeatability of WSOC was estimated to be 3–10% based 
on triplicate analysis of each filter. The detail, analytical procedures is described in Rai 
et al. (2020a).

The concentrations of elements i.e., Al, Fe, Ti, Cu, Zn, Mn, Cr, Ni, Mo, Cl, P, S, K, 
Zr, Pb, Na, Mg, Ca, and B etc., in PM10 are analyzed (with repeatability errors 5–10%) 
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using Wavelength Dispersive X-ray Fluorescence Spectrometer (WD-XRF). The analysis 
of major and trace elements were carried out by a non-destructive method of quanti-
tative elemental analysis using Wavelength Dispersive X-Ray Fluorescence (ZSX Pri-
mus, Rigaku, Japan). Measurement of elements were taken under standard reference 
conditions (vacuum condition, 36 ºC temperature and 2.4 kW tube rating). The param-
eter method was employed in the quantitative analysis given in ZSX software package 
of WD-XRF. The instrument WD-XRF was calibrated periodically using micro-matter 
thin-film standards (Watson et al. 1999). PM10 samples were analyzed in triplicate and 
for these major and trace elements. The detail analytical procedures is available in Jain 
et al. (2020a, b).

2.3 � Estimation of POC and SOC

The seasonal concentrations of primary organic carbon (POC) in PM10 samples are cal-
culated using minimum OC/EC ratio of each season (for winter:1.26, summer:1.48, mon-
soon:1.58 and post-monsoon:1.55). The concentration of POC is computed using the fol-
lowing equation (Castro et al. 1999),

Secondary organic carbon (SOC) of PM10 is estimated as the difference between OC 
and POC (SOC = OC–POC).

2.4 � Enrichment Factors (EFs)

Crustal EFs referes the origin of the elements (either anthropogenic or natural) and their 
abundance in the ambient particulates (Amato et al. 2016). EFs of the elements present in 
atmosphereic PM10 samples are computed (Taylor and McLennan, 1995) as:

where,
Esample = element (E) concentration.
Xsample = reference element (X) concentration.
Ecrust = element (E) concentration in upper continental crust.
Xcrust = reference element (X) concentration in upper continental crust.
Aluminium (Al) is used as the reference element in this study (Khilare and Sarkar 2012; 

Sharma et al. 2014a, b).

2.4.1 � Principal component analysis (PCA)

PCA was applied on chemical constituents of PM10 to identify the potential sources con-
tributing to PM10 concentration. It uses orthogonal decomposition to identify individual 
groups of components which are then tied to variables by loading factors (Viana et  al. 
2008). The detail processes, mathematical equations and hypothesis of PCA are available 
in various literatures (Song et al. 2006; Jain et al 2021).

(1)POC = [OC∕EC]
min

× [EC]

(2)EF=
Esample/Xsample

Ecrust/Xsample
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3 � Results and discussion

3.1 � Variations in concentrations of chemical species of PM10

3.1.1 � Variation in PM10 concentration

Figures  2˗3 shows the temporal variation in mass concentrations of PM10 and its chemi-
cal components monitored during Januray 2010 to December 2019 (including annual trend 
in Fig.  S2). The annual average concentration (9˗year average) of PM10 was estimated as 
227 ± 92 µg m−3 (range: 33—733 µg m−3) with annual average maxima (279 ± 99 µg m−3) in 
2016 and annual average minima (189 ± 59 µg m−3) in 2010. The year-wise annual concen-
trations of PM10, OC, EC, WSOC, WIOC, POC and SOC from Januray 2010 to December 
2019 are depicted in Table 1 (including annual trend of OC, EC and WSOC in Fig. S2). The 
maximum monthly concentration (pooled estimate of 9 years) of PM10 was noted in colder 
month December (346 ± 42  µg  m−3) and the minimum monthly average concentration of 
PM10 was observed in September (127 ± 42 µg  m−3 µg  m−3) during monsoon month. The 
monthly average concentration of PM10 are shown in  Fig. 3. The highest seasonal average 
concentration of PM10 (304 ± 92 µg m−3) were found during post-monsoon seasons followed 
by winter (271 ± 95 µg m−3), summer (221 ± 81 µg m−3) and monsoon (181 ± 85 µg m−3) sea-
sons (Table 2). Sharma et al. (2014a, b) (213 μg m−3), Mandal et al. (2014) (285 μg m−3), 
Jain et al. (2019) (250 μg m−3), Kulshrestha et al. (2009) (219 μg m−3), Perrino et al. (2011) 
(183 μg m−3) and Tiwari et al. (2013) (161 μg m−3) are also reported the similar concentration 

