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Abstract
Most organizational researchers understand the detrimental effects of measurement errors in testing relationships among latent
variables and hence adopt structural equation modeling (SEM) to control for measurement errors. Nonetheless, many of them
revert to regression-based approaches, such as moderated multiple regression (MMR), when testing for moderating and other
nonlinear effects. The predominance of MMR is likely due to the limited evidence showing the superiority of latent interaction
approaches over regression-based approaches combined with the previous complicated procedures for testing latent interactions.
In this teaching note, we first briefly explain the latent moderated structural equations (LMS) approach, which estimates latent
interaction effects while controlling for measurement errors. Then we explain the reliability-corrected single-indicator LMS
(RCSLMS) approach to testing latent interactions with summated scales and correcting for measurement errors, yielding results
which approximate those from LMS. Next, we report simulation results illustrating that LMS and RCSLMS outperformMMR in
terms of accuracy of point estimates and confidence intervals for interaction effects under various conditions. Then, we show how
LMS and RCSLMS can be implemented with Mplus, providing an example-based tutorial to demonstrate a 4-step procedure for
testing a range of latent interactions, as well as the decisions at each step. Finally, we conclude with answers to some frequently
asked questions when testing latent interactions. As supplementary files to support researchers, we provide a narrated PowerPoint
presentation, all Mplus syntax and output files, data sets for numerical examples, and Excel files for conducting the loglikelihood
values difference test and plotting the latent interaction effects.
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Reliability-corrected single-indicator LMS

The assessment of interactions between variables is critical to
theoretical and empirical advances in business and psycholog-
ical research. An interaction indicates that the relationship
between two variables is either contingent upon or varies
across levels of another variable, with such interactions

commonly proposed in business and psychological theories.
While most researchers report results of their measurement
models for latent variables based on multiple-item surveys
used to collect data, and employ structural equation modeling
(SEM) with latent variables to control for measurement errors
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when estimating path coefficients in models without latent
interaction, the majority of them revert to regression analysis
(such as moderated multiple regression (MMR)) or path anal-
ysis with observed variables (such as PROCESS; Hayes,
2013) when estimating interaction effects. In their recent
review, Cortina, Markell-Goldstein, Green, and Chang
(2019) confirmed this, showing that two-thirds of tests
for interaction effects adopted non-latent approaches,
predominantly MMR.

One major concern with using MMR to test for interaction
effects is the detrimental influence of measures with low reli-
ability (Aguinis, 1995). While most researchers pay attention
to the reliability of their variables, few have paid attention to
the reliability of the interaction term that can be much lower
than the reliability of the two variables forming the interaction
(Aguinis, Edwards, & Bradley, 2017; Busemeyer & Jones,
1983), and which results in larger bias in the estimated inter-
action effect. Consequently, researchers have focused on de-
veloping methods for estimating interaction effects using
SEM (for example, Kenny & Judd, 1984; Marsh, Wen, &
Hau, 2004). Prior proposed SEM methods, such as the
product-indicator approach (PI; Kenny & Judd, 1984), require
creating a latent interaction term from the indicators and im-
posing sophisticated nonlinear constraints. Such complexity
in creating and testing interaction effects with SEM has likely
limited its adoption. Contrasting this, the interaction term in
MMR is simply computed from the product of observed
variables.

Recently, Cortina et al. (2019) presented a flowchart with a
list of estimation approaches for testing latent interaction ef-
fects, starting with the most accurate estimation method and
moving down to less accurate ones. Notably, they place the PI
approach and the latent moderated structural equations (LMS)
approach (Klein & Moosbrugger, 2000) at the top of the
list. While conceptually easier to understand, PI has a
number of drawbacks including the complexity of cre-
ating numerous nonlinear constraints among latent vari-
ables and indicator residuals; violation of the normal
distribution assumption for latent variables and their in-
dicators resulting in incorrect estimates; and lack of in-
formation on how to use PI with more complex models,
such as models with multiple interactions or a three-way
interaction.

On the other hand, recent developments for implementing
LMS inMplus allow users to estimate latent interaction effects
easily with relatively simple syntax, even when the number of
indicators of the latent variables forming the latent interaction
is large, and for complicated models such as those with a
curvilinear three-way interaction. Several simulation studies
have demonstrated the superiority of LMS over PI in terms of
higher accuracy of estimates, smaller standard errors, and
higher power (Kelava et al., 2011; Klein & Moosbrugger,
2000). Yet a limitation of LMS is that, because it requires a

more complex estimation method, a model with multiple la-
tent interactions and a large sample size may require a long
time to run or computing resources that go beyond or-
dinary personal computers. In such cases, reliability-
corrected single-indicator LMS (RCSLMS) provides an
approximation approach that adopts LMS with summat-
ed scales and correction of measurement errors (Cheung
& Lau, 2017).

Despite a number of studies explaining the benefits of LMS
when estimating latent interaction effects (for example,
Kelava et al., 2011; Klein &Moosbrugger, 2000), and a num-
ber of teaching notes elaborating the procedures (for example,
Cheung & Lau, 2017; Maslowsky, Jager, & Hemken, 2015;
Muthén, 2012; Sardeshmukh & Vandenberg, 2017), only 6%
of the analyses in Cortina et al.’s (2019) review applied LMS.
Moreover, MMR remains the prevalent approach for
assessing interaction effects in nonexperimental studies
(Cortina et al., 2019) in spite of evidence that various meth-
odological artifacts negatively affect MMR when testing for
interaction effects (for example, Aguinis, 1995; Aguinis et al.,
2017).

To address this situation, the aim of this teaching note is to
motivate and enable researchers to employ LMS when inves-
tigating latent interaction effects, including RCSLMS when
appropriate. The remaining paper is divided into four sections.
In the first section, we briefly explain the conceptual basis of
LMS and RCSLMS approaches to estimating latent interac-
tions since one possible reason for the low utilization of LMS
is that it is more difficult to understand than the PI approach
(Cortina et al., 2019). In the second section, we establish the
superiority of LMS and RCSLMS compared with MMR by
providing the results of two simulation studies. In the third
section, we demonstrate a 4-step procedure to facilitate the
easy implementation of LMS for testing latent interaction ef-
fects using Mplus. Notwithstanding the advantages of LMS, a
further possible reason for its low adoption rate may be the
practical concerns raised in previous LMS-oriented teaching
notes, such as challenges in computing time, estimating the
model fit and the effect size of the interaction term, and
obtaining standardized coefficients (Maslowsky et al., 2015;
Sardeshmukh & Vandenberg, 2017). More specifically, while
Maslowsky et al. (2015) provided a tutorial on applying LMS,
we demonstrate how the three limitations they raised can be
resolved, and show how moderating effects can be better
probed by the Johnson-Neyman approach (Johnson &
Neyman, 1936). Building upon the work of Dawson
(2014) on moderation in management research, we also
demonstrate LMS for simple slope tests, examining
three-way interaction and other curvilinear effects. In
the final section, we provide answers to some frequently asked
questions regarding the application of LMS, including tips
that increase the computing capacity and lower the computing
requirements of LMS.
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Early SEM Approaches to Estimating
Interaction Effects

Estimating interaction effects using MMR assumes that ob-
served variables are measured without errors (Kline, 2016).1

As such, an interaction term constructed from observed vari-
ables includes not only the true score of the latent interaction,
but also random measurement errors. Because SEM isolates
indicator residuals from latent constructs (Bollen, 1989), esti-
mating interaction effects from the latent constructs controls
for measurement errors; this substantially reduces any bias in
estimates caused by measurement errors.

