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Abstract
Vicarious calibration coefficients (kv) of Second-generation GLobal Imager (SGLI) for ocean color processing were derived 
using in-situ radiometric buoy measurements from the Marine Optical BuoY (MOBY) and the BOUée pour l'acquiSition 
d'une Série Optique à Long termE (BOUSSOLE). Two aerosol-model look up tables (LUTs) used in the GCOM-C aerosol 
retrieval algorithm (LUT-A) and in the previous version of ocean color atmospheric correction algorithm (LUT-B) were 
tested in the procedures to calculate kv and retrieve remote sensing reflectance (Rrs) and aerosol optical thickness (AOT). 
Bias of the processed Rrs compared to AERONET-OC Rrs was reduced by applying the determined kv (i.e., corrected SGLI 
radiance = original SGLI radiance/kv). LUT-A yielded smaller AOT bias compared to AERONET-OC AOT; on the other 
hand, LUT-B gave smaller Rrs noise due to gentle slope of the aerosol reflectance even though it caused AOT overestima-
tion. When kv was derived by adjusting to the AOT measurements, kv was about 1.1 by LUT-A and 1.2 by LUT-B in the 
near-infrared (NIR) channel. However, the kv in the NIR channel was close to 1.0 when AOT and land surface reflectance 
measurements of Radiometric Calibration Network (RadCalNet) were used. The LUT-A with kv from MOBY and BOUS-
SOLE are currently adopted for the SGLI standard ocean color processing. Improvement is needed, however, to design an 
optimal LUT suitable for both aerosol and ocean color purposes.
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1  Introduction

Global Change Observation Mission-Climate (GCOM-C), 
named SHIKISAI, was launched on 23 December 2017 and 
has been delivering continuous global Earth observations 

since 1 January 2018. The GCOM-C satellite carries the 
Second-generation GLobal Imager (SGLI) and aims to gen-
erate a data record for long-term monitoring of environmen-
tal change in the global coastal and open ocean. SGLI has 
multiple channels with high signal-to-noise ratio to detect 
the small ocean color signal, 250 m spatial resolution to 
allow better observation of the coastal oceans, and a wide 
swath (1150 km) to observe globally every two to three days 
(see Table 1).

After the launch, stability of SGLI gains was evaluated 
(1) by using an internal lamp, (2) by measuring solar light 
through on-board diffusers (Okamura et al. 2018; Tanaka 
et al. 2018; Urabe et al. 2020), and (3) by aiming at the moon 
monthly (Urabe et al. 2019). The temporal change estimated 
from the lunar irradiance observations is less than 2% per 
year and has been considered in the radiometric calibration 
of the top-of-atmosphere (TOA) radiance, i.e., Level-1B 
after the Version-2 processing (cf. SHIKISAI portal, https://​
shiki​sai.​jaxa.​jp/​index_​en.​html).
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In addition to the onboard calibration, vicarious calibra-
tion is required for atmospheric correction of SGLI imagery 
because radiometric calibration, especially inter-band cali-
bration, should be accurate to about 0.1% for ocean color 
applications (Gordon 1998; Franz et al. 2007; Zibordi et al. 
2015). The vicarious calibration determines a set of cor-
rection factors (or “vicarious calibration gains”) to adjust 
the satellite TOA radiance so that derived above surface 
water-leaving reflectance ρw (or remote sensing reflectance, 
Rrs) values are consistent with in-situ observed quantities 
through the atmospheric radiative transfer calculation (Eplee 
et al. 2001; Yoshida et al. 2005; Franz et al. 2007; Zibordi 
and Melin 2017).

The traditional ocean color atmospheric correction (AC) 
estimates the aerosol optical thickness (AOT) and aerosol 
model (Maerosol) by using the satellite TOA radiance in two 
near-infrared (NIR) bands where the ρw is negligible over 
clear Case 1 waters. In the case of SGLI AC, the NIR band 
at 867 nm (VN10) and the red band at 672 nm (VN07) must 
be used instead of the second NIR band at 763 nm which is 
designed for observation of the O2 gaseous absorption and 

is not suitable for the AC. So, ρw at 672 nm must be pre-
assumed from its value in other visible wavelengths through 
iterative calculations (e.g., Gordon and Wang 1994; Wang 
and Gordon 1994; Antoine and Morel 1999; Siegel et al. 
2000; Toratani et al. 2007). The ρw in visible bands is then 
obtained by correcting the TOA radiance for atmospheric 
scattering and transmittance, which are calculated from 
the estimated aerosol properties represented by AOT and 
Maerosol. In the case of vicarious calibration, however, we 
can use in-situ observed ρw in the two AC bands to estimate 
AOT and Maerosol.

For the in-situ reference data set, we used data from 
the Marine Optical BuoY (MOBY) and the BOUée pour 
l'acquiSition d'une Série Optique à Long termE (BOUS-
SOLE) which are widely used for the vicarious calibration 
of global ocean color sensors (Clark et al. 1997; Eplee et al. 
2001; Antoine et al. 2008a). The consistency calibration ref-
erence among satellite ocean color sensors can be improved 
by commonly referencing to the MOBY and BOUSSOLE 
measurements (Zibordi et al. 2016).