Fig. 2   Temporal variation in concentrations of PM10 and carbonaceous species (OC, EC and WSOC) of 
PM10 over Delhi during 2010–2019
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of PM10 over Delhi. All these studies breached the threshold limit (24 h average: 100 μg m−3 
and annual average: 60 μg  m−3) of National Ambient Air Quality Standards (NAAQS) of 
India. Highest PM10 concentration during post-monsoon season (October-December) were 
mainly attributed to the firework display during Diwali festival and crop residue burning 

Fig. 3   Temporal variation in concentration of elements present in PM10 over Delhi during 2010–2019
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activities in the agricultural activities along with meteorological conditions like high rela-
tive humidity, low wind speed and low boundary layer height resulted in accumulation of 
PM10 mass generated from these activities in the lower surface (Shivani et al. 2019). Higher 
concentration of pollutants during winter season (January–February) could be attributed to 
the prevailing meteorological conditions i.e. low temperature, stable atmosphere (cool air 
causes inversions that stagnate the air and trap pollution close to the ground) and low wind 
speed. While during summer season (March–May) higher windspeed along with high mix-
ing height results in dispersion of pollutants. However, frequent dust storms during summer 
season increase the PM concentration in the region. On contrary, rainfall during monsoon 
season scavenged off the atmospheric particles leading to their lower concentration (Sharma 
et al. 2016).

3.1.2 � Variation in OC, EC and WSOC of PM10

Temporal variations in OC, EC and WSOC concentrations of PM10 during study 
period are shown in Fig. 2. The total annual average (9 years) concentrations of OC, 
EC, WSOC, WIOC, POC and SOC of PM10 were 24.5 ± 13.8 µg m−3, 7.7 ± 5.1 µg m−3, 
10.5 ± 7.1  µg  m−3; 11.5 ± 8.1  µg  m−3, 12.7 ± 6.3  µg  m−3 and 11.8 ± 8.5  µg  m−3, 
respectively. Figure  3 shows the monthly average concentrations of OC, EC and 
WSOC in PM10 during the entire study period in Delhi (pooled estimate of 9 years). 
Highest monthly average OC in PM10 (48.1 ± 13.8  µg  m−3) was found in Decem-
ber (post-monsoon/cold season), whereas monthly average minima of OC in PM10 
(12.5 ± 8.3  µg  m−3) was found in August (monsoon). Similar monthly average max-
ima and minima of EC (in PM10) was recorded in December (15.7 ± 6.9 µg  m−3) and 
August (3.4 ± 2.4 µg m−3) of post-monsoon and monsoon, respectively (Fig. 3). High-
est monthly average concentration of WSOC concentration in PM10 (20.6 ± 6.4 µg m−3; 
50% of OC) was recorded in November (post-monsoon) may be due to the influence 
of stubble burning nearby northern states of India (Punjab, Haryana and western Uttar 

Table 1   Annual mean concentrations of PM10 and its carbonaceous species (OC, EC, WSOC, WIOC, POC 
and SOC) in Delhi

 ± Standard deviation (n = 674, from 2010–2019); values in parentheses are ranges; na: not analyzed

