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Abstract Beijing is one of the largest and most densely populated cities in China. PM2.5 (fine
particulates with aerodynamic diameters less than 2.5 μm) pollution has been a serious
problem in Beijing in recent years. To study the temporal and spatial variations in the chemical
components of PM2.5 and to discuss the formation mechanisms of secondary particles, SO2,
NO2, PM2.5, and chemical components of PM2.5 were measured at four sites in Beijing,
Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), over four seasons from
2012 to 2013. Fifteen chemical components, including organic carbon (OC), elemental carbon
(EC), K+, NH4

+, NO3
−, SO4

2−, Cl−, Al, Ca, Fe, Mg, Na, Pb, Si, and Zn, were selected for
analysis. Overall, OC, SO4

2−, NO3
−, and NH4

+ were dominant among 15 components, the
annual average concentrations of which were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82, and
13.20 ± 12.80 μg·m−3, respectively. Compared with previous studies, the concentrations of
NH4

+ were significantly higher in this study. In winter, the average concentrations of OC and
EC were, respectively, 3 and 2.5 times higher than in summer, a result of coal combustion
during winter. The average OC/EC ratios over the four sites were 4.9, 7.0, 8.1, and 8.4 in
spring, summer, autumn, and winter, respectively. The annual average [NO3

−]/[SO4
2−] ratios in

DL, CG, FS, and YF were 1.01, 1.25, 1.08, and 1.12, respectively, which were significantly
higher than previous studies in Beijing, indicating that the contribution ratio of mobile source
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increased in recent years in Beijing. Analysis of correlations between temperature and relative
humidity and between SOR ([SO4

2−]/([SO4
2−] + [SO2])) and NOR ([NO3

−]/([NO3
−] + [NO2]))

indicated that gas-phase oxidation reactions were the major formation mechanism of SO4
2− in

spring and summer in urban Beijing, whereas slow gas-phase oxidation reactions and hetero-
geneous reactions both occurred in autumn and winter. NO3

−was mainly formed through year-
round heterogeneous reactions in urban Beijing.

Keywords Chemical components .PM2.5
.Beijing .SOC.OC/EC. [NO3

−]/[SO4
2−] . Formation

mechanism

1 Introduction

With the rapid development of the social economy and continuously increasing energy
consumption, air pollution has become a serious problem in China in recent years (Chan
and Yao 2008; Lin et al. 2008; Rose et al. 2010; Yang et al. 2009; Zhang et al. 2012). Beijing
has a population of 16 million within an area of 16,800 km2, making it one of the largest and
most densely populated cities in China. Beijing is located at the northwestern border of the
North China Plain and is bound by mountains on the north, east, and west. Many heavily
populated industrialized cities are located near Beijing to the southwest and southeast (Xu et al.
2011). Unfavorable geographical conditions and rapid growth in traffic emissions and regional
pollutant emissions have made Beijing one of the most seriously polluted cities in China. The
latest research (Yang et al. 2015) showed that about 28 % ~ 36 % of PM2.5 in Beijing was
transported from the exterior region. Among the local emissions, the main sources of PM2.5

were vehicle (31.1 %), coal consumption (22.4 %), industrial production (18.1 %), dust
(14.3 %) and others (14.1 %), respectively.

Particulate matter (PM), especially PM2.5 (fine particles with aerodynamic diameters less
than 2.5 μm), plays important roles in atmospheric visibility reduction, acid deposition, and
climate change (Yan et al. 2008; Garland et al. 2009; Ma et al. 2011). PM2.5 also has significant
adverse health effects. Exposure to high concentrations of PM2.5 has been found to result in
increased hospitalizations and higher mortality rates (Michaels and Kleinman 2000; Dockery
2001; Schwartz et al. 2002; Zhang et al. 2010; Zheng et al. 2015). PM2.5 is a complex mixture
of elemental carbon (EC), organic carbon (OC), nitrate (NO3

−), sulfate (SO4
2−), ammonium

(NH4
+), mineral dust, sea salt, and heavy metals (Hueglin et al. 2005). OC and EC affect the

extinction coefficient for light scattering and absorption, which can contribute up to 30 % of
the total extinction (Chan et al. 1999). The strong absorption capacity of EC has a significant
impact on aerosol radiative forcing, which can lead to global warming (Menon et al. 2002;
Ramanathan et al. 2001; Bond et al. 2013). Water-soluble ions such as SO4

2−, NO3
−, and NH4

+

are hydrophilic and can promote the formation of cloud condensation nuclei, which signifi-
cantly influence visibility and climate (Yao et al. 2002; Wang et al. 2005).