Table 1   SGLI observation channels

SNR is defined as input radiance/noise at the level of standard radiance and IFOV shown by bold characters. After Okamura et al. (2018) with 
solar irradiance of Thuillier et al. (2003)

Sub-system/channel Center wave-
length

Width Standard radi-
ance

Saturation 
radiance

SNR
TI: NEΔT

Pixel size Solar irradi-
ance,F

0

nm nm W/m2/sr/μm or Kelvin m W/m2/μm

VNR (visible 
and near-
infrared 
radiometer)

VN01 379.9 10.6 60 240–241 624–675 250/1000 1092.1
VN02 412.3 10.3 75 305–318 786–826 250/1000 1712.0
VN03 443.3 10.1 64 457–467 487–531 250/1000 1898.4
VN04 490.0 10.3 53 147–150 858–870 250/1000 1939.2
VN05 529.7 19.1 41 361–364 457–522 250/1000 1851.0
VN06 566.1 19.8 33 95–96 1027–1064 250/1000 1797.1
VN07 672.3 22.0 23 69–70 988–1088 250/1000 1502.6
VN08 672.4 21.9 25 213–217 537–564 250/1000 1502.3
VN09 763.1 11.4 40 351–359 1592–1746 250/1000 1245.4
VN10 867.1 20.9 8 37–38 470–510 250/1000 956.3
VN11 867.4 20.8 30 305–306 471–511 250/1000 956.5
PL01 + 60 672 .2 20.6 25 295 609 1000 1503.6
PL01 + 0 315 707
PL01 − 60 293 614
PL02 + 60 866.3 20.3 30 396 646 1000 956.8
PL02 + 0 424 763
PL02 − 60 400 752

IRS (infrared 
scanner)

SW01 1050 21.1 57 289.2 951.8 1000 646.5
SW02 1390 20.1 8 118.9 347.3 1000 361.2
SW03 1630 195.0 3 50.6 100.5 250/1000 237.6
SW04 2210 50.4 1.9 21.7 378.7 1000 84.2
TI01 10,785 756 300 K 340 K 0.08 K 250/500/1000 –
TI02 11,975 759 300 K 340 K 0.13 K 250/500/1000 –
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In this paper, we derive vicarious calibration coefficients 
kv for ocean color processing by using ρw from MOBY and 
BOUSSOLE and two aerosol lookup tables (LUTs) which 
are used in the GCOM-C standard aerosol property algo-
rithm (Yoshida 2020; Yoshida et al. 2021) and the ocean 
color AC algorithm (Toratani et al. 2020; 2021). The Rrs 
derived by applying the kv and using the same LUTs is vali-
dated against Rrs observed by Aerosol Robotic Network-
Ocean Color (AERONET-OC) (Zibordi et al. 2006, 2009, 
2021). The matchup dataset includes a large range of ocean 
color, surface reflectance, and aerosol conditions. The esti-
mation error and sensitivity of Rrs and AOT on the kv are 
evaluated for the two sets of aerosol LUTs. The pre-fixed kv 
in the red and NIR channels are discussed by referring them 
to those obtained from the aerosol and surface reflectance 
observations of AERONET-OC and those of the Radiomet-
ric Calibration Network (RadCalNet) (Bouvet et al. 2019).

2 � Data

2.1 � GCOM‑C SGLI Level‑1B data

Both Versions 1 and 2 Level-1B (L1B) data were used, the 
former for 2018 and 2019, and the latter for observations 
from January 2020, because the Version 2 reprocessing was 
underway at the time of May 2021. Version 2 L1B includes 
a correction of temporal degradation of the radiometric 
gains by the monthly moon calibration and a deselection of 
noisy detectors in the unilluminated edge parts of the detec-
tor arrays which are used for estimating the dark current of 
the sensor outputs. We have converted Version 1 L1B (LV2) 
to Version 2-like L1B (LV1) approximately by correcting 
the temporal change of gain (kt) and offset (ko) before the 
vicarious calibration analysis using days from launch (D) 
as follows:

The coefficients, kt and ai (i = 0, 1, and 2), are shown in 
the homepage: https://​suzaku.​eorc.​jaxa.​jp/​GCOM_C/​data/​
prela​unch/​index_​cal.​html). The correction is not needed for 
Version 2 L1B data which was processed after 29 June 2020.

2.2 � MOBY data

MOBY has been operated off the Lanai Island in Hawaii 
(around 20.82° N, 157.19° W in the 271st deployment) since 
July 1997 (Clark et al. 1997, 2003), and currently a National 
Oceanic and Atmospheric Administration (NOAA) funded 
project to provide vicarious calibration of ocean color 

(1)LV2(�) ∼ (LV1(�) − ko(D))∕(1.0 + kt(�) ⋅ D)

(2)ko(D) = a0(�) + a1(�) ⋅ D + a2(�) ⋅ D
2

satellites (https://​coast​watch.​noaa.​gov/​cw/​field-​obser​vatio​
ns/​MOBY.​html). The normalized water-leaving radiance 
calculated from the MOBY spectral observations by SGLI 
relative response function (Uchikata et al. 2014) and avail-
able from the NOAA CoastWatch homepage (see above) was 
used in this study.