Year PM10 OC EC WSOC WIOC POC SOC OC/EC

(µg m−3)
2010 189 ± 59 29.2 ± 19.7 6.9 ± 5.1 na na 11.5 ± 7.2 17.6 ± 15.0 4.2
2011 200 ± 85 22.1 ± 8.6 8.6 ± 4.7 na na 16.3 ± 6.2 5.9 ± 3.2 2.6
2013 225 ± 93 23.2 ± 12.2 10.7 ± 6.6 na na 17.4 ± 6.8 5.8 ± 4.9 2.2
2014 234 ± 98 22.5 ± 14.5 10.6 ± 7.4 na na 13.4 ± 5.9 9.2 ± 6.4 2.1
2015 209 ± 81 25.4 ± 13.4 7.8 ± 5.5 10.1 ± 5.9 15.3 ± 6.2 10.5 ± 6.9 14.9 ± 7.4 3.3
2016 279 ± 99 32.7 ± 15.7 9.4 ± 6.6 13.5 ± 9.8 19.2 ± 8.7 20.4 ± 9.7 12.3 ± 7.3 3.5
2017 207 ± 98 23.1 ± 13.9 5.2 ± 3.7 9.6 ± 6.5 13.5 ± 9.5 9.6 ± 5.2 13.5 ± 8.5 4.4
2018 253 ± 95 20.0 ± 13.3 4.9 ± 3.8 8.6 ± 5.6 11.4 ± 7.2 7.7 ± 4.9 12.3 ± 9.5 4.1
2019 250 ± 86 22.1 ± 12.5 4.9 ± 2.4 10.6 ± 7.7 11.5 ± 8.1 7.3 ± 4.7 14.8 ± 9.8 4.5
Mean 227 ± 97 24.5 ± 13.8 7.7 ± 5.1 10.5 ± 7.1 11.5 ± 8.1 12.7 ± 6.3 11.8 ± 8.5 3.4

(33.6 – 
733.7)

(0.72 – 
82.5)

(0.81 – 
35.6)

(2.3 
–57.0)

(2.1 – 
35.2)

(3.1 
–19.2)

(2.6 – 41.6) (1.5 –10.3)
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Pradesh of IGP) and minima in August (5.2 ± 3.1 µg m−3). The seasonal average con-
centrations of OC, EC, WSOC, WIOC, POC, SOC TCA and their weight ratios are 
summarized in Table  2. Highest seasonal average concentration of OC was recorded 
in post-monsoon (38.0 ± 14.4  µg  m−3) and minimum seasonal average of OC was 
recorded during monsoon (14.1 ± 8.2  µg  m−3). Similarly, seasonal average maxima 
and minima of EC were recorded in post-monsoon (12.1 ± 6.6 µg  m−3) and monsoon 

Table 2   Seasonal variations in mass concentrations of carbonaceous species (OC, EC, WSOC, POC, SOC 
and TCA) and elements of PM10 (µg m−3) in Delhi

 ± Standard deviation
a  Significantly different (p < 0.05)

Components Seasons

Winter
(n = 148)

Summer
(n = 203)

Monsoon
(n = 184)

Post-Monsoon
(n = 139)