Since 2000, the number of studies of PM2.5 has gradually increased in various large city
agglomerations in China such as the Pearl River Delta (Cao et al. 2004; Lai et al. 2007; Hagler
et al. 2006; Duan et al. 2007; Hu et al. 2008; Liu et al. 2008), the Yangtze River Delta (Ho
et al. 2011; Huang et al. 2012; Yang et al. 2005; Ding et al. 2013; Wang et al. 2008; Li et al.
2011a, b), and the Beijing–Tianjin–Hebei region (Wang et al. 2015a; Wang et al. 2015b). In
Beijing, several studies have examined the general characteristics of PM2.5 chemical compo-
nents and discussed their seasonal variations (He et al. 2001; Sun et al. 2004; Song et al. 2006).
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Also in Beijing, multiple studies have focused on correlations among PM2.5 components and
the formation of secondary particles (Yao et al. 2002; Dan et al. 2004; Huang et al. 2006; Wang
et al. 2009; Pathak et al. 2009; Ianniello et al. 2011). There have been several studies aimed at
revealing the health effects of PM2.5 (Zhang et al. 2000; Guo et al. 2009; Kipen et al. 2010; Wu
et al. 2010). Additionally, the aerosol number concentrations (Wu et al. 2007, 2008; Yue et al.
2009, 2011; Shen et al. 2011; Zhang et al. 2011; Gao et al. 2012), size distributions of aerosol
chemical species (Yao et al. 2003; Cheng et al. 2009; Guo et al. 2010; Li et al. 2012), and
aerosol optical characteristics and mixing states (Cheng et al. 2009; Deng et al. 2011a, b; Ma
et al. 2012; Chen et al. 2012) have been discussed.

In this study, SO2, NO2, PM2.5, and chemical components of PM2.5 were measured at four
sites in Beijing over four seasons. The main objectives of this paper were to (1) characterize
the concentration levels and spatiotemporal variations in chemical components of PM2.5 in
Beijing; (2) investigate the state of OC secondary pollution in Beijing; and (3) discuss the
formation mechanisms of SO4

2− and NO3
− in urban Beijing.

2 Sampling and analysis

2.1 Sampling sites and occasions

Four sites, Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), in different areas
of Beijing were selected for this study, as shown in Fig. 1. DL is a background site in Beijing, which
is located in the northern region of Beijing. CG is an urban environmental monitoring site in Beijing,
which is located between 2nd ring and 3rd ring in Beijing. FS is a suburban environmental
monitoring site in Beijing, which is located in the northeast of Fangshan district. YF is a regional
transport pollution monitoring site in Beijing, which is located near the southern boundary in
Beijing. Thus, the four sites can be a good representative of Beijing.Mass concentrations of gaseous
pollutants and PM2.5 were measured by automatic monitoring instruments in the field (PM2.5

concentration data was only available in 2013). Chemical components of PM2.5 were manually
sampled and analyzed in the laboratory. PNS 16 T-3.1/PNS 16 T-6.1 (Derenda, Germany) four-
channel atmospheric particulate matter samplers with a flow of 16.67 L/min and Teflon membranes
(Whatman, UK) were used to sample chemical components of PM2.5. Meteorological elements
were also monitored at the CG site. The sampling period for the DL, CG, and FS sites was from
August 2012 to July 2013. The sampling period for the YF site was from November 2012 to July
2013. A period of 5–7 continuous days was selected each month for sampling, and within that
period, each site was monitored for 24 h.