2.3 � BOUSSOLE data

BOUSSOLE has been operated in the Western Mediterra-
nean Sea, 60 km off Nice, (43.37° N, 7.90° E) since Sep-
tember 2003 (Antoine et al. 2006, 2008a; b). The Rrs used 
in this study was derived from hyperspectral measurements 
weighted by SGLI spectral response functions. The aver-
ages of Rrs in the BOUSSOLE blue channels (average Rrs of 
0.0042 at 443 nm) are about two times smaller than those in 
the MOBY blue channels (average Rrs of 0.0087 at 443 nm). 
This difference is due to BOUSSOLE data encompassing 
oligotrophic and mesotrophic conditions while conditions 
at MOBY are always oligotrophic. Another reason is that, 
for a given chlorophyll concentration, Case I waters of the 
Mediterranean Sea exhibit a larger contribution of absorp-
tion by colored dissolved organic matter than other oceans 
(Morel and Gentili 2009; Morel et al. 2007).

2.4 � AERONET‑OC data

AERONET-OC (Zibordi et al. 2006, 2009, 2021) provides 
above-water radiometric data gathered with a system ini-
tially developed for atmospheric measurements of direct 
sun-irradiance and sky-radiance measurements and com-
pleted with a sea-viewing capability to derive reflectance. 
The uncertainty is at the 4–5% level for the water-leaving 
radiance data in the blue–green spectral regions (Zibordi 
et al. 2009). We used the data from 23 AERONET-OC sites 
which operated in 2018–2020 to evaluate the influence of 
the vicarious calibration coefficients on Rrs (see Sect. 4.2). 
The multi-band data were converted to ρw in the SGLI vis-
ible-NIR channels through the in-water model described in 
Appendix.

2.5 � RadCalNET data

RadCalNet (Bouvet et al. 2019) is an initiative of the Work-
ing Group on Calibration and Validation (WGCV) of the 
Committee on Earth Observation Satellites (CEOS) and 
provides a continuously updated archive of surface and 
TOA reflectances over a network of sites (currently, Uni-
versity of Arizona’s site at Railroad Playa, Nevada, USA, 
the ESA/CNES site in Gobabeb, Namibia, AIR’s site at Bao-
tou, China, the CNES site at La Crau, France, the new AIR 
sandy site at Baotou, China) (https://​www.​radca​lnet.​org/). 
We used the Railroad Playa and Gobabeb sites which are 

https://suzaku.eorc.jaxa.jp/GCOM_C/data/prelaunch/index_cal.html
https://suzaku.eorc.jaxa.jp/GCOM_C/data/prelaunch/index_cal.html
https://coastwatch.noaa.gov/cw/field-observations/MOBY.html
https://coastwatch.noaa.gov/cw/field-observations/MOBY.html
https://www.radcalnet.org/
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relatively homogeneous at the scale of several kilometers. 
We calculated land surface reflectance of SGLI channels 
from the RadCalNet measurements (at a 10 nm spectral sam-
pling interval, in the spectral range from 380 to 2500 nm 
and at 30 min intervals) of the nearest time by weighting 
the spectral response functions of the SGLI channels. The 
datasets include atmospheric observations including surface 
atmospheric pressure, column-integrated water vapor and 
ozone, AOT at 550 nm, and aerosol Ångström exponent.

2.6 � JMA objective analysis data

Column-integrated ozone and water vapor, sea surface wind 
speed, and surface pressure data were provided by the Japan 
Meteorological Agency (JMA). The ozone data are produced 
by the Meteorological Research Institute global chemistry-
climate model (MRI-CCM2) (Deushi and Shibata 2011) 
which includes both the physical processes such as transport, 
vertical diffusion and deposition, and chemical processes 
between trace gases (Shibata et al. 2005). These ancillary 
data were interpolated to the observation times and locations 
of the match-up data.

3 � Methods

3.1 � Data processing flow of vicarious gain 
calculation

Figure 1 gives a schematic description of the vicarious cali-
bration procedure. It involves computing the TOA reflec-
tance, ρt, in the near-ultraviolet (NUV) and visible bands 
from in situ ρw measurements and aerosol properties deter-
mined at NIR wavelengths and comparing the simulated 
reflectance with the SGLI reflectance.

