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1  Introduction

Archaea represent a widespread and diverse component 
of marine picoplankton (DeLong 1992; Fuhrman et  al. 
1992). Marine archaeal communities are generally domi-
nated by two major groups, Marine Group I (MGI) and 
Marine Group II (MGII), which are affiliated to the phyla 
Thaumarchaeota (previously classified as Crenarchaeota) 
and Euryarchaeota, respectively (DeLong 1992; Fuhrman 
and Davis 1997; Galand et al. 2009). Typically, MGI is the 
major archaeal group in meso-, bathy-, and abyssopelagic 
layers (e.g., Karner et al. 2001; Massana et al. 1997; Nun-
oura et  al. 2015), where they appear to oxidize ammonia 
and fix carbon (Könneke et al. 2005; Santoro et al. 2015), 
but there is also evidence for heterotrophy or mixotrophy 
by this group (Alonso-Sáez et  al. 2012; Connelly et  al. 
2014; Hansman et  al. 2009; Qin et  al. 2014). In contrast, 
MGII is more prevalent in surface waters, especially in 
temperate oceans (DeLong et al. 2006; Herndl et al. 2005; 
Massana et  al. 2000). However, the functional role of 
MGII, which could be either heterotrophic, chemoauto-
trophic, or both (Baker et al. 2013; Herndl et al. 2005; Teira 
et al. 2006), has yet to be fully determined.

In surface ocean waters, the seasonal dynamics of MGI 
and MGII are distinct from each other, displaying annu-
ally recurring succession in archaeal community compo-
sitions (Galand et  al. 2010; Herfort et  al. 2007; Hugoni 
et  al. 2013). However, there are limited data on seasonal 
variability of archaeal community composition in meso- 
and bathypelagic layers. The currently available data on 
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seasonal dynamics of deep oceanic archaeal communities 
only provide information at a broad phylogenetic level 
(Church et al. 2003; Karner et al. 2001; Winter et al. 2009). 
It is yet to be determined whether archaeal community 
composition in deep oceanic waters shows seasonal varia-
tion at finer levels of phylogenetic resolution.

As a part of the K2S1 project (Honda et al. 2015), dur-
ing which repeated surveys were conducted at fixed sta-
tions deployed in the subarctic gyre (station K2) and sub-
tropical region (station S1) of the western North Pacific, we 
collected data on seasonal changes in archaeal community 
composition throughout the water column (0–5000  m). 
Sampling was conducted on four occasions between 2010 
and 2011. We used massively parallel 16S rRNA gene 
pyrosequencing (e.g., Sogin et al. 2006) to gain a detailed 
picture of variability in archaeal community composition.

2 � Materials and methods

2.1 � Water sampling

The sampling sites used in this study are established time 
series observation stations in the subarctic gyre (station K2; 
47°N–160°E, depth 5300  m) and the subtropical region 
(station S1; 30°N–145°E, depth 5800  m) of the western 
North Pacific (Honda et al. 2015). Forty seawater samples 
for DNA analysis were collected from five depths (0, 300, 
1000, 2000, and 5000 m) during four cruises of R/V Mirai 
(19 January–24 February 2010, 18 October–16 November 
2010, 14 April–5 May 2011, and 27 June–4 August 2011). 
Two or 4 L of seawater from each depth were pre-filtered 
through a 3.0-μm pore size Nuclepore polycarbonate mem-
brane filter (Whatman, Maidstone, UK), and microbial cells 
were collected onto a 0.22-μm Millipore Sterivex filter unit 
(EMD Millipore, Darmstadt, Germany). Samples were fro-
zen immediately and stored at −80 °C for later analysis in 
the laboratory.

2.2 � DNA extraction

Genomic DNA was extracted according to the instructions 
provided with the ChargeSwitch Forensic DNA purification 
kit (Invitrogen, Carlsbad, CA, USA) with the following 
modifications. First, we cut open the cartridge of the 0.22-
μm Sterivex filter using a sterilized pipe cutter. Next, we 
used a sterile razor blade to cut the filter, which was placed 
into a sterilized 2.0-mL screw cap tube with zirconium 
beads (ZircoPrep Mini; Nippon Genetics Co. Ltd., Tokyo, 
Japan) containing ChargeSwitch Lysis Buffer (L13). Lysis 
of microbial cells was accomplished via proteinase K incu-
bation followed by bead beating at 5000 rpm for 30 s using 
a bead-beater (Micro Smash MS-100R; Tomy Seiko Co., 

Ltd., Tokyo, Japan). After cell wall lysis, 1.0  mL of the 
supernatant was recovered after spin down at 2000×g for 
1 min, and the crude DNA in the supernatant was purified 
according to the manufacturer’s instructions. The cell lysis 
and DNA purification steps were repeated twice to extract 
genomic DNA from each sample. The extracted DNA sam-
ples were kept at −20 °C until further analysis.