Researchers have developed various approaches for esti-
mating the effects of interactions between latent variables in
SEM. Early work on PI, referred to as the constrained
approach, proposed using the products of all possible pairs
of indicators of two latent variables as indicators of the latent
interaction term (Algina & Moulder, 2001; Bollen, 1989, pp.
405–406; Jöreskog & Yang, 1996; Kenny & Judd, 1984).
While this PI approach is straightforward conceptually,
Cortina et al. (2019) highlight a major limitation in that it
requires researchers to define numerous nonlinear constraints
for the loadings, intercepts, and residual variances of the prod-
ucts of indicators. Typically, when one product indicator is
added, five additional concomitant constraints are required
(Jöreskog & Yang, 1996). This process rapidly becomes un-
wieldy when the two latent variables have more than two or
three indicators. Hence, Cortina et al. (2019) recommend cre-
ating two to three parcels for each latent variable before cre-
ating the product indicators and provide R-code accordingly.
Nonetheless, the results are unstable as different combinations
of the indicators in parcels will yield different results (Hall,
Snell, & Foust, 1999).

Unlike the traditional constrained approach, which im-
poses complicated nonlinear constraints, the unconstrained
approach introduced by Marsh et al. (2004) imposes no non-
linear constraints. However, the unconstrained approach also
raises concerns, one being that the indicators for the latent
interaction are created with matched pair products, implying
that different pairings of the indicators of the two latent vari-
ables may produce different results. In addition, it is unclear
how to form the matched pair product indicators when the two
latent variables have different numbers of indicators. While
the two-stage least square (2SLS) method proposed by Bollen
(1995) and Bollen and Paxton (1998) avoids employing com-
plicated nonlinear constraints, as only one of the indicators of
the outcome variable is used, the results may vary when dif-
ferent indicators are used. A second issue with PI, together

with its variations, is that the maximum likelihood (ML) esti-
mator assumes that latent variables and their indicators
are normally distributed. However, when nonlinear ef-
fects exist, the endogenous latent variable (dependent
variable) and its indicators are not normally distributed.
As a result, PI may provide not only incorrect chi-square
values but also biased standard errors and significance tests
for interaction effects (Bollen, 1989, p. 406; Cortina, Chen, &
Dunlap, 2001; Kelava et al., 2011; Klein & Moosbrugger,
2000; Sardeshmukh & Vandenberg, 2017). A final issue with
PI is that, to date, there is no explanation of how it should be
implemented for more complicated models, including those
with multiple moderators, three-way interaction, moderated
quadratic effects, and polynomial regression.

Cortina et al. (2001) provided a comprehensive review of
the problems of various early approaches to modeling
latent interactions, while Cortina et al. (2019) and
Sardeshmukh and Vandenberg (2017) provided brief re-
views on PI and more recent approaches. Interested
readers are referred to these reviews outlining the issues
inherent to various approaches.

Conceptual Basis of Latent Moderated
Structural Equations

Investigations of interaction effects stem from the same con-
ceptual foundation. Equation 1 below shows the general equa-
tion that specifies the relationships among two exogenous
latent variables (independent variables) X and Z, and one en-
dogenous latent variable (dependent variable) Y with both
interaction and quadratic terms (Kelava et al., 2011, p. 467).2

Y ¼ αþ γ1X þ γ2Z þ ω12XZ þ ω11X 2 þ ω22Z2 þ ζ ð1Þ

where α is the intercept of the regression equation, γ1 and
γ2 are the main effects of X and Z respectively, ω12 is the
interaction effect of XZ, ω11 and ω22 are the quadratic effects
of X and Z respectively, and ζ is the residual of the regression
equation. An important development in testing for latent in-
teractions was the introduction of LMS by Klein and
Moosbrugger (2000). LMS estimates the regression coeffi-
cient ωij of all freely estimated two-way interactions of exog-
enous latent variables with the following equation (Klein &
Moosbrugger, 2000, p. 460):

η ¼ αþ Γξ þ ξ
0
Ωξ þ ζ ð2Þ

where η is the latent endogenous variable, α is the intercept, ξ
are the latent exogenous variables, Γ are the main effects of ξ

1 As in most of the discussions in SEM,measurement errors in this article refer
to random measurement errors only. Systematic measurement errors, such as
method effects and researcher-introduced bias, can only be accounted for using
specific research designs and other modeling approaches.

2 Equation 1 shows that either X or Z can be treated as the moderator. In other
words, both independent variable and moderator are treated in the same way
statistically. Theory and hypotheses should be used to determine which is the
independent variable and which is the moderator (Dawson, 2014).
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on η,Ω are the nonlinear effects of ξ on η, and ζ is the residual
of η.

Hence, Eq. 1 can be expressed as follows (Kelava et al.,
2011, p. 467):

Y ¼ αþ γ1 γ2ð Þ � X
Z

� �
þ X Zð Þ � ω11 ω12

0 ω22

� �
� X

Z

� �
þ ζ ð3Þ

While PI treats the product term XZ and the quadratic terms
X 2 and Z 2 in Eq. 1 as latent variables and therefore requires
the creation of product indicators to “measure” these latent
variables, Eq. 3 shows that LMS uses matrix multiplication
of X and Z to estimate the interaction and quadratic effects on
Y without creating latent variables to represent the product
term XZ and quadratic terms X 2 and Z 2. Thus, LMS does
not require the creation of product indicators to represent the
latent interaction and quadratic terms, which avoids the need
to impose complicated nonlinear constraints. This differenti-
ates LMS as superior, contrasting with PI which uses product
indicators and nonlinear constraints.

Technical explanations of how LMS estimates model pa-
rameters are beyond the scope of this teaching note. Interested
readers are referred to Kelava et al. (2011), Klein and
Moosbrugger (2000), and Sardeshmukh and Vandenberg
(2017) for more details. In short, LMS employs distribution
analytic methods to resolve the problems encountered by PI
that result from a nonnormally distributed endogenous latent
variable and its indicators, and uses an iterative estimation
procedure—the expectation-maximization (EM; Dempster,
Laird, & Rubin, 1977) algorithm—to provide an ML estima-
tion of model parameters (Kelava et al., 2011). In LMS, only
error variables and latent independent variables, but not latent
dependent variables, are assumed to be normally distributed.
Previous simulation investigations have provided evidence
that LMS offers unbiased standard errors and efficient param-
eter estimates even for data that deviate slightly from a normal
distribution (Klein & Moosbrugger, 2000).