The satellite observed TOA reflectance, ρt, can be approx-
imated as follows:

All the terms in Eq. (3) are function of the wavelength 
(λ) but not shown in the equations here. The ρt, can be cal-
culated from the satellite observed radiance, LTOA, by using 
the ratio of sun-earth distance to mean sun-earth distance, 
d, the SGLI band weighted extraterrestrial solar irradiance, 
F0 (F0 at the yearly average d, F0 , is shown in Table 1), and 
solar zenith angle θs as follows:

Atmospheric molecular scattering reflectance, ρr (calcu-
lated as the satellite reflectance for AOT = 0 and ρw = 0), 
aerosol reflectance, ρa, sunglint reflectance, ρg, direct + dif-
fuse transmittance of sun-surface-satellite path, t, correc-
tion ratio of gaseous (O3, O2, and H2O) absorption from 
the US standard atmosphere, tg, direct transmittance of 
sun-surface-satellite path, T, and spherical albedo, sa, are 
calculated using the Pstar4 radiative transfer code for AOT 
at 867 nm (VN10), nine or ten aerosol models, Maerosol, and 
observation geometries (satellite zenith, satellite azimuth, 
solar zenith, and solar azimuth angles), and stored in look 
up tables (LUTs). The Pstar4 is a vector radiative transfer 
model for a coupled atmosphere–ocean system (Nakajima 
and Tanaka 1986; 1988; Ota et al. 2010), and the scheme 
is based on the discrete ordinate methods (Stamnes et al. 
1988). The atmospheric gas transmittance is modeled as a 
function of column-integrated ozone and water vapor (WV), 
and oxygen (represented by sea-level pressure, SLP). The 
surface reflectance condition in the Pstar4 was set by a Lam-
bertian surface for the RadCalNet, and a flat ocean surface 
for other calculations.

The in-situ ρw are converted from the measured reflec-
tance at geometries of in-situ sensor and solar angles to ones 
at geometries of satellite sensor and solar angles through 

(3)�t∕ tg = �r + �a + t�w∕ (1 − sa�w) + T�g

(4)�t = LTOA�∕ (F0 cos(�s))

(5)F0 = F0∕d
2

Fig. 1   Flow chart of SGLI 
vicarious calibration
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the bidirectional reflectance distribution function (BRDF) 
proposed by Morel et al. (2002). If NIR is not observed by 
in-situ instruments, ρw at NIR is estimated by Inherent Opti-
cal Property (IOP) model applying observation/simulation 
ratio at the neighboring red channel ρw (see Appendix).

ρt is simulated by using in-situ ρw, ρg, and the LUT vari-
ables (tg, ρr, ρa, sa, t, T) at selected AOT at V10 (867 nm) and 
model number Maerosol. The glint reflectance ρg is estimated 
by Cox and Munk (1954) using objective analysis of sea 
surface wind speed data, but it did not significantly affect to 
kv in this study because we used observations with ρg < 0.004 
(the influence of the ρg on kv was less than 0.001 except for 
the O2 absorption channel VN09). The estimation of the 
AOT and model number Maerosol are described in Sect. 3.2.

We defined the kv in each spectral band as SGLI observed 
radiance LTOA

SGLI divided by simulated radiance LTOA
sim 

estimated from the reference as follows:

So, the corrected radiance can be obtained by dividing 
LTOA

SGLI by kv. Practically kv is derived by linear regression 
of LTOA

sim and LTOA
SGLI with passing the origin, i.e.

where N is the number of samples. The deviation of each 
sample from the kv is defined as follows:

The 95% confidence level is estimated from SDkv multi-
plied by the critical values of Student’s t distribution.

3.2 � Estimation of AOT and Maerosol

3.2.1 � SGLI NIR and red channels

AOT and Maerosol are searched in the LUT by matching ρt 
calculated with Eq. (3) and in-situ ρw with SGLI observed ρt 
in the NIR and red channels (VN10 and VN07). Therefore, 
kv for both NIR and red bands is fixed to 1.0.

3.2.2 � In‑situ AOTs

AOT at 443 nm (VN03) is estimated from AERONET-OC 
AOT at NIR and the LUT for each Maerosol. Optimal Maerosol 
is searched by comparing the AOT estimated by LUT and 
the in-situ AOT at 443 nm. In the case of RadCalNet, the 
process is the same as AERONET-OC except that AOT at 

(6)kv = LTOA
SGLI∕LTOA

sim

(7)kv =

N
∑

i=1

(

LTOA
SGLI

i ⋅ LTOA
sim

i

)

/

N
∑

i=1

(

LTOA
sim

i

)2
,

(8)SDkv =

√

√

√

√

N
∑

i=1

(

LTOA
SGLI

i

LTOA
sim

i

− kv

)2
/

N.

443 nm and 672 nm is calculated from in-situ measurements 
of AOT at 500 nm and Ångström exponent, α, using Eq. (9).

We used λ1 = 500  nm and λ2 = 443  nm (VN03) or 
λ2 = 672 nm (VN08) in this study. In this case, kv are adjusted 
to fit to the AERONET-OC AOT in the two channels. Using 
the derived kv in the red (VN07) and NIR (VN10) chan-
nels, kv in the other channels are derived by the same way as 
Sect. 3.1 using the MOBY + BOUSSOLE data.