2.3 � Polymerase chain reaction amplification and 454 
sequencing

Polymerase chain reaction (PCR) amplification of the V1–
V3 hypervariable regions of archaeal 16S rRNA gene was 
performed with the archaea-specific primer 21F (5′-TCCG-
GTTGATCCYGCCG-3′) and the universal primer 519R 
(5′-GWATTACCGCGGCKGCTG-3′). The forward primer 
contained the sequence of 454 adapter A (5′-CCATCT-
CATCCCTGCGTGTCTCCGACTCAG-3′) and the multi-
plex identifiers (MIDs), and the reverse primer contained 
the sequence of 454 adapter B (5′-CCTATCCCCTGTGT-
GCCTTGGCAGTCTCAG-3′). Amplifications were car-
ried out using Ex Taq HS DNA Polymerase (Takara Bio., 
Shiga, Japan) and the following sequence: denaturation at 
94 °C for 3 min followed by 27 cycles at 98 °C for 10 s, 
primer annealing at 57 °C for 30 s and at 72 °C for 50 s, 
followed by a final extension at 72 °C for 7 min. To mini-
mize the potential effect of PCR biases in single reactions 
(Polz and Cavanaugh 1998), eight independent PCR prod-
ucts were pooled. The pooled PCR product was purified 
using an Agencourt AMPure XP kit (Beckman Coulter, 
Brea, CA, USA) in accordance with the manufacturer’s 
instructions. The purity and concentration of PCR products 
were checked using a 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA) and equal amounts of the PCR 
amplicons from different samples were mixed. Pyrose-
quencing of the amplicon mixture was performed using a 
Roche emPCR Lib-L kit (Roche Diagnostics, Branford, 
CT, USA) and was carried out using 454 GS-FLX Titanium 
chemistry (Roche Diagnostics).

2.4 � Quality filtering and processing of 454 
pyrosequencing sequences

The raw 454 sequences were processed to remove low-
quality reads using the bioinformatics software mothur 
v.1.33.3 (Schloss et al. 2009) as described below. Initially, 
the raw 454 sequences containing more than two mis-
matches in the primer sequence or more than one mismatch 
in the MID sequence were removed, and quality-based fil-
tering was performed using the AmpliconNoise algorithm 
(Quince et al. 2011) implemented in mothur (Schloss et al. 
2011). Next, quality trimming was carried out by remov-
ing sequences with read length  <400 or  >600 base pairs, 
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containing one or more ambiguous bases (Ns), or with a 
homopolymer longer than eight bases. The sequences were 
aligned against the SILVA alignment database provided on 
the website for the mothur project, and then the sequencing 
noise was further reduced using single linkage pre-cluster-
ing (Huse et  al. 2007). Putative chimeric sequences were 
identified using UCHIME v4.2.40 (Edgar et al. 2011) and 
removed. A distance matrix of the high-quality sequences 
was constructed, and the sequences were clustered into 
operational taxonomic units (OTUs) at a 98  % similarity 
level (Harris et al. 2015) with average neighbor clustering.

2.5 � Phylogenetic analysis

After quality filtering, the sequences were classified using 
a k-mers nearest neighbor searching method (Wang and 
Qian 2009) implemented in mothur using the SILVA 119 
reference database (Yilmaz et al. 2014) at an 80 % thresh-
old. Sequences affiliated with eukaryotes or bacteria and 
unknown sequences were eliminated. Phylogenetic trees 
based on maximum likelihood algorithms were constructed 
in MEGA6 (Tamura et  al. 2013) after alignment using 
MUSCLE (Edgar 2004). Phylogenetic groups belonging to 
MGI Thaumarchaeota and MGII Euryarchaeota were fur-
ther classified into sub-clusters using a protocol proposed 
by Massana et al. (2000). This protocol has been used in a 
number of previous studies (e.g., Bano et al. 2004; Galand 
et al. 2010; Hu et al. 2011).