2.2 Monitoring instruments and analysis methods

SO2 was monitored using a Thermo Fisher 43i pulsed UV fluorescence analyzer with a minimum
detection limit of 0.5 × 10−9 (volume fraction) and accuracy of 1.0 × 10−9 (volume fraction). NOx

was monitored using a Thermo Fisher 42C chemiluminescence NO–NO2–NOx analyzer with a
minimum detection limit of 0.05 × 10−9 (volume fraction). PM2.5 was monitored with a Thermo
Fisher 1405F analyzer with a tapered element oscillating microbalance (TEOM) monitoring
mechanism with a minimum detection limit of 1.0 μg·m−3. OC and EC were analyzed with an
RT-4 analyzer with a minimum detection limit of 0.2 μg·m−3 (Sunset Lab, USA). The analysis of
OC and EC did not require any pre-treatment processes. Samples were stored under cryogenic
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refrigeration until use, and were then brought to room temperature before measurements. In the
process of measurement, some OC tended to occur pyrolysis and be converted into EC at about
300 °C, thus, an optical detector was implied to solve this problem. A red laser was chose to be the
source of the optical detector, and the strong absorption capacity of EC was applied to correct the
errors caused by pyrolysis. In the end, a methane gas with known quantities was applied to calibrate
the instrument (NIOSH 1996 and 1999).Water-soluble cations and anions were monitored using an
ICS-2000 and an ICS-3000 ion chromatographic analyzer (Dionex), respectively. Sample filters and
blank filters were digested in a clean Teflon-TFM digestion tank. Saturated boric acid solution
(20mL) was added to neutralize the excess F−. After another microwave digestion, the solution was
brought to a 50-mL constant volume. Selenium was monitored with an AFS-9230 atomic fluores-
cence spectrometer (China), and other inorganic elements were monitored using an Intrepid II-XDL
spectrometer (Thermo Fisher, USA). Ground meteorological elements were observed with a
WXT520 meteorological instrument (Vaisala, Netherlands). Before each chemical component
measurement, standard samples from the Institute for Environmental Reference Materials of the
Ministry of Environmental Protection were applied to calibrate the instruments. A multi-point
calibration was done every week. Parallel samples contributed at least 10 % of the total number
of samples.

3 Results and discussion

3.1 Annual average concentrations of chemical components

After the laboratory analyses, 15 chemical components with relatively higher concentrations in
PM2.5 were selected for further analysis, annual average concentrations of which are shown in
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Fig. 1 Locations of the four monitoring sites
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Table 1. Overall, OC, SO4
2−, NO3

−, and NH4
+ were dominant among 15 components, the

annual average concentrations of which in the four sites were 22.62 ± 21.86, 19.39 ± 21.06,
18.89 ± 19.82, and 13.20 ± 12.80 μg·m−3, respectively. For most components, the lowest
concentrations were observed at the DL site, reflecting the characteristics of the site’s urban
background. The sum of the annual average concentrations of the 15 selected chemical
components at the DL site was 64.61 μg·m−3. The sum of the annual average concentrations
of the 15 selected chemical components at the YF site was 116.32 μg·m−3, 1.8 times that of the
DL site. Overall, the concentrations of PM2.5 chemical components were higher in the south
and lower in the north. The concentration of OC was the highest among the 15 components in
DL, FS, and YF, accounting for 24.2 %, 24.4 %, and 30.7 % of the summed concentrations,
respectively. NO3

− had the highest concentration among the 15 components in CG, accounting
for 23.3 % of the summed concentrations. The CG site was close to Chegongzhuang West
Road and Capital Stadium Road, where NO2 emitted by motor vehicles is converted into NO3

−

through atmospheric chemical reactions (Xie et al. 2000; Fu et al. 2001; Carslaw 2005).
Figure 2 shows the average concentrations of the 15 chemical components over four

seasons. Metal elements accounted for a relatively small proportion of PM2.5, and their
concentrations were higher in winter and lower in summer. The most abundant metal element
was Si, concentration of which were higher in spring and summer, this may have been caused
by sand and dust storms that occur in Beijing in the spring and summer (Zhang et al. 1993).
Concentrations of the water-soluble ions K+ and Cl− were highest in winter and lowest in
summer. The sampling period in February, 2013 was a few days after the Spring Festival in
China. The discharge of fireworks has a significant effect on K+ (Cheng et al. 2013, 2014;
Chang et al. 2011). Also, the burning of fossil fuels in winter facilitates the formation of
organic and inorganic substances containing Cl−. Concentrations of the water-soluble ions
NH4

+ and SO4
2− were highest in winter and lowest in autumn. Coal combustion in winter

Table 1 Annual average concentrations of 15 chemical components of PM2.5 at the four sites (μg·m
−3)