3.3 � Aerosol LUTs

We use two LUTs with different aerosol model sets to evalu-
ate vicarious calibration coefficients. The first aerosol LUT 
(LUT-A) was built as in Yoshida et al. (2018), i.e., including 
fine and coarse aerosols with mode radii of 0.143 μm and 
2.59 μm (deviation of 1.537 and 2.054, respectively) for log-
normal distribution, with, however, negligible absorption 
(imaginary part of the refractive indexes are set to very 
small values, 1.0 10–8 and 3.0 10–9) in the Pstar4 code. The 
fine aerosol model is based on the average properties of the 
fine mode (category 1–6 by Omar et al. 2005) derived from 
AERONET measurements, and the coarse aerosol model is 
the pure marine aerosol by Sayer et al. (2012). The hygro-
scopic growth effect (affecting the mode radius and refrac-
tive index) was not included here. This aerosol model is also 
used for the LUT of the SGLI land atmospheric correction 
(Murakami 2020) and the version 3 ocean atmospheric cor-
rection (Toratani et al. 2021). The SGLI standard aerosol 
algorithm is based on the aerosol size distribution of LUT-A, 
but it estimates the aerosol absorption by mixing absorptive 
particles with refractive indices of the soot and the dust par-
ticles for the fine and coarse aerosols, respectively (Yoshida 
et al. 2018).

The second aerosol LUT (LUT-B) was calculated as per 
Shettle and Fenn (1979) which includes the hygroscopic 
growth of the aerosol particles, by which the mode radius 
of the fine and coarse aerosols increases from 0.192 μm to 
0.331 μm and from 2.13 μm to 6.31 μm, respectively. This 
aerosol model is used for the LUT in the SGLI version 2 
ocean atmospheric correction algorithm (Toratani et al. 
2020).

Figure 2 displays the aerosol reflectance as a function of 
wavelength for the two LUTs. LUT-A has a wider range of 
spectral slope of aerosol reflectance. The large difference of 
the aerosol spectral slopes between LUT-A and LUT-B is 
caused by the size distribution (especially the mode radius 
of small particle is smaller in LUT-A than that in LUT-B) 
and aerosol light absorption is not considered in LUT-A.

(9)AOT(�2) ∕ AOT(�1) = (�2∕�1)
−�
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3.4 � Quality control of input data

SGLI 3 × 3-pixel average data centered on the in-situ sites 
with observation time difference of less than ± 2 h were 
used in the analysis but excluding the following conditions, 
(i)–(vii). The number of excluded samples, N, with respect 
to total number of samples acquired over MOBY + BOUS-
SOLE is shown as (N/input total number, where the denomi-
nator is 189).

	 (i)	 The average of 3 × 3 NIR reflectance is larger than 
0.1 (to avoid cloudy pixels, 19/189),

	 (ii)	 The standard deviation of 3 × 3 NIR reflectance is 
larger than 0.001 (to avoid small cloud contamina-
tion, 48/189),

	 (iii)	 AOT in the NIR channel is less than 0 or larger than 
0.15 (for LUT-A) or 0.185 (for LUT-B; same samples 
were selected when it was 0.185 because the LUT-B 
causes larger AOT than LUT-A) (to exclude cases of 
shadow or dense aerosol, 55/189),

	 (iv)	 α is less than −  0.5 or larger than 2.5 when 
AOT > 0.05 (irregular aerosol model selection by 
irregular spectral slope in the observation, 13/189),

	 (v)	 ρg is larger than 0.004 (to avoid sun glint areas, 
78/189),

Fig. 2   Aerosol models for 
vicarious calibration LUTs. The 
upper (A) and the lower (B) 
panels show aerosol reflectance 
as a function of wavelength for 
LUT-A and LUT-B, respectively
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	 (vi)	 Difference between reflectance of VN10 and one of 
VN11 is larger than 0.004 (to avoid sunglint areas 
(VN10 and VN11 have the same wavelength, but 
there is parallax, and the presence of sunglint causes 
a difference in reflectance), 59/189),

	(vii)	 Difference between observed and simulated reflec-
tance of VN09 is larger than 0.008 (to avoid cloud 
contamination which can reduce the path length and 
absorption in the O2A band, 48/189).

Solar zenith angles less than 70° were used in this analy-
sis. We did not limit data selection by maximum satellite 
zenith angle θv because θv of SGLI visible and near-infrared 
non-polarized (VNR-NP) channels is less than about 40°. 
In the case of RadCalNet, we excluded the data of θv larger 
than 10° to avoid the influence of the land surface BRDF 
which is not corrected for in this study, and water vapor 

content was limited to 30 kg/m2 to minimize the influence 
of water vapor absorption and possibly cloudy conditions.

3.5 � Influence of the vicarious calibration 
coefficients on Rrs and AOT

The Rrs and AOT were calculated with the same processing 
scheme except for inputting SGLI ρt and outputting ρw in 
the blue-green channels in Eq. (3). In-situ ρw at NIR and 
red wavelengths are used for the estimation of ρw at visible 
wavelengths to see just the effect of kv. The Rrs and AOT are 
evaluated by comparing the matchups of AERONET-OC 
for LUT-A and LUT-B. The quality control is the same as 
in Sect. 3.4 except that the maximum AOT is 0.6 instead of 
0.15. Sensitivity of Rrs and AOT to kv was investigated for 
the two aerosol tables, LUT-A and LUT-B, by adding or 
subtracting 1% to ρt of the match-up observations.