Reliability-Corrected Single-Indicator Latent
Moderated Structural Equations

While it is advantageous to estimate latent interaction effects
with LMS, there are various conditions (which will be ex-
plained later) under which LMS is not ideal. Under such con-
ditions, and if all indicators of the construct are measured with
the same response scale, we recommend adopting reliability-
corrected single-indicator latent moderated structural equa-
tions (RCSLMS) to test latent interactions (Cheung & Lau,
2017). RCSLMS is a modified version of LMS in which the
values of all indicators for a latent variable are averaged to
form a scale score such that each latent variable in the model
has only one indicator. The factor loading between the latent
variable and the single indicator is then fixed to 1. Instead of

assuming no measurement errors as in MMR, or estimating
the residual variances as in LMS, RCSLMS fixes the residual
variance of the single indicator to (1 − reliability) times the
variance of the observed scale score (Bollen, 1989; Hayduk,
1987). One convenient approach is to use Cronbach’s alpha as
a measure of reliability. For example, if the scale has
Cronbach’s alpha of 0.8 and the variance of the average score
is 1.5, the residual variance for this latent variable is fixed to
(1 − 0.8)(1.5) = 0.3. Finally, LMS is employed to estimate the
interaction effects of latent variables with single indica-
tors. RCSLMS has been shown to provide estimates that
are good approximations to those produced by LMS
with all indicators and superior to those provided by
regression-based approaches (Cheung & Lau, 2017; Su,
Zhang, Liu, & Tay, 2019).

Two Simulations Comparing MMR, LMS,
and RCSLMS

In this section, we report the results of two simulations that
compared the performance of MMR, LMS, and RCSLMS for
estimating latent interaction effects. Similar simulations have
been conducted in specific contexts including moderated-
mediation (Cheung & Lau, 2017) and polynomial regression
(Su et al., 2019). The two simulations in this teaching note
examined the impact of various factors on the performance of
these three approaches to test for interaction effects in a more
general context, in terms of the accuracy and precision of
estimated parameters, confidence interval (CI) coverage rates,
type I error rates, and statistical power. These simulations
were conducted based on the interaction model in Eq. 4,
which has been employed in previous LMS simulation studies
(Klein & Moosbrugger, 2000; Klein & Muthén, 2007).

Y ¼ αþ γ1X þ γ2Z þ ω12XZ þ ζ ð4Þ

where α is the intercept, γ1 is the main effect of X, γ2 is the
main effect of Z, ω12 is the interaction effect of XZ, and ζ is the
residual of Y.

Simulation 1—Effects of Model Parameters
on Performance of MMR, LMS, and RCSLMS

This first simulation examined accuracy and precision of es-
timates, coverage, and completion rates comparing MMR,
LMS, and RCSLMS. Four indicators for each of the three
latent variables, X, Z, and Y were created. The levels of model
parameters were chosen to approximate models observed in
empirical research. In the first simulation, three different sam-
ple sizes (N = 100, 200, and 500) and three levels of correla-
tion between X and Z (rXZ = 0.1, 0.3, and 0.5) were manipu-
lated to represent small, medium, and large correlations
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between X and Z (Cohen, 1988, pp. 79–80). Four levels of
interaction effects (ω12 = 0, 0.12, 0.3, and 0.42) were used.
Note that the condition of ω12 = 0 was used to examine the
type I error rate for the interaction effect. Cohen (1988, pp.
413–414) defined small, medium, and large effect sizes for
regression as f 2 = 0.02, 0.15, and 0.35 respectively, which
can be translated to ω12 = 0.12, 0.3, and 0.42, respectively
when rXZ = 0.3. Cohen’s f 2 for the same interaction effects
are larger when rXZ = 0.5 and are smaller when rXZ = 0.1.
Since the objective of the first simulation was to examine
the accuracy of parameter estimates, we manipulated ω12 in-
stead of f 2. The average effect sizes across all rXZ conditions
were f 2 = 0, 0.02, 0.16, and 0.36. Three levels of residual
variance δ of each indicator were set based on Cronbach’s
alpha of the aggregated score of each latent variable (α =
0.7, 0.8, and 0.9). Finally, three patterns of factor loadings
for indicators of Z were adopted (z1 = 1, z2 = 1, z3 = 1, z4 =
1; z1 = 1, z2 = 1, z3 = 0.8, z4 = 1.2; z1 = 1, z2 = 1, z3 = 0.8,
z4 = 0.8) to examine the effect of unequal factor loadings on
the performance of the three approaches. As a result, the stan-
dardized factor loadings, which vary as functions of unstan-
dardized factor loadings and size of residual variance, covered
a wide range of values from 0.49 to 0.91 in the population
parameters. Factor loadings for all indicators for X and Y were
set at 1. In total, there were 324 population conditions. Similar
to Klein and Moosbrugger (2000) and Klein and Muthén
(2007), the values of the main effects were set to γ1 = 0.4 and
γ2 = 0.2. The residual variances ζ for Ywere fixed based on the
interaction effects. All intercepts in the model, including the
indicator intercepts and intercept for Y, were set to 0. All latent
variables and indicators were set to be normally distributedwith
variance equal to 1. Five hundred data sets were simulated with
Mplus 8.4 (Muthén &Muthén, 1998-2014) for each of the 324
conditions, giving a total of 162,000 simulated data sets.

Each simulated data set was analyzed with the three ap-
proaches for testing interaction effects. For MMR, the values
of the four indicators for each latent variable were averaged to
form the aggregate score for the analysis. For LMS, the raw data
(indicator values) were analyzed with the latent variable inter-
action function in Mplus 8.4. For RCSLMS, the aggregated
scores (instead of indicator values) were analyzedwith the latent
variable interaction function in Mplus 8.4. Also for RCSLMS,
the R-package was used to calculate the variance and
Cronbach’s alpha of each variable and to create theMplus input
file in which the residual variance of each variable was fixed at
(1 − reliability) times the variance of the aggregated score.

When comparing the performance of each approach, we
first examined the average estimated interaction effects across
500 simulated data sets for each population condition, which
indicates the accuracy of the estimated interaction effect. Then
absolute bias was calculated as the average of the absolute
difference between the point estimate and the population value
(Ledgerwood & Shrout, 2011). Because the standard error

does not reflect the deviation of the point estimate from the
population value, the absolute bias is a better representation of
the precision of the estimate produced by each approach. The
coverage of the 95% CI was then examined. The coverage
was calculated as the proportion of the 500 simulated samples
for which the population value was included in the 95% CI,
thus serving as a measure of CI accuracy. It is expected that
95% of the simulated samples have estimated 95% CI that
contain the true value. Finally, one frequently raised concern
inherent in LMS is the higher chance of nonconvergence
when the sample size is small because a large number of
parameters are estimated (Sardeshmukh & Vandenberg,
2017). Therefore, we examined the completion rates of the
simulated samples.