2.6 � Accession numbers and data availability

The pyrosequencing data have been submitted to the 
Sequence Read Archive of the DNA Data Bank of Japan 
(DDBJ) under accession number DRP002844.

2.7 � Data analyses

Archaeal richness and diversity were assessed using the 
abundance-based coverage estimator (ACE; Chao and 
Lee 1992) and Simpson’s reciprocal index (Haegeman 
et  al. 2014; Hill 1973). Good’s coverage was calculated 
as G =  1−n/N, where n represents the number of OTUs 
observed at least once and N represents the total number 
of reads. To compare these indices among all archaeal 
communities in this study, we normalized the sequence 
number of each sample to 465 reads (the lowest among 
the 40 samples). Rarefaction curves for each sample were 
generated using a program implemented in mothur. Com-
munity classification of archaeal assemblages from dif-
ferent samples was evaluated by hierarchical clustering 
with the Bray–Curtis dissimilarity index (Bray and Curtis 
1957). Weighted UniFrac analyses were performed to test 

whether the archaeal communities differed significantly 
based on the permutation test (Lozupone and Knight 2005). 
All the analyses above were calculated based on the num-
ber of taxa at OTU-level using programs implemented in 
mothur. The relationship between the relative abundance 
of major archaeal phylogenetic groups and environmental 
variables was analyzed by the distance-based redundancy 
analysis (dbRDA) (Legendre and Anderson 1999) using R 
software (R Core Team 2014) and vegan package (Oksanen 
et  al. 2013). The set of environmental variables that best 
explained the archaeal relative abundance variability was 
identified using the model selection based on the Akaike 
information criteria (AIC).

3 � Results

3.1 � Environmental parameters

The physicochemical parameters of seawater samples, 
which were retrieved from the database for time series 
stations K2 and S1 (http://ebcrpa.jamstec.go.jp/k2s1/en/
index.html), are shown in Table S1. In the upper water col-
umn (0 and 300  m), temperature and salinity were lower 
at station K2 than at station S1, whereas concentrations 
of nutrients (nitrate and phosphate) and chlorophyll-a 
were higher at station K2 than at station S1. The dissolved 
oxygen concentration at 300  m differed greatly between 
station K2 (14.86–20.30  μmol  kg−1) and station S1 
(192.13–200.14 μmol kg−1). In deeper waters (>1000 m), 
temperature and salinity differed little between the two 
stations, with an overall range of 1.50–3.96 and 34.26–
34.69 °C, respectively.

3.2 � Overview of pyrosequencing data

A total of 376,330 raw sequences were obtained from 40 
PCR amplicon libraries, and a total of 285,103 sequences 
of archaeal 16S rRNA genes with a mean  ±  standard 
deviation (SD) of 7127  ±  2324 sequences per sample 
remained after quality checks (Table S2). These high qual-
ity sequences were categorized into 593 OTUs based on 
98  % similarity threshold. The observed OTUs were not 
saturated as shown in rarefaction curves (Fig. S1), but 
the Good’s coverage value for each sample indicated that 
99.5–99.9  % of the archaeal species at the two sampling 
sites could be represented by the pyrosequencing. The 
representative sequences from 593 OTUs were classified 
into different taxa using the SILVA database. Phylogenetic 
placement of 39 major OTUs (98.3 % of total reads, >1 % 
relative abundance in each sample) are shown in the maxi-
mum likelihood trees (Fig. 1a, b).

http://ebcrpa.jamstec.go.jp/k2s1/en/index.html
http://ebcrpa.jamstec.go.jp/k2s1/en/index.html


430 R. Kaneko et al.

1 3

Fig. 1   Phylogenetic tree 
of Thaumarchaeota (a) and 
Euryarchaeota (b) based on 
250 base pairs of archaeal 16S 
rRNA gene sequences in sam-
ples from the water column in 
the western North Pacific. These 
phylogenetic trees were con-
structed using the maximum-
likelihood method in MEGA6. 
Bootstrap values at branching 
nodes indicate the level of boot-
strap support (>50 %) based on 
1000 resamplings. Numbers in 
parentheses indicate accession 
numbers of GenBank/DDBJ/
EMBL. Operational taxo-
nomic units (OTUs) that were 
observed at all depths (0, 300, 
1000, 2000, and 5000 m) at 
both stations are indicated with 
asterisks
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3.3 � Phylogenetic assignment of 16S rRNA gene 
sequences