PM10 271 ± 95 221 ± 81 151 ± 85 304 ± 92
OC 29.1 ± 13.2 22.3 ± 11.5 14.1 ± 8.2 38.0 ± 14.4
EC 9.5 ± 5.5 6.6 ± 4.7 4.0 ± 2.5 12.1 ± 6.6
WSOC 12.7 ± 6.3 7.8 ± 2.7 5.8 ± 3.2 18.4 ± 8.6
WIOC 16.4 ± 8.3 14.5 ± 9.0 8.3 ± 7.9 19.6 ± 10.8
POC 15.2 ± 9.1 10.6 ± 8.5 6.7 ± 5.1 20.5 ± 11.8
SOC 13.9 ± 10.6 11.7 ± 8.8 7.4 ± 5.0 17.5 ± 10.4
TCA​ 62.0 ± 27.8 46.6 ± 23.9 29.4 ± 16.9 80.6 ± 31.1
OC/EC 3.7 ± 2.8 3.4 ± 1.9 3.5 ± 1.6 3.7 ± 1.9
WSOC/OC 0.44 ± 0.27 0.35 ± 0.23 0.41 ± 0.29 0.48 ± 0.39
POC/OC 0.52 ± 0.41 0.48 ± 0.32 0.47 ± 0.32 0.54 ± 0.41
SOC/OC 0.48 ± 0.32 0.52 ± 0.35 0.53 ± 0.33 0.46 ± 0.28
TCA/PM10 0.23 ± 0.12 0.21 ± 0.09 0.19 ± 0.29 0.27 ± 0.13
Na 4.42 ± 4.19 2.68 ± 2.26 3.43 ± 2.70 4.25 ± 3.95
Mg 0.88 ± 0.49 1.18 ± 1.05 1.17 ± 0.93 1.03 ± 0.69
Ca 6.23 ± 3.70 7.38 ± 5.41 6.65 ± 4.33 7.03 ± 3.93
K 4.74 ± 4.11 3.78 ± 3.36 2.46 ± 2.08 6.72 ± 6.34
Al 3.54 ± 2.53 4.28 ± 3.25 4.14 ± 3.37 5.20 ± 3.47
Fe 1.13 ± 1.01 2.50 ± 2.04 1.86 ± 1.77 1.26 ± 1.07
Ti 0.33 ± 0.32 0.68 ± 0.64 0.45 ± 0.42 0.55 ± 0.46
As 0.17 ± 0.16 0.16 ± 0.13 0.22 ± 0.19 0.23 ± 0.20
Cu 0.26 ± 0.25 0.22 ± 0.21 0.64 ± 0.56 0.82 ± 0.65
Zn 1.01 ± 1.00 0.70 ± 0.62 0.41 ± 0.29 1.07 ± 1.05
Mn 0.16 ± 0.12 0.23 ± 0.22 0.19 ± 0.14 0.18 ± 0.15
Pb 0.57 ± 0.42 0.45 ± 0.39 0.28 ± 0.22 0.52 ± 0.43
Cr 0.27 ± 0.19 0.26 ± 0.17 0.18 ± 0.12 0.25 ± 0.23
F 0.83 ± 0.75 0.84 ± 0.61 0.66 ± 0.51 0.75 ± 0.65
Cl 13.54 ± 11.49 7.91 ± 7.82 5.84 ± 5.37 11.14 ± 10.21
Br 0.23 ± 0.21 0.14 ± 0.11 0.11 ± 0.09 0.24 ± 0.22
P 0.23 ± 0.15 0.26 ± 0.17 0.16 ± 0.12 0.20 ± 0.17
S 4.01 ± 2.10 2.95 ± 1.48 2.72 ± 1.78 4.64 ± 2.77
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(4.0 ± 2.5  µg  m−3) seasons. Average WSOC concentration was also recorded highest 
during post-monsoon saeson (18.4 ± 8.6  µg  m−3) and minimum in monsoon season 
(5.8 ± 3.2 µg m−3).