Results—Simulation 1 on the Effects of Model
Parameters3

Accuracy of Estimates The average estimated interaction ef-
fects of each approach are shown in Table 1. On average,
LMS produced very accurate estimates irrespective of the
population conditions. RCSLMS also produced very accurate
estimates, with average estimated interaction effects deviating
from population values by less than 1% even under the un-
equal factor loading conditions. While MMR produced very
accurate estimates when there was no interaction effect in the
population, on average, the interaction effects were
underestimated by -21.62%. The attenuation for MMR was
more serious when reliability was lower, with the interaction
effects underestimated by -33.33%when α = 0.7. For all three
approaches, increased sample size did not result in more ac-
curate estimates.

Precision of Estimates The average absolute biases are present-
ed in Table 2. Precision is the combined effect of accuracy and
variation of estimates. In general, the estimated interaction effect
wasmore precisewhen both reliability and sample size increased
because the standard error of estimates was smaller. Because
LMS and RCSLMS include measurement errors in the calcula-
tion of standard error of estimates, LMS had the largest standard
error of estimates, closely followed by RCSLMS, whereas
MMR resulted in the smallest standard error of estimates (as
presented in Table S3 in the supplementary files). When there
was no interaction effect or a small interaction effect, MMR
produced the most precise estimates because of the smaller stan-
dard errors and only small attenuation of estimated parameters.
With medium and large interaction effects, both LMS and
RCSLMS produced more precise estimates, whereas the attenu-
ation of estimated parameters in MMR became more severe.

3 Results presented in Tables 1 to 3 are averages across all three patterns of
factor loadings. Tables showing results for each pattern of factor loadings are
available in the supplementary files.
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Coverage of 95% Confidence Interval LMS resulted in the
most accurate 95% CI, with an average coverage of 94.30%.
This was closely followed by RCSLMS with an average cov-
erage of 92.8%. On the other hand, the attenuation of estimat-
ed parameters and the smaller standard error of estimates pro-
duced by MMR together resulted in inaccurate CIs, with an
average coverage of only 69.7%. Since increased sample size
led to smaller standard errors but not more accurate estimates
by MMR, the coverage of CI was lowered when sample size
was larger. This was most obvious when N = 200 or 500,
reliability was at 0.7, and the interaction effect was medium
or large. In such conditions, the average coverage of the 95%
CI produced by MMR was only 14.0%. This is of particular
concern because an increasing number of studies, in
particular moderated-mediation studies, report CIs gen-
erated from MMR or related regression approaches
(such as PROCESS; Hayes, 2013) which are likely to be

inaccurate. Coverages of CI are presented in Table S5 in the
supplementary files.

Completion Rates In the first simulation, MMR completed
estimation for all 162,000 simulated data sets. Both LMS
and RCSLMS also had very high completion rates, probably
because there are only twelve indicators and one latent inter-
action in the model. More specifically, out of the 162,000
simulated data sets, LMS completed all but 14 cases, and
RCSLMS completed all but six cases. All incomplete estima-
tions were under conditions with N = 100.

Simulation 2—Comparing Type I Error Rates
and Power of MMR, LMS, and RCSLMS

We conducted a second simulation to examine type I error
rates and power. In this simulation, we only used the condition

Table 1 Simulation 1: average estimated parameters

ω12 = 0 ω12 = .12 ω12 = .30 ω12 = .42

rXZ Alpha N MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS

.1 .7 100 .004 .005 .004 .077 .119 .120 .184 .286 .291 .258 .406 .413

200 .004 .007 .006 .077 .123 .124 .185 .295 .299 .258 .412 .417

500 .004 .006 .006 .077 .124 .125 .186 .299 .301 .259 .419 .421

.8 100 .005 .006 .005 .089 .122 .122 .217 .297 .299 .300 .410 .413

200 .004 .006 .006 .090 .124 .124 .216 .298 .300 .300 .415 .417

500 .004 .005 .005 .089 .123 .124 .218 .301 .302 .303 .419 .420

.9 100 .005 .006 .006 .106 .123 .124 .255 .298 .298 .356 .415 .416

200 .004 .005 .005 .105 .123 .124 .257 .300 .300 .357 .416 .417

500 .003 .004 .004 .105 .123 .123 .258 .301 .302 .361 .420 .420

.3 .7 100 .003 .005 .004 .080 .118 .119 .192 .286 .289 .270 .407 .411

200 .004 .007 .006 .081 .123 .124 .197 .298 .300 .273 .413 .417

500 .004 .006 .006 .081 .124 .125 .198 .302 .303 .274 .419 .420

.8 100 .004 .005 .004 .092 .121 .121 .224 .293 .294 .314 .410 .413

200 .005 .006 .006 .094 .124 .124 .228 .300 .300 .318 .417 .419

500 .004 .005 .006 .094 .124 .124 .229 .302 .302 .318 .419 .420

.9 100 .005 .006 .005 .109 .123 .123 .264 .295 .296 .370 .414 .415

200 .005 .005 .006 .110 .124 .124 .269 .301 .301 .373 .417 .417

500 .004 .004 .004 .110 .123 .123 .269 .300 .300 .376 .420 .420

.5 .7 100 .002 .004 .002 .086 .119 .118 .211 .291 .291 .297 .410 .413

200 .004 .006 .006 .089 .123 .123 .215 .295 .297 .301 .416 .418

500 .004 .005 .006 .090 .124 .124 .217 .300 .301 .302 .418 .419

.8 100 .003 .004 .003 .099 .121 .120 .244 .293 .294 .338 .408 .409

200 .005 .006 .006 .103 .124 .124 .248 .298 .299 .346 .417 .418

500 .004 .005 .005 .103 .123 .124 .251 .301 .302 .349 .420 .420

.9 100 .004 .005 .004 .117 .122 .122 .286 .298 .298 .398 .414 .415

200 .005 .005 .006 .119 .124 .124 .289 .299 .299 .405 .418 .419

500 .004 .004 .004 .119 .122 .123 .291 .300 .300 .407 .419 .420

MMR moderated multiple regression approach, LMS latent moderated structural equations approach, RCSLMS reliability-corrected single-indicator
latent moderated structural equations approach, ω12 interaction effect
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of equal factor loadings, and all population parameters were
the same as those in the first simulation except for the sample
size and the magnitude of interaction effects. We manipulated
six levels of sample size (N = 100, 150, 200, 300, 400, and
500) and four levels of f 2 (0, 0.02, 0.15, and 0.35). We ma-
nipulated f 2 instead of ω12 such that readers can find the
power and required sample size for small, medium, and large
effect sizes from the results. The second simulation included
216 population conditions, giving a total of 108,000 simulated
data sets. We calculated the proportion of the 500 simulated
samples in which the 95% CI did not include zero. This pro-
portion represented a type I error when the population inter-
action effect was zero and represented power when the popu-
lation interaction effects were at f 2 = 0.02, 0.15, and 0.35.