Fig. 3   Scatter diagram of SGLI and simulated radiance normalized 
by F0/π (LTOA/(F0/π)) calculated at MOBY (69 blue dots) and BOUS-
SOLE (14 red triangles). LUT-A was used to derive the simulated 
reflectance. N indicates sample number, RMSD, root mean square 

difference, r, correlation coefficient, and SDkv are explained in the 
text. The blue line shows the line of Y = kv X. The regression by the 
inverse equation (X = a Y, a is the slope) is show in each panel
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4 � Results

4.1 � MOBY and BOUSSOLE

Figure 3 shows the comparison between simulated and SGLI 
observed LTOA after normalizing by F0/π when using the 
LUT-A. The derived kv for either MOBY or BOUSSOLE 
or both together with the LUT-A and LUT-B are shown in 
Fig. 4 and listed in Table 2. The SDkv and the 95% confi-
dence levels calculated from SDkv are displayed in Table 3 
and by vertical bars in Fig. 4. Note that the BRDF correction 
affected kv by about 0.004 and reduced the SDkv by about 
0.002 at 443 nm (VN03).

The six sets of kv have a similar spectral shape as follows: 
higher than 1.0 at VN02, VN04, VN05, and VN06 channels 
(kv larger than 1.0 indicates that the SGLI radiance is larger 
than radiance expected from MOBY + BOUSSOLE data and 
the LUTs) and around 1.0 in VN01 and VN03 channels; on 
the other hand, kvs in VN08, VN09 and VN11 are smaller 
than 1.0. The 95% confidence levels are larger than the dif-
ferences among kvs of (a)–(c), [a]–[c] at the red-NIR wave-
lengths due to relatively large influence from the errors of 
the aerosol reflectance estimation.

The kvs by MOBY are larger than ones by BOUSSOLE in 
VN01-06: the difference between kv at 443 nm (VN03) from 
MOBY and BOUSSOLE is 2.6% in the case of LUT-A and 
1.6% in the case of LUT-B (Fig. 4 and Table 2). The kvs by 
LUT-B ([a]–[c]) are larger than ones by LUT-A ((a)–(c)) by 
about 0.7% (MOBY) and 1.7% (BOUSSOLE) at 443 nm. 
The kvs by MOBY + BOUSSOLE is closer to ones by 
MOBY because the sample number for MOBY is five times 
larger than the sample number for BOUSSOLE.

4.2 � Evaluation of Rrs and AOT estimates 
before and after applying kv

SGLI derived Rrs and AOT were evaluated against the AER-
ONET-OC matchups by using the two sets of kv ((c) and 
[c] of Table 2) that were derived with the two LUTs. The 
matchup sites are distributed various geographical areas near 
the coast (Fig. 5). The results by LUT-A are displayed in 
Fig. 6 and both results are listed in Table 4. In-situ ρw in 
VN07 and VN10 were used to estimate the aerosol proper-
ties for the AC because we intend to see the effect of kv sim-
ply without influence of the estimation errors of the non-zero 
water leaving reflectance in the AC algorithms.

The bias in Table 4 is improved after applying kv in 
VN01, VN05, and VN06 in the case of LUT-A, and in 
VN02, VN04, VN05, and VN06 in the case of LUT-B. 
RMSD of Rrs in VN01-VN04 channels by LUT-A is larger 
than one by LUT-B. On the other hand, the positive bias of 
AOT by LUT-B is larger than one by LUT-A.

4.3 � Sensitivity of Rrs and AOT to kv deviation

Figure 7 shows the sensitivity of Rrs and AOT to kv devia-
tion. When ± 1% error is added to kv of each visible channel, 
the influence on Rrs in the same channel is about ± 1% mul-
tiplied by the transmittance along the light path, t (ranged 
from 0.6 to 0.8 in violet-green wavelengths), for both aerosol 
models according to Eq. (3).

When ± 1% error is added to kv of NIR channel (VN10), 
Rrs in visible channels is impacted by the same sign. On the 
other hand, ± 1% error on kv of red channel (VN07) causes 
the opposite sign error on Rrs in visible channels. This indi-
cates that the Rrs errors are suppressed when errors at NIR 
and red channels have the same sign but enhanced when the 
errors have the opposite sign. It is notable that errors of Rrs 

Fig. 4   Summary plots of kv 
of SGLI derived by using a 
MOBY, b BOUSSOLE, and c 
MOBY + BOUSSOLE by using 
LUT-A ((a)-(c), solid lines) 
and LUT-B ([a]-[c], dashed 
lines). The 95% confidence level 
(assuming the t-distribution) is 
shown by the error bars. The 
horizontal positions are shifted 
to avoid the overlap of the plots
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Fig. 5   Distribution of AERONET-OC sites. The marker colors correspond to the ones in Fig. 6

Fig. 6   Rrs and AOT comparison between AERONET-OC measure-
ments and estimates by LUT-A (ρw in VN07 and VN10 are fixed to 
the AERONET-OC Rrs measurements at the wavelengths). N indi-
cates the match up sample number, RMSD shows root mean square 

difference of SGLI estimates and in-situ data, r is correlation coef-
ficient, and bias denotes SGLI minus in-situ values. The units are 
steradian−1 for Rrs and nondimensional for AOT. The marker colors 
correspond to the ones in Fig. 5
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at VN02-VN06 due to the ± 1% error of VN10 (and VN07) 
by using LUT-A are about 10% larger than the errors by 
using LUT-B (VN01 is influenced by errors from the spec-
tral extrapolation of in-situ Rrs described in APPENDIX).