Total annual average concentration of TCA contributes 22.5% of PM10 (54.7 ± 24.5 µg m−3)  
mass concentration. The highest TCA in PM10 was recorded in post-monsoon (26.5% of 
PM10) season followed by winter (22.9% of PM10), summer (21.1% of PM10) and mon-
soon (19.4% of PM10) seasons. The annual average concentration of POC of PM10 was 
12.7 ± 6.3 µg m−3 (52.1% of OC; range: 33–76% of OC) and SOC was 11.8 ± 8.5 µg m−3 
(48.2% of OC; range: 25–67% of OC) during entire study period. The seasonal contribu-
tion of POC and SOC were ranging from 48–54% and 48–42% of OC, respectively. Jain 
et al. (2017) reported almost similar percentage contributions of OC (10% of PM10), EC 
(5% of PM10) and TCA (23% of PM10) of PM10 at Delhi, whereas Mandal et  al. (2014) 
reported higher percentage contributions of OC (32.8% of PM10), EC (9.5% of PM10) 
and TCA (61.8% of PM10) of PM10 in an industrial area of Delhi. Ram et al. (2011) also 
reported 22% OC and 3% EC of PM10 at an urban site of Kanpur in IGP of India dur-
ing 2009. Monthly as well as seasonal variations in concentrations of PM10, OC, EC and 
WSOC may be due to the source strength and prevailing meteorological conditions at the 
measurement site of Delhi. The changes in mixing height of the boundary layer during the 
various seasons may also influence the higher concentration of PM10 and its carbonaceous 
species (Salma et  al. 2004; Begum et  al. 2011). It is noteworthy that apart from stable 
atmosphere and lowered boundary layer height, the particulates emitted from crop residue 
burning in the states of Punjab and Haryana (a popular after harvesting practise performed 
by farmers during the months of October and November), get transported and advected 
towards Delhi region (Gupta et al. 2018; Shivani et al. 2019). This is the major cause of 
loading of carbonaceous aerosols during post-monsoon season over the sampling region. 
Other scientific studies also exhibit similar seasonal pattern of OC and EC concentration in 
Delhi (Sharma et al. 2014a, b; Sharma et al. 2016; Jain et al. 2017; Gupta et al. 2018; Gadi 
et al. 2019; Shivani et al. 2019).

Figure  3b shows the monthly average OC/EC and WSOC/OC ratios of PM10 at 
Delhi, whereas the seasonal relationship between OC & EC and WSOC & OC of PM10 
are depicted in Fig.  S1 (see the supplementary information). The seasonal average OC/
EC ratio of PM10 was 3.7 ± 2.8, 3.4 ± 1.9, 3.5 ± 1.6 and 3.7 ± 1.9 during winter, summer, 
monsoon and post-monsoon, respectively whereas the seasonal average WSOC/OC ratio 
of PM10 was reported as 0.44, 0.35, 0.41 and 0.48 during winter, summer, monsoon and 
post-monsoon, respectively. Banoo et al. (2020) reported the similar seasonal OC/EC ratios 
(3.4, 3.5, 4.0 and 3.9 during winter, summer, monsoon and post-monsoon, respectively) 
over National Capital Region (NCR) of Delhi wheraes WSOC/OC ratios as 0.55, 0.47, 0.57 
and 0.60 during winter, summer, monsoon and post-monsoon, respectively. It is to be noted 
that the poor solubility of organics emitted from the combustion of the fossil fuels (diesel, 
petrol etc.) the WSOC/OC values for vehicular emissions are low (< 0.20) as compared 
to biomass burning (0.20–0.80). Therefore, biomass burning emissions have higher solu-
bility in water than fossil fuel combustion (Rengarajan et al. 2007). In this study, signifi-
cant positive correlation between OC vs. EC (r2 = 0.68, r2 = 0.73, r2 = 0.82 and r2 = 0.69 
at p < 0.05 during winter, summer, monsoon and post-monsoon seasons, respectively) of 
PM10 has been observed during all the seasons (Table S2; in supplementary information), 
which is indicative of their common sources (Rengarajan et al. 2007; Ram and Sarin 2011). 
The positive correlation of K (a tracer of biomass) with Na, Ca and Mg of PM10 during all 
the seasons (except post-monsoon) demonstrate the abundance of soil dust contributed by 
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soluble organic sources to PM10 at study site (Tables S3-S6; in supplementary informa-
tion). It is considered that the soil suspension, fuel combustion (Urban et al. 2012), and for-
mation of secondary water soluble organic aerosols (Lim et al. 2010) are also some other 
sources of WSOC in the sampling site of Delhi.