Most OTUs were affiliated with MGI Thaumarchaeota 
and MGII Euryarchaeota, representing 83.7 and 15.6 % of 
total reads, respectively. These two phylogenetic groups 
were further grouped into four sub-clusters, namely MGI-
α, MGI-γ, MGII-α, and MGII-β (Fig.  1a, b). At  >98  % 
sequence similarity, OTUs within MGI-α (16.2 % of total 
reads; Fig.  1a) were related to the ammonia-oxidizing 
archaeon Nitrosopumilus maritimus SCM1, 67.3 % of total 
reads were related to uncultured MGI-γ (Fig.  1a), 1.5  % 
were closely related to the MGII-α sub-cluster (Fig.  1b), 
and 13.9 % were affiliated with MGII-β (Fig. 1b). Marine 
Benthic Group A (MBG-A; 0.31 % of total reads; Fig. 1a) 
was commonly found in samples from station S1. The 
remaining OTUs with relative abundance <1 % (not shown 
in Fig. 1) included those belonging to the uncultured mem-
ber of MGI-β, Marine Group III, the Marine Hydrothermal 
Vent Group, pSL12, AK31, Candidatus Halobonum, and 
unclassified sequences from Thaumarchaeota and Euryar-
chaeota. These minor groups were rare at both stations.

3.4 � Archaeal community structure and distribution

At stations K2 and S1, the archaeal community was domi-
nated by MGI and MGII (Fig. 2). These two groups collec-
tively accounted for  >93.5  % of total archaeal abundance 
throughout the water column (0–5000  m), regardless of 
season (Fig. 2). In addition to these groups, MBG-A affili-
ated with Thaumarchaeota (Fig.  1a) was always present 
at low levels (0.22–3.5 % of total archaeal abundance) in 
deeper waters (300–5000 m) at station S1, with the high-
est abundance being found at 300 m in July 2011 (Fig. 2). 
MBG-A was not detected in the water column at station K2 
(Fig. 2).

Phylogenetic trees containing four distinct archaeal 
sub-clusters (MGI-α, MGI-γ, MGII-α, and MGII-β) with 
high bootstrap values were constructed (Fig.  1a, b). At 
station K2, the relative abundance of MGI-α was consist-
ently high (range 29–47 %) at depths of 300 and 5000 m 
and low (<2.7 %) at depths of 1000 and 2000 m, whereas 
the corresponding abundance was highly variable (range 
0.4–78 %) in surface waters (Fig. 2). At station S1, MGI-α 
abundance was relatively high at 5000 m (range 17–23 %), 
low at 300, 1000, and 2000 m (<3.5 %), and variable over 
the seasons in surface waters (range 0–17 %). At both sta-
tions, the relative abundance of MGI-γ was low (range 
0–1.9  %) in surface waters, whereas it was high (range 
43–94  %) in deeper waters (300–5000  m). MGII-β was 
found throughout the water column at both stations and 
its relative abundance varied in a relatively small range of 
4.63–30.5  % among all the samples examined. Seasonal 

and geographic variability in MGII-β abundance was 
evident in surface waters, and was characterized by high 
relative abundance (range 68.1–90.8 %) in February 2010, 
October 2010, and April 2011 at station S1 and in October 
2010 at station K2. MGII-α also displayed a large seasonal 
and geographic variation in surface waters, with the high-
est relative abundance (66.8–88.7 %) in July at both sta-
tions. Unlike MGII-β, MGII-α abundance was generally 
low (<1.7 %) in deeper waters (300–5000 m), except that 
this group was a significant member of the archaeal com-
munity (relative abundance, 5  %) at 1000  m in February 
2010 at station K2.

At a finer phylogenetic level, seven OTUs from MGI 
and two OTUs from MGII (78.5 and 6.98 % of total reads, 
respectively; asterisked OTUs in Fig. 1a, b) were found at 
almost all depths at both stations. Different OTUs displayed 
different vertical distribution patterns (Fig. 3). The relative 
abundance of OTU1 (MGI-γ) generally increased with 
increasing depth. OTU2 (MGI-γ), OTU4 (MGI-γ), and 
OTU5 (MGII-β) tended to be relatively abundant between 
300 and 2000  m, whereas their relative abundances were 
low in the surface waters and at 5000  m. In contrast, the 
relative abundance of OTU3 (MGI-α) was higher in surface 
waters and at 5000 m relative to 1000 and 2000 m, although 
the relative abundance of this group at 300 m was high and 
low at station K2 and station S1, respectively.