4.4 � kv in NIR and red by using in‑situ aerosol 
measurements

The kv in the red and NIR channels were estimated (not 
fixed to 1.0) when the AOT and Maerosol in the LUT were 
selected using AERONET-OC AOTs in the multiple chan-
nels (NIR and blue channels in this study). The kv becomes 
much larger than 1.0, especially at wavelengths longer than 
530 nm (about 1.1 for LUT-A and 1.2 for LUT-B in VN10 
in Fig. 8 and Table 2(d) and [d]).

4.5 � kv in NIR and red by using RadCalNet 
measurements

The kv in the red and NIR channels were estimated (not 
fixed to 1.0) through the AOT and Maerosol in the LUT were 
selected using RadCalNet measurements of AOT and α 
(Fig. 8 and Table 2(e) and [e]). The kv from the RadCalNet 
sites are lower than kv from MOBY + BOUSSOLE by 4–5% 
from NUV to green wavelengths; however, the difference 
is smaller in longer wavelengths, red and NIR channels. 
Note that this type of calibration differs from the system 
vicarious calibration performed at MOBY and BOUSSOLE, 
which uses the atmospheric correction scheme of the ocean 
color processing line. The 4–5% differences in the blue and 
green would yield unacceptable Rrs errors, emphasizing 
that for ocean color remote sensing the MOBY + BOUS-
SOLE calibration cannot be substituted by a RadCalNet-type 
calibration.

5 � Discussion and conclusion

5.1 � Calibration coefficients from different data 
sources and aerosol models

The kv values obtained using different reference data are 
summarized in Table 2 and Fig. 8. Considering RMSD of 
Rrs compared with AERONET-OC, we recommend kv from 
MOBY + BOUSSOLE samples with LUT-A or LUT-B, i.e., 
kv of Table 2(c) or [c], as the SGLI ocean color vicarious 
calibration coefficients.

The difference of kv due to the LUTs (e.g., between 
Table 2(c) and [c]) is about 1%. The difference on the Rrs 
estimates can be reduced if we use kv derived by the same 
LUT. On the other hand, the 1% difference can have signifi-
cant impact on Rrs (as shown in Fig. 7) if we do not use the 
LUT which is selected to derive the kv.

The difference between kv obtained with the MOBY data-
set and the BOUSSOLE dataset is larger when using LUT-A 
than when using LUT-B (the difference for VN03 was 2.6% 
and 1.6% by LUT-A and LUT-B, respectively). That seems 
to be due to the same reason as for the Rrs error discussed 
next (Sect. 5.2).

5.2 � Bias and deviation on Rrs and AOT by kv 
of different LUTs

Comparison of errors of Rrs and AOT derived by the differ-
ent LUT-A and -B for AERONET-OC is shown in Table 4. 
Rrs RMSD obtained using LUT-B is smaller in the NUV-
blue channels (VN01–VN04) by 12–16% (see Table 4). That 
may be due to the higher spectral slope of ρa in LUT-A (the 
right panel of Fig. 2), causing larger deviation in Rrs at blue 
wavelengths from errors in NIR channels. The larger differ-
ence between kv from MOBY and BOUSSOLE in the case 
of LUT-A can be explained in the same way, i.e., by the error 
in representing the ρa of different aerosol types (the average 
α between 867 and 672 nm estimated by LUT-A was 0.79 
and 1.25 for MOBY and BOUSSOLE, respectively) which 
is enhanced by the higher spectral slope of ρa in LUT-A.

On the other hand, LUT-A is recommended for the aero-
sol estimation regarding both RMSD and bias of AOT. The 
reason is that LUT-A includes smaller aerosol particle radius 
which has a higher ratio of backscattering reflectance per 
AOT, reducing the positive bias of AOT.

5.3 � kv in red and NIR

We have used VN10 and VN07 to estimate the AOT and 
Maerosol in this analysis, which assumes that kv is 1.0 in the 
two channels. Departures from this assumption are possible, 
i.e., the kv of the two channels can be other than 1.0.

When we use AERONET-OC AOT at two wavelengths 
(i.e., VN10 and VN03 to cover blue to NIR wavelengths), 
kv becomes larger especially at wavelengths longer than 
530 nm (more than 1.1 in VN10 as shown in Fig. 8 and 
Table 2(d) and [d]). The 10% larger value than 1.0 (1.0 
corresponds to the prelaunch gain) does not seem realistic 
considering the results of prelaunch and onboard calibra-
tion (Urabe et al. 2019) and RadCalNet kv (around 0.95–1.0 
in Fig. 8) which were calculated using in-situ AOT and 
α measurements. This may indicate that the larger kvs for 
wavelengths longer than 530 nm are mainly caused by the 
small aerosol backscattering reflectance (i.e., ρa) per a cer-
tain AOT in the LUTs, and the error becomes substantial 
over the ocean because the relative contribution of ρa to the 
ρt over the ocean (AERONET-OC) is larger than over land 
(RadCalNet) at those wavelengths.