3.1.3 � Concentration of elements in PM10

During the entire sampling period (2010–2019) 18 common elements (Al, Fe, Ti, Cu, Zn, 
Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, and Ca) were extracted in PM10 (B, Ni, Mo, V, Sr, 
Zr and Rb are also traced in few samples ranges from 0–0.09 µg m−3) using X-RF technique. 
The annual and seasonal statistical summary of elements recorded in PM10 samples is tabu-
lated in Table 2. Higher concentrations of Ca, Na, Cl, K, Al, and Fe were observed during 
all the seasons with seasonal variability. The temporal variation in concentration elements 
present in PM10 samples are depicted in Fig. 4; whereas monthly average concentrations of 
elements of PM10 are shown in Fig. 5. Highest average contribution of elements to PM10 are 
accounted for 20.9% (of PM10) during monsoon season followed by summer (16.5% PM10), 
winter (15.7% of PM10) and post-monsoon seasons (15.2% of PM10). The similar contribu-
tion of elements to the PM10 over Delhi is also reported by Rai et al. (2020a, b; 2021).

Figure 6 depicts the seasonal enrichment factors (EFs) of the elements (Al, Fe, Ti, Cu, 
Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, and Ca) available in PM10 samples. Al, Fe, 
Ti, K, Mg, and Ca in PM10 have recorded low EFs (< 5) for all the seasons, which indicate 
that, elements mostly arrived from crustal/soil sources (Sharma et al. 2014a, b; Saxena et al. 
2017). The element like Cu, Zn, Ni, Pb, Cr, Mo and B have higher EFs (> 10) in both PM2.5 
and PM10 and therefore are likely of anthropogenic origin. The higher the EF of Cr, Ni, Pb 
and Zn of PM10 were also attributed to industrial emission (IE) sources. Generally Cu, Mn, 
Zn, Ni, Cd, Fe, Mo, S and Cr used as a marker for IE in India (Shridhar et al. 2010).

In this study, Fe/Al ratio is 0.40 (winter: 0.32; summer: 0.58; monsoon: 0.45 and post-
monsoon: 0.24), which indicates the dominant source of mineral/crustal dust at the study 
site. The average Ca/Al ratio (1.62) indicates (in winter: 1.78; summer: 1.72; monsoon: 1.61 
and post-monsoon: 1.35) that PM10 over the Delhi region is rich in Ca dust as compared to 
average continental crust. Sarin et al. (1979) had reported that the Fe/Al ratio in north Indian 
plains ranged from 0.55 to 0.63. Kumar and Sarin (2009) reported Fe/Al ratio as 0.59 for 
PM2.5–10 at a remote high altitude sampling site (Manora Peak, Nainital: ~ 1951 m above the 
mean sea level) of western India. McLennan, (2001) recorded the average Ca/Al ratio as 
1.07 in PM10 whereas, the corresponding ratio in the upper continental crust is 0.38. Corre-
lation matrix of Al with Fe, Ca, Mg and Ti of PM10 during all the seasons are also indicated 
the abundance of mineral/soil dust in Delhi (Table S3-S6; in supplementary information).

3.2 � Possible sources and source regions

3.2.1 � Sources of PM10

Principal component analysis (PCA) has been performed with 23 chemical species of 
PM10 (OC, EC, WSOC, SOC, POC, Al, Fe, Ti, Cu, Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, 
As, Na, Mg, and Ca) to extract the factor loading to PM10. Seasonal factor profiles (9 year 
long data sets) for the possible sources of PM10 was extracted using PCA are summarized 
in Table  S7a-d  (in supplementary information). On the basis of the factor loading PCA 
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resolved the five common sources [industrial emissions (IE), biomass burning + fossil fuel 
combustion (BB + FFC), crustal/soil dust (SD), vehicular emissions (VE) and sodium and 
magnesium salts (SMS)] of PM10 during winter, summer, monsoon (extracted four sources) 
and post-monsoon seasons at an urban site of Delhi.