Component DL CG FS YF

n 1 70 58 73 55

OC 15.61 ± 15.46 18.87 ± 13.24 24.38 ± 21.77 35.71 ± 33.71

EC 2.18 ± 1.72 2.66 ± 1.54 4.54 ± 3.37 4.87 ± 3.20

K+ 0.66 ± 0.85 1.79 ± 6.77 4.45 ± 28.79 2.06 ± 4.99

NH4
+ 10.07 ± 12.07 14.99 ± 15.75 13.00 ± 12.08 15.55 ± 13.37

NO3
− 15.61 ± 22.61 20.80 ± 24.96 20.26 ± 21.76 21.28 ± 17.88

SO4
2− 14.55 ± 16.96 19.28 ± 20.49 20.54 ± 24.00 22.43 ± 20.86

Cl− 1.44 ± 2.18 3.59 ± 4.68 4.77 ± 9.54 4.35 ± 4.42

Al 0.48 ± 0.34 0.64 ± 0.83 1.09 ± 2.72 1.05 ± 0.92

Ca 0.73 ± 0.42 1.29 ± 1.08 1.28 ± 0.97 1.69 ± 1.40

Fe 0.68 ± 0.47 0.87 ± 0.85 0.84 ± 0.55 0.93 ± 0.66

Mg 0.26 ± 0.19 0.38 ± 0.60 0.61 ± 1.94 0.61 ± 0.57

Na 0.40 ± 0.39 0.89 ± 1.06 0.63 ± 0.64 0.81 ± 0.56

Pb 0.13 ± 0.17 0.27 ± 0.44 0.26 ± 0.41 0.31 ± 0.35

Si 1.60 ± 0.91 2.32 ± 1.59 2.72 ± 1.83 4.15 ± 5.34

Zn 0.21 ± 0.23 0.44 ± 0.61 0.41 ± 0.40 0.52 ± 0.55

1) n refers to the number of samples
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increases the emission of NH3, and lower temperatures favor the formation of particulate
inorganic nitrogen salts from NH3, NOx, and HNO3 (O’Dowd et al. 2000; Schlünzen and
Meyer 2007; Elminir 2005; Watson et al. 1994). Coal combustion in winter also increases the
emission of SO2, and the haze that frequently occurs in winter in Beijing promotes the
formation of SO4

2− from SO2 (Sun et al. 2006; Galindo et al. 2008). The concentration of
NO3

−, another water-soluble ion, was highest in spring and lowest in autumn. Studies have
reported that the dust that invades Beijing carries particulate inorganic nitrogen components
(Zhang and Iwasaka 1999). Additionally, coarse particles in dust, such as CaCO3, provide a
reaction medium for NO3

−, NH4
+, Na+, and Ca+, facilitating the formation of NO3

−.
Figure 3 shows the annual average concentrations of OC, EC, and water-soluble ions

observed in this study and previous studies from 2001 to 2010 (Tan et al. 2009; Wang et al.
2005; Ho et al. 2006; Shon et al. 2012; Pathak et al. 2009; Zhao et al. 2013; Yang et al. 2011;
Hagler et al. 2006; Kim et al. 2007; Qin et al. 2006). Concentrations of OC, NO3

−, and SO4
2−

in this study were significantly higher than monitoring results for Beijing, Lanzhou, Hong
Kong, Shanghai, New York, and Seoul from the period 2001–2006, whereas they were similar
to monitoring results for Shijiazhuang and Tianjin from 2010. The average concentration of
NH4

+ was higher than all previously reported levels, as shown in Fig. 3 and Table 2.