3.5 � Similarity among the archaeal communities

Results of hierarchical clustering analysis using the Bray–
Curtis dissimilarity index revealed significant seasonal 
and site-dependent differences (p < 0.001) in the archaeal 
community in surface waters with 10–35  % dissimilar-
ity (Fig.  4). Both seasonal and site-dependent dissimi-
larity of the archaeal community was largely attenuated 
(<10 % dissimilarity in most cases) in deeper waters (300–
5000 m). In these deep waters, archaeal communities were 
separated into four clusters; cluster A (300 m, station S1), 
cluster B (300 m, station K2), cluster C (1000 and 2000 m, 
stations K2 and S1), and cluster D (5000  m, stations K2 
and S1).

3.6 � Diversity of the planktonic archaeal communities

The species richness (ACE) of archaea varied in the range 
of 12–216 at station K2 and 55–229 at station S1, display-
ing large seasonal variability depending on the depth and 
station (Fig.  5a). Depth-dependent patterns in the ACE 
index averaged over seasons (Fig.  5c) showed that the 
archaeal species richness were high at 300 m depth at both 
stations and the species richness tend to be lower at the 
surface relative to deeper waters. At station K2, Simpson’s 
diversity index varied in the range of 1.39–4.95 (Fig. 5b). 
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This diversity index averaged over seasons (Fig.  5d) 
displayed a systematic vertical trend, characterized by 
low values at the surface and at 5000  m relative to other 
depths. Similarly, at station S1, Simpson’s diversity index 

(range 1.92–12.38) systematically varied with depth. This 
index averaged over seasons displayed a prominent peak 
at a depth of 300 m, whereas values were low at 5000 m 
(Fig. 5d).

Fig. 2   Relative abundance of 
Thaumarchaeota (Marine Group 
[MG]I-α, MGI-γ, and Marine 
Benthic Group [MBG]-A) and 
Euryarchaeota (MGII-α and 
MGII-β) in the water column 
from 0 to 5000 m at stations K2 
and S1
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3.7 � Relationship between the relative abundance 
of major archaeal group and environmental 
variables

The model selection based on AIC indicated that DOC, 
temperature, pH, concentrations of dissolved oxygen, chlo-
rophyll a, phosphate, ammonia and nitrate gave the clos-
est fit to the changes in relative abundances of archaeal 
groups. Based on the dbRDA results (Fig. S2), it was sug-
gested that water temperature influenced the relative abun-
dance of MGII-α (p = 0.032), while the relative abundance 
of MGII-β was related to DOC concentrations (p = 0.002) 
and pH levels (p = 0.001). None of the environmental vari-
ables examined by this study was selected as a significant 

predictor variable accounting for the variability in the rela-
tive abundances of MGI-α, MGI-γ and MBG-A (p > 0.05).

4 � Discussion

Previous studies have used fluorescence in  situ hybridiza-
tion (FISH) to evaluate seasonal variability in archaeal 
communities at depth based on the abundance of specific 
groups of archaea (MGI and MGII) relative to total pico-
plankton abundance. These studies have found large sea-
sonal variability in MGI and MGII abundances in both sur-
face and deep oceanic waters (Church et al. 2003; Winter 
et  al. 2009). In contrast, our data on archaeal community 

Fig. 3   Spatiotemporal distribution pattern of the nine operational taxonomic units (OTUs; marked with asterisks in Fig.  1) observed at all 
depths at both stations K2 and S1
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composition are based on the number of retrieved 16S 
rRNA gene sequences of specific groups normalized to 
the total number of retrieved archaeal 16S rRNA gene 
sequences for each sample. It is important to note that 
our data cannot be directly compared with the FISH data 
reported in the literature, given the difference in the quanti-
fication procedures and principles. The archaeal abundance 
data reported in the present paper must be regarded as semi-
quantitative. Despite these limitations, it is notable that the 
archaeal community composition (relative abundance of 
different sub-clusters) in deeper waters (300–5000 m) was 
remarkably constant among four sampling occasions, as 
indicated by visual inspection of Fig. 2, as well as by the 
low Bray–Curtis distances (<0.1 in most cases) between the 
data collected at a given depth from 300 to 5000 m (Fig. 4). 
In contrast, our data revealed high seasonal variability in 
archaeal community composition in surface waters. Thus, 
our data demonstrate that seasonal variability in archaeal 
community composition in deeper waters of the western 
North Pacific was much less pronounced than the corre-
sponding variability in surface waters.