Source 1: During winter season the first source of PM10 is characterized as industrial 
emissions (IE) due to higher loading of Cu, Zn, Mn, Cr, S, Fe and Pb in aerosol samples 
(Table S7a). These elements (Cu, Zn, Ni, Cr and Mo) are generally originated from the 
small to medial scale industries, metal processing industries, industrial effluents and 
coal fired thermal power plants (Gupta et al. 2007; Jain et al. 2019). During summer, 

Fig. 4   Average monthly variation in (a) concentrations of PM10, OC, EC, WSOC and (b) OC/EC and 
WSOC/OC ratios of PM10 over Delhi during 2010–2019
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IE was also extracted as a factor 1 of PM10 with 27.4% of variance (Table S7b) whereas 
during monsoon and post monsoon seasons IE was extracted as factor 2 (Table S7c-d); 
in supplementary information).

Source 2: The second factor of represents the BB + FFC, characterized (18.8% of the 
variance during winter and 20.5% of the variance during summer) by highly loaded with 
OC, EC, WSOC, SOC, POC, K, and Cl. K+ and Levoglucoson are considered BB (cow 
dung, crop residue, fuel wood, and wildfires, etc.) marker, whereas presence of Cl in the 
factor reveals the wood and coal burning (Pant and Harrison 2012). WSOC/OC and OC/
EC ratios also evidence the BB + FFC as a one of the sources of PM10 at the observational 

Fig. 5   Average monthly variation in concentrations of (a) transition/toxic elements (b) other elements avail-
able in PM10 over Delhi during 2010–2019
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site of Delhi (Banoo et  al. 2020). Factor 1 was extracted as source of BB + FFC during 
monsoon and post-monsoon seasons with 30.3% and 24.6% of the variance, respectively 
(Table S7c-d) in supplementary information).

Source 3: The third factor of PM10 represented by high loading (12.5%, 11.1%, 13.3% 
and 12.2% of the variance during winter, summer, monsoon and post-monsoon seasons, 
respectively) of crustal elements like, Al, Ti, Fe, Ca, Mg, K and Na which inferred the 
source as crustal/soil/road dust during winter, summer, monsoon and post-monsoon sea-
sons (Begum et al. 2011; Sharma et al. 2014a; Jain et al. 2020b). The abundance of these 
elements at the study site as crustal origin is also confirmed by EFs (Fig.  5) as well as 
positive correlations of Al with Ca, Mg and Ti (Table S1-S8). This factor of PM2.5 was 
resolved as crustal/soil dust by high loading of Al, Ti, Fe, Ca, Mg, K and Na (17.6% of the 
variance of factor loading) (Table S7a-d). The EFs of these elements are also suggesting 
the crustal origin the elements at sampling site (Fig. 6) of Delhi as well as the positive cor-
relations of Al with Ca, Mg, Fe and Ti.

Source 4: The fourth factor of PM10 constitutes the vehicular emissions (VE) with the 
dominant presence of EC, OC, Zn, Mn, and Cr indicates (with 9.4%, 9.9%, 10.7% and 
9.3% of the variance during winter, summer, monsoon and post-monsoon seasons, respec-
tively) the emission derived from road side vehicles (Pant and Harrison 2012; Jain et al. 
2020b). Since, EC and OC are majorily emitted from the combustion sources, so these 

Fig. 6   Enrichment factors (EFs) of elements present in PM10 during winter, summer (pre-monsoon), monsoon 
and post-monsoon seasons
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components are considered as important tracers for VE globally (Yin et al. 2010; Beum 
et al. 2011). Zn and Mn are used as marker of brake and tire wear, two stroke engine emis-
sions (Zn as fuel additive), heavy duty diesel truck emission (Mn as fuel additive) (Kothai 
et al. 2008; Sharma et al. 2014a). VE is inferred to be one of the major sources of aerosols 
(Sharma et al. 2020b) at in urban sites of Delhi region may due to the great influence of 
public and private vehicles (light and heavy vehicles) (Jain et al. 2020a, b).