3.2 OC and EC

Both OC and EC concentrations were higher in winter and lower in summer, as shown in
Fig. 4. The average concentration of OC over the four sites was 13.49 ± 6.00 μg·m−3 in
summer, whereas in winter, it was almost three times higher at 39.30 ± 29.00 μg·m−3. The
average concentration of EC over the four sites was 2.12 ± 0.92 μg·m−3 in summer and
5.22 ± 3.89 μg·m−3 in winter, 2.5 times higher. It can be concluded that coal combustion in
winter significantly influenced OC and EC. In addition, the low boundary height caused by
temperature inversion was another factor that influenced OC and EC. Among the four sites, the
concentrations of EC were highest at the FS site in summer, autumn, and winter. The FS site
was close to traffic trunks located outside the Fifth Ring Road, and heavy diesel vehicles were
allowed on the road, increasing EC emissions.
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The OC/EC ratio was applied to discern transformation characteristics of carbonaceous
aerosols and to identify secondary sources of particulate matter. Most EC is produced from the
incomplete combustion of carbonaceous fuels. Therefore, EC is considered a tracer of direct
anthropogenic emissions (Strader et al. 1999). OC comes from both primary organic carbon
(POC) that is directly emitted from pollution sources and secondary organic carbon (SOC) that
is formed through photochemical reactions (Cabada et al. 2004). Studies have shown that
when the OC/EC ratio is >2, SOC is formed in the atmosphere (Chow et al. 1996; Castro et al.
1999; Cao et al. 2009). In addition to photochemical reactions, biomass burning emits large
quantities of OC, but relatively little EC, also resulting in high OC/EC ratios (Zhang et al.
2007).

The OC/EC ratio remained high throughout the entire year, as shown in Fig. 5. The average
OC/EC ratios for the four seasons were 4.9, 7.0, 8.1, and 8.4, in the spring, summer, autumn,
and winter, respectively. The OC/EC ratio was relatively low in the spring, and there were
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Fig. 3 Comparison of concentrations of OC, EC, and water-soluble ions from this study and previous studies

Table 2 Comparison of concentration of NH4
+ with previous monitoring results

Year Sampling location Authors Concentrations
of NH4

+/μg·m−3

1999–2000 Chegongzhuang Yang et al. (2004) 7.18

1999–2004 Shangdianzi Xu et al. (2008) 3.29

2003 Research center for eco-environmental science,
Chinese Academy of Science

Chen et al. (2005) 5.20

2008 Institute of atmospheric and physics, Chinese
Academy of Science

Guo et al. (2012) 7.70

2008–2009 Chinese Research Academy of Environmental Sciences Deng et al. (2011a), b) 8.35

2012–2013 DL, CG, FS and YF This study 13.20
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small differences among the four sites. The OC/EC ratio increased in the summer due to
increased sunlight intensity and temperature. In summer, among the four sites, both OC and
EC concentrations were lowest at the DL site, whereas the OC/EC ratio was the highest. This
is likely due to the fact that EC concentrations for many of the samples from DL were
<1.0 μg·m−3 in the summer, resulting in high OC/EC ratios. The monitoring results for DL
were similar to those from a regional background site in Europe (Novakov et al. 2005).

3.3 Formation of SO4
2− and NO3

−

3.3.1 [NO3
−]/[SO4

2−] ratios

The [NO3
−]/[SO4

2−] ratio was applied to characterize the relative contributions of stationary
sources and mobile sources (Arimoto et al. 1996). The [NO3

−]/[SO4
2−] ratios were lower in
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summer and winter and higher in spring and autumn, as shown in Fig. 6. Coal combustion in
winter increased SO2 emissions. High temperatures, high humidity, and strong solar radiation
in summer favor the formation of SO4

2−. The distribution of NO3
− across the gas phase,

particle phase, and different sizes of particulate matter is related to temperature, humidity, SO4
2

− concentration, and the concentration of crustal elements in the particulate matter. The
combination of these potential factors causes seasonal variations in the [NO3

−]/[SO4
2−] ratio.

The annual average [NO3
−]/[SO4

2−] ratios in DL, CG, FS, and YF were 1.01, 1.25, 1.08, and
1.12, respectively, which were significantly higher than previous studies in Beijing, indicating
that the contribution ratio of mobile source increased in recent years in Beijing. At the CG site,
the contribution of mobile source was higher than other sites due to its special location
(Table 3).

3.3.2 Formation mechanisms of SO4
2− and NO3

−

The main sources of SO4
2− and NO3

− are photochemical reactions of SO2 and NO2, respec-
tively. Therefore, concentrations of SO4

2− and NO3
− are related to the oxidation efficiency of

SO2 and NO2. The sulfur and nitrogen oxidation ratios (SOR and NOR, respectively) were
applied to characterize the conversion efficiency of SO2 and NO2 (Sun et al. 2006; Sun et al.
2014; Sun et al. 2015), as follows:

SOR ¼ SO2−
4

� �
= SO2−

4

� �þ SO2½ �� �
NOR ¼ NO−

3

� �
= NO−

3

� �þ NO2½ �� �

Previous studies have demonstrated that the SOR is lower than 0.1 in pollutants that are
discharged directly, such as vehicle exhaust (Pierson et al. 1979). Truex et al. (1980) and Ohta
and Okita (1990) reported that when the SOR is higher than 0.1, SO2 participates in
photochemical reactions through which SO4

2− is formed. The SOR values were higher than
0.1 throughout all four seasons, reflecting obvious photochemical reactions of SO2 in Beijing,
as shown in Fig. 7. Among the four seasons, the SOR was significantly higher in the summer,
likely due to the fact that higher temperatures are favorable for the transformation from SO2 to
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SO4
2− (Quan et al. 2008; McMurry P and Wilson J 1983). The NORs were significantly lower

than the SORs. The NOR was highest in the spring at the CG site, but it was highest in summer
at the other three sites. The annual average SORs were 0.433, 0.383, 0.438, and 0.460 at the
DL, CG, FS, and YF sites, respectively. The annual average NORs were 0.269, 0.186, 0.223,
and 0.305 at the DL, CG, FS, and YF sites, respectively. Among the four sites, the NO3

−

concentration was highest at the CG site; however, the NOR was the lowest.
Many mechanisms have been reported for the formation of SO4

2− from SO2, such as gas-
phase reactions of SO2 and OH radicals, aqueous transformation processes (metal-catalyzed
oxidation or H2O2/O3 oxidation), and in-cloud processes (Ziegler 1979; Meng and Seinfeld
1994; Xiu et al. 2004). The formation of SO4

2− and NO3
− is related to many factors, including

the concentrations of precursors, concentrations of oxidant in gas- and liquid-phases, charac-
teristics of preexisting aerosol particles, and meteorological conditions. The gas-phase con-
version of SO2 to SO4

2− initiated by OH radicals is strongly a function of temperature
(Seinfeld 1986; Radojević 1992), whereas heterogeneous reactions are closely related to
humidity and particulate matter load (Liang and Jacobson 1999). Currently, studies of
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Table 3 [NO3
−]/[SO4

2−] ratios from previous studies

Authors Year Location [NO3
−]/[SO4

2−]

Huebert et al. (1988) 1988 Beijing 0.30–0.50

Yao et al. (2002) 1999–2000 Shanghai 0.10–0.70

Wang et al. (2002) 2001 Nanjing 0.40–1.00

Wang et al. (2005) 2001–2003 Beijing 0.71

Wang et al. (2011) 2009 Beijing 0.60

Zhou et al. (2013) 2013 Shanghai 1.05

Xiao et al. (2013) 2012 Guangzhou 0.12

Park et al. (2013) 2011 Korea 1.21–1.96

Kim et al. (2000a, 2000b) 1999 Southern California and Los Angeles 2.00–5.00
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heterogeneous reactions on particle surfaces are in the preliminary stages compared with
studies of homogeneous reactions. The Chinese scientist Zhu and his research group (Zhu
et al. 2011; Shang et al. 2010; Xu et al. 2010; Ye et al. 2010; Tang et al. 2010; Li et al. 2011a,
b) have conducted related studies on atmospheric heterogeneous reaction processes on particle
surfaces, confirming the importance of heterogeneous reactions in the formation of secondary
particles of PM2.5 in Beijing.

Meteorological data were only available at the CG site. The Spearman correlation coefficients
between the SOR and NOR and the temperature and relative humidity (RH) were calculated
(Table 4) to suggest formation mechanisms of SO4

2− and NO3
−, following the evaluation protocols

of Yao et al. (2002) and Wang et al. (2009). In spring and summer, the SOR and temperature had a
strong positive correlation, whereas the SOR and RH had no significant correlation, suggesting that
a possible oxidation mechanism of SO2 to SO4

2− was the local gas-phase oxidation of SO2 by OH
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Fig. 7 Seasonal SORs and NORs at the four monitoring sites
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radicals, followed by condensation or absorption into the particle phase. The correlations of SOR
with temperature and RH are close in autumn andwinter. Thus, the formationmechanisms of SO4

2−

included both slow gas-phase oxidation and heterogeneous reactions in the autumn and winter in
urban Beijing. The NOR and temperature had no significant correlation during any season.
Meanwhile the NOR and RH had strong positive correlations in spring, autumn, and winter,
suggesting that heterogeneous reactions played major roles in the formation of NO3

− throughout
the year in urban Beijing. Additionally, studies have shown that NO3

− is formed by gas-phase
oxidation when NH4

+ is in excess of SO4
2− (i.e., [NH4

+]/[SO4
2−] > 1.5; Pathak et al. 2004, 2009).