Results—Simulation 2 Comparing Type I Error Rates
and Power

Type I Error and Power Table 3 shows the results of simulation
2. Columns on the left show the type I error rates of the three
approaches when the population interaction effect f 2 = 0. The
average type I error rates for MMR, RCSLMS, and LMS
across all samples were 0.070, 0.057, and 0.070 respectively.
The type I error rates for MMR were higher than 0.080 when
N = 100 and 150 (0.085 and 0.083 respectively), and for
RCSLMS when N = 100 (0.091). It should be noted that the
type I error rates for LMS were above 0.08 when there was
high reliability (α = 0.9), high rXZ (0.5), andN = 200 or small-
er. None of the approaches had adequate power (0.8) for test-
ing a small interaction effect except under the most favorable
conditions in which N = 400 or higher, rXZ = 0.5, and α = 0.9.
Power increased with larger sample size and higher reliability.
For the most part, all three approaches produced adequate
power for testing medium and large interaction effects with
N = 150 or higher when α = 0.8 or higher.

When to Adopt MMR, LMS, or RCSLMS

Given the simulation results reported above, and from previous
studies (Cheung & Lau, 2017; Su et al., 2019), we provide some
general rules for choosing between MMR, LMS, and RCSLMS
when testing interaction effects, which are summarized in Fig. 1.
In general, similar to the advice by Su et al. (2019), we recom-
mend using LMS whenever possible, which is also in line with
Cortina et al.’s (2019) recommendation to test interactions with a
fully latent approach. The two key advantages of LMS are that it
provides the best estimates of both the size ofmeasurement errors
and the relationships between the indicators and latent variables
by allowing factor loadings to vary across indicators. In turn,
LMS produces the most accurate estimated parameters and CIs.
LMS also allows higher model complexities. One shortcoming
of LMS indicated by the simulations is that, when N = 100, it

yields large standard errors, large absolute differences, and low
power. Nevertheless, this shortcoming can be resolved by in-
creasing the sample size. If LMS is not feasible, then RCSLMS
is usually the next best option because it provides more accurate
estimates and better CI coverage than MMR.

However, MMR is the only choice when both X and Z are
measured directly without errors, because both LMS and
RCSLMS require at least one of the variables to be latent.
There may be instances where X and Z are measured directly
but the researcher suspects there are measurement errors, yet
Cronbach’s alpha cannot be estimated from the sample. The
best solution is to use RCSLMS with reliability estimated from
other methods, such as split-half and test-retest reliabilities. If
reliability cannot be estimated from the sample, RCSLMS can
be used with reliability taken from previous studies. In such
cases, measurement errors should be fixed with slightly
overestimated reliability (by + 0.05) to avoid over-adjustment
of measurement errors (Savalei, 2019).4 If either X or Z is a
categorical variable and the other is a continuous latent variable,
multiple group analysis should be adopted and interaction ef-
fects tested by comparing the effects on Y using a direct com-
parison method (Lau & Cheung, 2012).

If either or both X and Z are latent, then LMS should be used
when feasible because it provides greater modeling flexibility.
When one of the variables is observed, that variable should be
modeled as a single indicator latent variable by fixing the factor
loading to 1 and residual variance to 0 (or 0.01 when Mplus
gives an error message since residual variance at 0 may some-
times cause problems in estimating the standard errors). This
converts the exogenous observed variable into a latent variable
with the benefit that, by default, Mplus estimates all the covari-
ances among exogenous latent variables, whereas this is not the
case for observed variables, for which covariances would have
to be coded. A further benefit of converting the observed var-
iable into a single indicator latent variable is that, by default,
Mplus centers the variable.

LMS may not be feasible when:

(a) The sample size is smaller than the number of estimated
parameters. Models in empirical studies frequently in-
volve many indicators for multiple variables, but sample
size may be limited, such as in experiments or studies at
group or organization levels.

4 The reliability level should be set a priori; a sensitivity analysis using mul-
tiple levels of reliability is not recommended because that would be explor-
atory (Savalei, 2019). Based on the results of a simulation study, Savalei
(2019) recommended fixing the measurement error a priori by a slightly
over-estimated reliability (+ 0.05) when the researcher is comfortable in guess-
ing the reliability. However, if the reliability is underestimated (− 0.05) or
overestimated by a larger extent (+ 0.15), the recommended approach will
result in less accurate and less precise parameter estimates, as well as lower
coverage of CI and inflated type I error when compared with either SEMor the
single indicator with Cronbach’s alpha correction approaches. These negative
consequences were more obvious when the sample size approached 200.
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(b) Themodel does not converge, usually due tomodel com-
plexities and small sample size.

(c) Complex models that require greater computing capacities
than found inmost personal computers. The larger the num-
ber of latent variables involved in one or more latent inter-
actions, the greater the number of numerical integration
points required. Mplus will provide a warning message
when computing capacities are exceeded, which is likely
to occur when five or more latent variables are involved in
multiple interactions.

(d) Models require excessive amounts of time for estimation.
This is normally the case when bootstrapping is required,
such as in moderated-mediation models or in testing simple
slope effects. For example, when the number of indicators is
large or the sample size is large, itmay take about 1minute to
estimate a model. Multiplying 1 minute by 2000 bootstrap
samples gives over 30 hours required for estimation, indicat-
ing the excessive amount of time for testing a model.

(e) WhenMplus is not available. Currently, among the most
commonly used SEM software programs, LMS is only
available with Mplus. The R-based lavaan package does
not provide LMS estimation. Although the R-based
nlsem package (Umbach, Naumann, Brandt, & Kelava,
2017) supports fitting nonlinear structural equation
models with LMS, results from nlsem are very sensitive
to the starting values used, and hence, even the factor
loadings may not be comparable with results from lavaan
or Mplus. When using nlsem, the recommendation is to
run the model 100 times with different starting values
and then average the results (private communication with
N. Umbach). Hence, until this problem with nlsem has
been resolved, it is not recommended for implementing
LMS. When the full version of Mplus is not available,
one may consider estimating the model with RCSLMS
using the Mplus demo version, which can be
downloaded at no cost from the Mplus homepage