Source 5: Fifth source is resolved as sodium and magnesium salt (SMS) due to high 
factor loading of Na and Mg (Choi et  al.  2013). Even though, Na, Mg, and Cl are 
used as markers for sea salt or marine aerosols (Pant and Harrison 2012) however the 
sampling site neither is and nor surrounded by coastal region, hence it would be more 
relevant to refer this source as sodium and magnesium salt (Jain et al. 2019). However, 
long-range transportation of the pollutants from the Arabian Sea and Bay of Bengal 
(Fig. 7) to the sampling site may be considered as sea salt as a source in stead of SMS. 
The contribution of SMS was extracted by PCA during all the seasons with < 8% of 
variance excluding monsoon season (where combined source was extracted i.e., SMS). 
During monsoon season heavy rainfall and winds flowing from Arabian Sea and Bay 
of Bengal (Fig.  7) contribute to SMS/sea salt loading in the sampling region (Jain 
et al. 2017).

Fig. 7   120 h air mass HYSPLIT back trajectories with cluster analysis during, winter, summer (pre-monsoon), 
monsoon and post-monsoon seasons over Delhi from 2010–2019
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3.2.2 � Air mass backward trajectory/source region

To explore the transport pathway of PM10 at the observational site of Delhi, 120  h air-
mass back trajectory was computed using the HYSPLIT model (Draxler and Rolph 2003) 
at an altitude of 500 m AGL (Fig. 7). During winter, air parcels approaching to sampling 
site is mainly from the continental region of IGP, India [northern part of India (Punjab, 
Haryana) and eastern part (Uttar Pradesh)]. During summer, pollutants reaching to recep-
tor site from the northern India (Punjab, Haryana, eastern part of Uttar Pradesh) including 
Pakistan (continental region) as well as from marine region (Arabian sea through Gujarat 
and Rajasthan). During monsoon season, the air mass also approaching to sampling site 
from Arabian sea (through Gujarat and Rajasthan) and Bay of Bengal (through eastern IGP 
of India). Jain et al. (2021) reported the similar air parcels towards the Delhi during all the 
seasons over Delhi during 2013–2016.

4 � Conclusions

The annual and seasonal characteristics of carbonaceous aerosols and elements in PM10 
were estimated during 2010˗2019 to explore the prominent sources of PM10 in megac-
ity Delhi, India. During the entire study period, the average concentration of PM10 was 
recorded as 227 ± 97  µg  m−3 with non-significant increasing annual trend. The seasonal 
average total CAs in PM10 was accounted for 26.5%; 22.9%; 21.1% and 19.4%; of PM10, 
during post-monsoon, winter, summer and monsoon seasons, respectively. The annual 
average (pooled average of 9-year data) contribution of elements to PM10 is accounted for 
17% of PM10 (during monsoon: 20.9%; summer: 16.5%; winter: 15.7% and post-monsoon: 
15.2%). Significant positive linear relationship between OC & EC; and OC & WSOC (OC/
EC and WSOC/OC ratios) indicate the BB + FFC are one of the major sources of carbo-
naceous aerosols at the urban site of Delhi. EFs of the elements indicates the abundance 
of mineral/soil dust in the megacity Delhi during all the seasons. PCA resolved the five 
common sources (IE, BB + FFC, crustal/SD, VE and SMS) of PM10 over the region. 120-h 
HYSPLIT back trajectory air parcels indicate that the pollutants approaching to Delhi are 
mainly from continental [Pakistan, IGP region (Punjab, Haryana and Uttar Pradesh)] as 
well as marine region (Arabian Sea and Bay of Bengal).
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