However, the [NH4
+]/[SO4

2−] ratios at the CG site were 0.73, 0.62, 1.26, and 0.67 in the spring,
summer, autumn, and winter, respectively, suggesting that NH4

+ was not in excess of SO4
2−. Thus,

gas-phase oxidation cannot explain the high NO3
− concentrations observed in urban Beijing.

However, the analysis is based on the overall situation of thewhole year. In some heavy air pollution
process, the rapid increase of concentration of PM2.5 was related tomore complex chemical reaction
mechanism.

Laboratory and field experiments have shown that under conditions of high NOx concen-
trations, the heterogeneous hydrolysis reaction of N2O5 is one of the main sources of NO3

− in
particulate matter (Anttila et al. 2006; Martinez et al. 2000; Hu and Abbatt 1997; McLaren
et al. 2004; Hallquist et al. 2003). Two factors are favorable for the heterogeneous hydrolysis
reaction of N2O5 to NO3

− on particle surfaces of existing SO4
2−. PM2.5 in Beijing has a large

surface area and strong hygroscopicity resulting from the high concentration of PM2.5 and
water-soluble ions in PM2.5. The formation and heterogeneous hydrolysis reaction of N2O5

include the R1–R3 reactions (Mentel et al. 1999; Underwood et al. 2001; Seisel et al. 2005;
Bauer et al. 2004; Bian and Zender 2003). R1 is the speed-control reaction. HNO3 formed by
R3 has high reactivity and participates in chemical reactions (R4–R7) to form secondary
particulate matter such as surface nitrates (Hanisch and Crowley 2001; Goodman et al. 2001).
In our monitoring results, the NORs were lower than the SORs; this may be related to the
different formation mechanisms of SO4

2− and NO3
−, a question that warrants further study.

NO2 þ O3→NO3 þ O2 ðR1Þ

NO2 þ NO3→N2O5 ðR2Þ

Table 4 Correlation coefficients of the SOR and NOR with temperature and RH at the CG site

SOR NOR

Temperature Spring 0.661 1) -

Summer 0.560 1) -

Autumn 0.627 -

Winter 0.488 1) -

RH Spring - 0.794

Summer - -

Autumn 0.638 0.453 1)

Winter 0.556 1) 0.551 1)

(−) indicates no significant correlation

1) The correlation was significant at the 0.05-level (2-tailed). Unless noted, the correlation was significant at the
0.01-level (2-tailed)
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N2O5 gð Þ þ H2O aq:ð Þ→2HNO3 aq:ð Þ ðR3Þ

CaOþ 2HNO3→Ca NO3ð Þ2 þ H2O ðR4Þ

MgOþ 2HNO3→Mg NO3ð Þ2 þ H2O ðR5Þ

CaCO3 þ 2HNO3→Ca NO3ð Þ2 þ CO2 þ H2O ðR6Þ

MgCO3 þ 2HNO3→Mg NO3ð Þ2 þ CO2 þ H2O ðR7Þ

4 Conclusions

OC, SO4
2−, NO3

−, and NH4
+ were dominant among 15 components, the annual average

concentrations of which in the four sites were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82,
and 13.20 ± 12.80 μg·m−3, respectively. Concentration of OC and EC in winter were
significantly higher than those in summer, indicating that coal combustion greatly influenced
OC and EC. The annual average [NO3

−]/[SO4
2−] ratios in DL, CG, FS, and YF were 1.01,

1.25, 1.08, and 1.12, respectively, which were significantly higher than previous studies in
Beijing, indicating that the contribution ratio of mobile source increased in recent years in
Beijing. Correlation analyses between temperature and RH, and SOR and NOR showed that
gas-phase oxidation reactions were a major mechanism of SO4

2− formation in the spring and
summer in urban Beijing, whereas slow gas-phase oxidation reactions and heterogeneous
reactions were both important in autumn and winter. Heterogeneous reactions were the main
formation mechanism of NO3

− year round in urban Beijing.
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