Table 2 Simulation 1: absolute difference from population values

ω12 = 0 ω12 = .12 ω12 = .30 ω12 = .42

rXZ Alpha N MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS

.1 .7 100 .079 .129 .128 .086 .129 .128 .129 .126 .123 .166 .119 .116

200 .056 .091 .090 .067 .090 .089 .118 .084 .083 .163 .082 .082

500 .033 .053 .054 .050 .053 .053 .114 .050 .051 .161 .047 .048

.8 100 .078 .108 .109 .082 .109 .109 .104 .104 .105 .129 .099 .099

200 .056 .076 .077 .061 .075 .075 .091 .071 .071 .122 .068 .069

500 .033 .045 .046 .042 .045 .045 .083 .042 .043 .117 .040 .041

.9 100 .075 .089 .089 .078 .090 .090 .084 .086 .086 .091 .079 .080

200 .054 .064 .064 .056 .063 .063 .063 .059 .059 .075 .056 .056

500 .032 .037 .037 .034 .037 .037 .048 .035 .035 .062 .032 .032

.3 .7 100 .078 .122 .120 .085 .123 .121 .121 .118 .116 .155 .112 .109

200 .055 .084 .083 .064 .083 .082 .108 .077 .077 .148 .075 .075

500 .034 .051 .051 .047 .050 .051 .102 .048 .049 .146 .046 .047

.8 100 .077 .103 .102 .081 .104 .103 .100 .101 .100 .118 .092 .092

200 .055 .071 .071 .058 .070 .070 .082 .066 .065 .107 .062 .062

500 .034 .043 .044 .040 .043 .044 .072 .041 .041 .102 .038 .038

.9 100 .074 .085 .085 .076 .086 .085 .081 .083 .082 .086 .077 .077

200 .053 .059 .059 .054 .059 .059 .058 .054 .054 .066 .051 .051

500 .032 .036 .036 .033 .036 .036 .041 .033 .033 .049 .031 .032

.5 .7 100 .078 .110 .107 .083 .111 .108 .109 .105 .104 .134 .099 .097

200 .055 .074 .072 .060 .073 .072 .094 .069 .068 .123 .066 .065

500 .034 .045 .046 .043 .045 .045 .084 .044 .044 .118 .040 .040

.8 100 .077 .095 .093 .079 .095 .094 .090 .089 .089 .105 .085 .085

200 .054 .064 .063 .055 .063 .063 .070 .060 .059 .085 .054 .054

500 .034 .039 .040 .037 .039 .039 .055 .037 .037 .073 .034 .035

.9 100 .074 .079 .078 .075 .079 .079 .076 .074 .073 .078 .070 .070

200 .052 .053 .053 .052 .053 .053 .054 .050 .050 .054 .045 .045

500 .032 .033 .033 .032 .032 .032 .032 .030 .030 .034 .027 .028

MMR moderated multiple regression approach, LMS latent moderated structural equations approach, RCSLMS reliability-corrected single-indicator
latent moderated structural equations approach, ω12 interaction effect
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(https://www.statmodel.com/demo.shtml). However,
one limitation of estimating latent interactions with
RCSLMS using the Mplus demo version is that only
six variables are allowed in the model, although that
should be enough for many empirical studies. If there
are more than six variables in the model, then the full
version of Mplus should be acquired to test the model.

Compared to LMS, RCSLMS involves fewer parameter es-
timates. This simpler model yields several benefits, namely that
more complex models can be estimated when the sample size is
small, and that the elapsed time for estimating the model is
much shorter compared with the LMS approach. Several sim-
ulation studies have shown RCSLMS performs equally well or
even slightly better than LMS (Cheung & Lau, 2017; Su et al.,
2019) when there are equal factor loadings across indicators,
and our simulation results show that RCSLMS performs equal-
ly well in conditions with slightly unequal factor loadings.
However, we also find that RCSLMS results in inflated type I
error when sample size is small and rXZ is high. In summary,
although RCSLMS mostly performs well, it is not appropriate
under the following conditions:

(a) When sample size is 100 or smaller.
(b) Response scales for the indicators of a variable are not

the same.
(c) The latent variable is not unidimensional, such as in

higher-order constructs, in which case LMS should be
used because it can model latent interactions with higher-
order constructs.

(d) When the same or similar indicators are used for measur-
ing both X and Z, in which case measurement errors for
the same indicators are likely to be correlated across X and
Z; this can only bemodeled in LMS. An example of this is
congruence research, which usually uses similar measures
for person values (X) and organization values (Z).

These four limitations for RCSLMS also apply to MMR
and PI.

The simulation results presented in Table 3 also suggest the
need to adopt specific criteria for reliability. Despite account-
ing for measurement errors, LMS and RCSLMS have lower
power when reliability is low. Although the manipulations in
our simulations were based on Cronbach’s alpha, the values of
construct reliability are usually very similar to the values of
Cronbach’s alpha (Hair, Black, Babin, & Anderson, 2009).
Hence, we recommend a minimum level of construct reliabil-
ity at 0.7 for LMS and a minimum level of Cronbach’s alpha
at 0.7 for RCSLMS. At this level of reliability, there is still
adequate power for testing a moderate interaction effect with a
sample size between 200 and 300. This recommended level is
also suggested by Hair et al. (2009, p. 619) as denoting good
reliability.

Numerical Examples Demonstrating LMS
and RCSLMS Implementation

In this section, we demonstrate a 4-step procedure for estimat-
ing latent interaction effects with LMS using Mplus 8.4 on
simulated data developed from Study 1 in Du, Derks, Bakker,
and Lu (2018). A summary of the 4-step procedure, including
the decisions and actions in each step, is provided in Fig. 2.
Most interaction effects can be tested by estimating one SEM
model in each step, giving rise to Model 1, Model 2, Model 3,
and Model 4. Hence, for Example A, the models are Model
A1 to Model A4. For more complex interactions, a further
model is added in Step 3 (Model 3b) to estimate the effect
size. Mplus output files for all models, as well as data sets used
in the numerical examples, are available in the supplementary
files. The Mplus syntax can be found under “Input
Instructions” at the beginning of each output file. Key results
data are highlighted in each output file. Note that the supple-
mentary files include also a narrated PowerPoint presentation
working through the examples presented below.

The original study by Du et al. (2018) examined the mod-
erating effects of homesickness on the relationships between
job resources and both task performance and safety behavior
using MMR. They also hypothesized the moderating effect of
homesickness was moderated by emotional stability and
openness to experience. For simplicity of exposition, we dem-
onstrate the model with only task performance as the depen-
dent variable, as well as the interactions among job resources,
homesickness, and emotional stability. In the first example,
we demonstrate a model testing the two-way interaction be-
tween job resources and homesickness (Du et al., 2018, p. 102
– Step 3). Then we illustrate the models for testing three-way
interaction (Du et al., 2018, p. 102 – Step 6), followed by
testing for quadratic effects and moderated quadratic effects.