The bias in Rrs can be reduced if we apply kv with the 
same LUT used to derive kv for both the processing by 
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Fig. 7   Influence of the deviation of the vicarious calibration coef-
ficients by A LUT-A and B LUT-B in the case of AERONET-OC 
matchups. The first, second, and third panels in (A) and (B) are Rrs 

errors resulting from ρt error in the same channels, Rrs and AOT 
errors resulting from ρt error in VN10, and Rrs and AOT errors result-
ing from ρt error in VN07, respectively
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LUT-A and LUT-B. However, this study indicates LUT-A is 
better for the AOT estimation and LUT-B is suitable for the 
Rrs estimation considering the validation results (RMSD in 
Table 4). It was decided, for version 3 of the SGLI standard 
AC algorithm has decided to use SVC coefficients (c) and 
LUT-A instead of -B to cover the wide range slope of the 
aerosol reflectance (Toratani et al. 2021). Further improve-
ment of the aerosol LUT is needed to construct an optimal 
LUT for aerosol estimation that is consistent with other 
variables directly affected by absolute reflectance such as 
surface shortwave radiation and photosynthetically available 
radiation.

Appendix

Rrs wavelength interpolation

When the reference Rrs wavelengths are different from SGLI 
ones (cases of AERONET-OC), we interpolated (or extrapo-
lated) using an inherent optical property (IOP) algorithm 
similarly as in Murakami et al. (2005).

We used a simple IOP model based on Gordon et al. 
(1988) and Lee et al. (2002) adjusted to IOP data in NASA 
bio-Optical Marine Algorithm Data set (NOMAD) (Werdell 
and Bailey 2005) and Rrs data, and interpolated NOMAD Rrs 
to 1 nm spectral resolution using the model. The IOP algo-
rithms are based on the equation of remote sensing reflec-
tance below the surface (rrs), the total absorption coefficient 
(a) and the backscattering coefficient (bb) proposed by Gor-
don et al. (1988).

Remote sensing reflectance above the surface, Rrs was 
estimated from rrs using the relation from Gordon et al. 
(1988) and Lee et al. (2002) as follows:

where rrs is the remote sensing reflectance below the surface 
at wavelength λ, a is the total absorption coefficient, aw, 
the absorption spectra of water, aph, the absorption spectra 
of phytoplankton, and adg the absorption spectra of detri-
tus + colored dissolved organic matter, bb, the backscattering 

(A1)Rrs(�) = 0.529 × rrs(�) ∕ (1 − 1.7 × rrs(�)),

(A2)rrs(�) = g1 × u(�) + g2 × u(�)2,

(A3)u(�) = bb(�)∕(bb(�) + a(�)),

(A4)a(�) = aw(�) + (aph(�) + adg(�)),

(A5)bb(�) = bbw(�) + bbp(�),

coefficient, and bbw and bbp are backscattering coefficients 
of water and particles respectively. We used aw and bbw val-
ues from Pope and Fry (1997), Kou et al. (1993), Lee et al. 
(2015) and g1 = 0.0949 and g2 = 0.0794 (Lee et al. 2002).

The spectral shape (normalized at 442 nm) of phyto-
plankton absorption aph0 was modeled as the average from 
NOMAD data. The spectral shapes of adg and bbp were 
approximated as follows:

 where S and Y are fixed at 0.0146, and 1.18, respectively, 
values that were derived from the average of NOMAD in situ 
measurements of adg and bbp. The weighted values for the 
SGLI channels are listed in Table 5.

To simplify and improve the stability of the process, we 
assumed that the spectral shape of the apg = aph + adg can be 
represented as follows:

 where aph0 is the phytoplankton absorption normalized to 
1.0 at 442 nm derived from the average of NOMAD in situ 
measurements (Table 5), and raph is set to 0.6 by the average 
of aph/adg at 443 nm in NOMAD. The difference of raph can 
amplify uncertainty at 380 nm through the extrapolation; the 
bias and RMSD of Rrs at 380 nm are changed by − 0.0005 
and + 10%, respectively, according to change of raph from 
0.33 to 0.67. The apg and bbp are described by apg and bbp at 
442 nm, apg442 and bbp442 as follows:

The apg442 and bbp442 in Eqs. (A9) and (A10) were derived 
using two (blue and green) channels of the reference Rrs data 
by the linear matrix inversion (Hoge and Lyon 1996; 1999; 
Lyon and Hoge 2006) with Equations (A1–A8). The Rrs in 
channels of the reference dataset and channels of SGLI were 
calculated using apg442 and bbp442 and Equations (A1–A10). 
The ratios between the reference Rrs and simulated Rrs were 
linearly interpolated to the SGLI channel wavelengths and 
applied to the simulated Rrs in the SGLI channels.
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