Archaeal community composition in deep waters (300–
5000  m) was characterized by the dominance of MGI, 
especially sub-cluster MGI-γ. These data agree with previ-
ous results obtained in other oceanic regions (e.g., Ander-
son et al. 2013; Galand et al. 2009; Massana et al. 2000). 
Another sub-cluster, MGI-α, which harbors the ammo-
nia-oxidizing archaeon N. maritimus, was occasionally 

abundant in surface waters at station K2, but was less 
abundant at intermediate depths (300–2000  m), except 
for 300 m at station K2. Some previous studies have also 
reported similar vertical distribution patterns of these MGI 
sub-clusters in other oceanic regions (Beman et  al. 2008; 
Massana et  al. 1997; Massana et  al. 2000; Mincer et  al. 
2007), suggesting the presence of niche separation among 
these sub-clusters (e.g., Christman et  al. 2011; De Corte 
et al. 2009; Kalanetra et al. 2009; Prosser and Nicol 2008). 
Our dbRDA results (Fig. S2) showed that the factors influ-
encing the distribution of MGI-α and MGI-γ abundances 
were not significantly related to the environmental factors 
examined by the present study. Previous cultivation experi-
ments (Merbt et  al. 2012) showed that the inhibition by 
light is one of the potential factors to determine the distri-
bution patterns of ammonia-oxidizing archaea and bacteria 
in aquatic environments. The higher relative abundance 
of MGI-α than MGI-γ in surface waters was presumably 
caused by the higher sensitivity of MGI-γ to photoinhibi-
tion than the sensitivity of MGI-α. Furthermore, some other 
investigations (Hu et  al. 2011; Mincer et  al. 2007) have 
suggested that the gradient of light intensity across the 
water column is a plausible factor for the niche partition-
ing of MGI sub-groups with depth. Resent study based of 
single-cell genomics (Luo et al. 2014) found the key genes 
that may be related to mechanisms to reduce light-induced 
damage from shallow-water Thaumarchaeota clade.

MGI-α was commonly found at a depth of 5000  m at 
both stations, but with higher abundances at station K2 
(Fig. 2). Similarly, the increasing of the relative abundance 
of MGI-α in deep part of ocean was reported in the water 
column of the Challenger Deep (Nunoura et  al. 2015). 
Although the 16S rRNA gene sequences of MGI-α from 0, 
300, and 5000 m showed high similarity (>98 %), given the 
large differences in environmental conditions between sur-
face and deep waters, each of these sequences might rep-
resent ecotypes originating from different habitat-specific 
members of MGI-α (Muller et al. 2010; Park et al. 2014). 
Representatives of MGI-α have been found in benthic 
archaeal communities (Durbin and Teske 2010; Gillan and 
Danis 2007); therefore, benthic MGI-α could have been 
introduced into the water column through the resuspension 
of sediment caused by bottom current-induced shear stress 
on the seafloor (Eittreim et  al. 1976; Kolla et  al. 1976; 
McCave 1986). Sediment resuspension from the seafloor to 
the water column has been reported to reach up to several 
hundred meters (e.g., Hunkins et al. 1969; McCave 1986). 
The flux of suspended organic matter (particulate organic 
matter or dissolved organic matter) from the resuspended 
sediment possibly changed the activities (Boetius et  al. 
2000) and abundances (Wells and Deming 2003; Wells 
et al. 2006) of archaea at 5000 m at both stations. Alterna-
tively, the DNA of MGI-α recovered from waters at 5000 m 
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Fig. 4   Hierarchical cluster dendrogram constructed based on the dis-
tance matrix calculated using the Bray–Curtis dissimilarity index
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could be remnant DNA of surface archaeal communities 
delivered to deeper waters by attachment to settling parti-
cles (Dell’Anno et al. 1999).