The original data included responses from a two-wave sur-
vey of 442 employees in a Chinese manufacturing company.
Job resources were measured using Karasek’s (1985) three-
item feedback scale and Van Veldhoven, de Jonge, Broersen,
Kompier, and Meijman’s (2002) three-item social support
scale. Homesickness was measured with the 20-item Utrecht
Homesickness Scale (Stroebe, van Vliet, Hewstone, & Wills,
2002). The six-item scale for measuring emotional stability
and the six-item scale for measuring openness to experience
were both from Judge, Rodell, Klinger, Simon, and Crawford
(2013). Task performance was measured at time 2 with the
three-item scale from Goodman and Svyantek (1999). We
included only one control variable, job demands, measured
using the three-item scale from Peterson et al. (1995).
Except for emotional stability and openness to experience,
which were measured on 7-point response scales, all other
variables were measured on 5-point response scales.
Interested readers are referred to Du et al. (2018, pp. 99–
100) for the conceptual model, sample, and measures. The
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Table 3 Simulation 2: type I error/power for testing interaction effects

f 2 = 0 f 2 = .02 f 2 = .15 f 2 = .35

rXZ Alpha N MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS

.1 .7 100 .090 .038 .096 .158 .092 .156 .540 .348 .550 .774 .586 .780

150 .084 .044 .070 .202 .124 .212 .696 .596 .710 .926 .858 .928

200 .060 .044 .068 .220 .182 .238 .794 .712 .824 .974 .940 .976

300 .058 .040 .060 .272 .254 .306 .928 .914 .956 .996 .992 .998

400 .060 .050 .058 .370 .306 .372 .982 .970 .982 1.000 1.000 1.000

500 .052 .034 .042 .386 .374 .436 .992 .992 .996 1.000 1.000 1.000

.8 100 .090 .056 .092 .212 .156 .202 .708 .624 .708 .916 .860 .918

150 .080 .064 .076 .248 .216 .246 .868 .818 .874 .982 .970 .986

200 .064 .064 .066 .312 .282 .324 .936 .914 .936 .998 .998 .998

300 .054 .046 .058 .394 .370 .412 .986 .984 .986 1.000 1.000 1.000

400 .056 .046 .058 .480 .460 .490 .998 .996 .998 1.000 1.000 1.000

500 .048 .040 .042 .566 .568 .578 1.000 1.000 1.000 1.000 1.000 1.000

.9 100 .078 .066 .076 .288 .252 .288 .846 .826 .838 .974 .970 .980

150 .082 .066 .082 .352 .314 .348 .952 .944 .950 .998 .998 .998

200 .078 .060 .068 .410 .398 .410 .982 .982 .984 1.000 1.000 1.000

300 .058 .054 .056 .530 .520 .530 .998 .998 .998 1.000 1.000 1.000

400 .056 .046 .048 .636 .634 .642 1.000 1.000 1.000 1.000 1.000 1.000

500 .048 .048 .046 .730 .724 .730 1.000 1.000 1.000 1.000 1.000 1.000

.3 .7 100 .078 .040 .090 .174 .108 .174 .546 .368 .548 .768 .598 .770

150 .082 .048 .066 .218 .150 .220 .712 .594 .724 .928 .844 .932

200 .072 .052 .078 .238 .218 .258 .800 .728 .826 .970 .942 .970

300 .064 .048 .070 .314 .300 .344 .936 .922 .946 .994 .992 .996

400 .060 .058 .070 .420 .380 .434 .980 .974 .986 1.000 1.000 1.000

500 .056 .042 .052 .444 .444 .468 .994 .994 .996 1.000 1.000 1.000

.8 100 .088 .066 .098 .226 .188 .234 .698 .620 .710 .904 .862 .910

150 .086 .062 .078 .266 .240 .286 .850 .824 .874 .984 .970 .994

200 .076 .068 .076 .332 .308 .328 .928 .920 .936 .998 .996 .998

300 .064 .054 .062 .440 .410 .446 .982 .984 .990 1.000 1.000 1.000

400 .058 .054 .060 .540 .524 .554 .994 .996 .996 1.000 1.000 1.000

500 .046 .048 .054 .606 .608 .612 1.000 1.000 1.000 1.000 1.000 1.000

.9 100 .094 .080 .096 .290 .266 .280 .826 .816 .826 .976 .964 .970

150 .078 .074 .080 .366 .352 .358 .950 .942 .952 .998 .996 .998

200 .086 .080 .088 .456 .438 .452 .984 .982 .986 1.000 1.000 1.000

300 .054 .046 .050 .574 .568 .576 .998 .998 .998 1.000 1.000 1.000

400 .064 .060 .068 .698 .690 .696 1.000 1.000 1.000 1.000 1.000 1.000

500 .054 .050 .050 .782 .778 .782 1.000 1.000 1.000 1.000 1.000 1.000

.5 .7 100 .070 .038 .086 .208 .130 .202 .566 .410 .588 .782 .632 .802

150 .076 .056 .066 .248 .180 .262 .726 .634 .762 .926 .866 .946

200 .092 .060 .088 .278 .254 .318 .814 .768 .860 .972 .950 .980

300 .066 .052 .060 .366 .362 .406 .938 .938 .966 .996 .994 .996

400 .058 .064 .076 .468 .454 .512 .984 .982 .986 1.000 1.000 1.000

500 .058 .046 .056 .534 .532 .566 .994 .998 .998 1.000 1.000 1.000

.8 100 .086 .062 .096 .262 .222 .270 .710 .646 .716 .908 .858 .920

150 .086 .064 .082 .316 .278 .334 .876 .838 .886 .988 .978 .994

200 .088 .080 .082 .388 .370 .412 .936 .928 .944 .998 .996 .998

300 .066 .058 .070 .508 .504 .538 .990 .990 .992 1.000 1.000 1.000

400 .070 .072 .076 .626 .622 .652 .994 .996 .996 1.000 1.000 1.000
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data set (Example1.dat in the supplementary files) was
simulated based on the reported descriptive statistics,
correlations, and results of estimated effects with N =
422 (Du et al., 2018, pp. 101–102). LMS works only
on raw data but not summary statistics (means and co-
variance matrix).