The relative abundances of MGII-α and MGII-β in the 
surface waters were constantly high at station S1, but were 
highly variable at station K2 throughout the seasons. There 
are no cultivated representatives of MGII Euryarchaeota; 

therefore, their metabolic requirements and the mechanisms 
underlying their distribution pattern remain unknown. 
Results from dbRDA (Fig. S2) showed that water tem-
perature, DOC and pH might be factors influencing the 
distribution pattern of MGII sub-groups. Another pos-
sible factor that might influence the distribution of MGII 
is light intensity. Recent metagenomic studies have found 
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that some members of MGII possessed the proteorhodopsin 
gene, indicating the capability of using light to gain meta-
bolic energy (Frigaard et al. 2006; Iverson et al. 2012). Fur-
thermore, the distribution pattern and dynamics of MGII in 
epipelagic ocean waters were presumably related to spati-
otemporal differences in sunlight intensity (Galand et  al. 
2010; Herfort et  al. 2007). On the contrary, Deschamps 
et al. (2014) reported that genes encoding proteorhosopsin 
homologs were not found in MGII metagenome data from 
deep-Mediterranean water, and they also noted the deep sea 
MGII have abundant genes that are typical of heterotrophic 
prokaryotes.

Uncultured MBG-A Thaumarchaeota was first found in 
deep-sea sediments of the northwestern Atlantic (Vetriani 
et al. 1999). Since that first report, MBG-A has only been 
found in marine sediments (Dang et al. 2010; Inagaki et al. 
2006; Teske 2006). Our finding that MBG-A was com-
monly distributed in waters from 300 to 5000 m at station 
S1 (range 0.22–3.5 %; Fig. 2) indicates that this group of 
archaea may distribute in oceanic environments not only in 
sediments but also in the water column.

Nine OTUs belonging to MGI-α, MGI-γ, and MGII-β 
were found at all depths at both stations and represented 
a large fraction of total reads (85.5 %; Fig. 3). These phy-
lotypes displayed distinct vertical distribution patterns 
regardless of season. These results suggest that these 
groups represent the dominant group of archaea in the 
western North Pacific and might be important in the media-
tion of carbon and/or nutrient cycles in the water column of 
this area.

Cluster analysis showed strong vertical stratification of 
archaeal communities (Fig.  4). Species richness and the 
diversity indices fluctuated according to depths and sea-
son (Fig. 5). Archaeal communities at the depths of 0 and 
300 m differed between the stations, whereas those at the 
depths of 1000–5000 m differed little between the stations 
(Fig. 4). Therefore, both the subarctic station (K2) and the 
subtropical station (S1) appear to share similar archaeal 
communities in deep waters.

Our data revealed that the archaeal community composi-
tion and diversity at 300 m differed between station K2 and 
station S1. Currently, none of physicochemical parameters 
obtained in this study were sufficient to explain these dif-
ferences. During our study period, subtropical mode water 
(Suga and Hanawa 1990), an outcrop from the oceanic 
regions further north was identified at station S1 at 100–
400 m, depending on the season. Therefore, one of the pos-
sible hypotheses to account for the discrepancy of archaeal 
communities in 300 m between station S1 and station K2 
might be the advection of different archaeal communities 
from adjacent waters. This may contribute to the develop-
ment of the distinct archaeal community at that location, 
although this hypothesis requires further verification.

5 � Conclusion

In summary, we have shown distribution patterns of four 
cosmopolitan archaeal groups within MGI Thaumarchaeota 
(MGI-α and MGI-γ) and MGII Euryarchaeota (MGII-α 
and MGII-β) throughout the water columns from the sur-
face to the bottom of 5000 m depth at the subarctic and the 
subtropical stations in the western North Pacific Ocean. 
Archaeal community structures in  >300  m deep waters 
remained relatively stable over time and similar to each 
other between stations, although those in surface waters 
displayed marked spatiotemporal changes. Our results 
imply that four major lineages of marine archaea may dif-
ferently adapt to their own niches and also the lineages 
predominantly found in deep waters are scarcely affected 
by spatiotemporal fluctuation of biotic and abiotic factors 
in the surface waters. To date, marine planktonic archaea 
have yet been isolated, hampering our better understanding 
of their metabolic capabilities and ecological functions in 
the ocean. In future studies, archaeal genome information 
directly obtained from their inhabiting environments using 
metagenomics and single-cell genomics are highly valuable 
for an in-depth understanding of these ubiquitous archaea.
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