Example A: Two-Way Interactions
(Models A1, A2, A3, and A4)

Step 1: Measurement Model Estimation (Model 1)

As in all other SEM analyses, the first step is conducting a
confirmatory factor analysis (CFA) by estimating the mea-
surement model; this assesses the quality of measures by ex-
amining their convergent and discriminant validity. We
assessed the fit of the six-factor measurement model (Model
A1), in which the 44 observed indicators loaded on six defined
factors. Indicators for the dependent variable are likely
nonnormally distributed because of the interaction effects;
hence, we recommend and used the maximum likelihood with
robust standard error (MLR) estimator due to its higher robust-
ness to nonnormality. In the supplementary Mplus files, the
indicators for job resources (JOBRES) are denoted as JobRes1
− JobRes6; those for homesickness (HOMES) are denoted as
Homes1 −Homes20; those for emotional stability (EMOSTAB)
are denoted as EmoStab1 − EmoStab6; those for openness
(OPEN) are denoted as Open1 −Open6; and those for task
performance (TASKP) are denoted as TaskP1 − TaskP3. The
indicators for the control variable, job demands (JOBD), are
denoted as JobD1 − JobD3. To set the scale for latent vari-
ables, the factor loading of the first indicator for each latent
variable is set to 1, and the means of all latent variables are set
to 0, which centers all latent variables (these are the defaults in
Mplus). This centering facilitates the interpretation of the main
effects when there is a statistically significant interaction effect
(Aguinis & Gottfredson, 2010).5

For this empirical example, the measurement model gener-
ated χ2 = 946.54 (df = 887). Other fit indices—RMSEA =
0.013, CFI = 0.982, and SRMR= 0.040—indicated that the
measurement model fit the data well. Unstandardized
factor loadings of all indicators were statistically signif-
icant (p < 0.01), and standardized factor loadings were
all greater than the threshold value of 0.40 suggested
by Ford, MacCallum, and Tait (1986). Moreover, the
correlation coefficients among all latent variables ranged
from -0.382 to 0.463, indicating that they were six dis-
tinct variables because the absolute value of all correla-
tion coefficients were significantly lower than 1. Construct
reliability of the six variables was estimated using the follow-
ing formula (Fornell & Larcker, 1981, p. 45):

ρ ¼ ∑λið Þ2
∑λið Þ2 þ ∑Var εið Þ ð5Þ

5 Little, Slegers, and Card (2006) suggested an effects-coding method as an
alternative way of identifying and scaling latent variables by fixing the sum of
factor loadings across indicators to the number of indicators (for example, sum
of factor loadings is fixed at 4 when there are four indicators for the construct),
and the sum of indicator intercepts is fixed at 0. While the effects-coding
method is equivalent to the marker variable method that fixes the factor load-
ing of a marker variable to one by just changing the scale and intercept of the
latent variable, the effects-coding method is particularly useful for interpreting
latent means. However, the effects-coding method may not be appropriate for
estimating latent interactions since latent variables that form the latent interac-
tion should be centered (such that the mean is zero) to improve interpretability
of the estimated regression coefficients. Besides, interpreting unstandardized
regression coefficients will bemore challengingwhen the effects-codingmeth-
od is adopted. Moreover, the effects-coding method requires all indicators to
have the same response scale while using the marker item method in LMS
does not require this. We also caution against achieving identification by
standardizing the latent variables (fixing the variance of latent variables at 1)
because the standard errors of estimated parameters may be biased. Given
these various issues, we recommend adopting the marker variable method to
provide identification when LMS is used.

Table 3 (continued)

f 2 = 0 f 2 = .02 f 2 = .15 f 2 = .35

rXZ Alpha N MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS MMR LMS RCSLMS

500 .058 .050 .054 .680 .698 .714 1.000 1.000 1.000 1.000 1.000 1.000

.9 100 .092 .084 .090 .340 .310 .330 .840 .808 .842 .982 .978 .980

150 .092 .084 .088 .426 .408 .418 .956 .950 .960 .998 .996 .998

200 .094 .084 .084 .520 .514 .516 .982 .984 .984 1.000 1.000 1.000

300 .058 .050 .054 .682 .666 .684 .998 .998 .998 1.000 1.000 1.000

400 .072 .072 .078 .788 .792 .800 1.000 1.000 1.000 1.000 1.000 1.000

500 .052 .042 .046 .850 .858 .858 1.000 1.000 1.000 1.000 1.000 1.000

MMR moderated multiple regression approach, LMS latent moderated structural equations approach, RCSLMS reliability-corrected single-indicator
latent moderated structural equations approach, f 2 effect size of interaction
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where ρ is the construct reliability, λi is the standardized factor
loading, and Var(εi) is the residual variance of indicator i
obtained from the Mplus output. As noted above, construct
reliability should be at least 0.70; this criterion was met in our
numerical example, with values ranging from 0.70 to 0.86.
These results provided evidence for adequate reliability, as
well as both convergent validity and discriminant validity. If
the measurement model does not provide a good fit to the data,
one should review the measurement model for any coding
errors, for example, higher-order constructs or omitted corre-
lated errors for the same items across time or across sources. If
there is insufficient evidence for the appropriateness of the
measures, testing for latent interactions should not proceed
further with this data set.

Step 2: SEM Without Latent Interaction (Model 2)

The second step is to estimate the structural equation model
with only hypothesized linear effects. The objective of this
step is to provide baseline model fit indices to allow a subse-
quent comparative evaluation of overall model fit for the mod-
el with latent interactions. More specifically, because the non-
linear effects of a latent interaction model result in biases to
the chi-square value and other fit indices derived from the chi-
square value (Kelava et al., 2011), Mplus does not provide
conventional fit indices for evaluating the overall model fit
when estimating an LMS model. Thus, we followed the pro-
cedure described in Muthén (2012) to evaluate model fit of an
LMSmodel. First, we estimated a structural model without the
latent interaction term (Model A2), that is, we estimated only
the main effects of job resources, homesickness, emotional

stability, openness, and job demands on task performance,
whereas we excluded from the model the interaction effect
between job resources and homesickness on task perfor-
mance. If Model 2 provides an adequate fit to the data, one
may proceed to estimate the structural equation model with
the latent interaction (Model A3 in the next step) and examine
if inclusion of the latent interaction effect improves model fit
significantly.6 If Model 2 does not provide adequate fit to the
data, one may want to revise the model based on alternative
theories, noting that modification of model parameters based
on modification indices is exploratory and sample specific,
and hence requires a separate sample for confirmation. Since
we wanted to compare the model fit of Model 2 against the
model with the latent interaction using the MLR estimator,
that is, Model 3, we estimated bothModel 2 andModel 3 with
the MLR estimator. In our example, this structural equation
model (Model A2) resulted in χ2 (887) = 946.54, RMSEA =
0.013, CFI = 0.982, and SRMR= 0.040. Hence, we conclud-
ed that this structural equation model without the latent inter-
action fitted the data well. The results showed that only the
main effect of job resources (b = 0.287, p < 0.01, β = 0.323)
on task performance was statistically significant. Significance
tests for regression coefficients should be based on unstan-
dardized coefficients because the estimated standard errors
for standardized coefficients may be biased (Cudeck, 1989).

6 Although rare, there may be instances where Model 2 does not fit the data
adequately and yet Model 3 fits the data significantly better than Model 2.
Unfortunately, we will not be able to tell if Model 3 fits the data adequately in
such situations.
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Fig. 1 Recommendations on which approach to use for testing interactions
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All five independent variables together accounted for 17.4%
of the variance in task performance.

Step 3: LMS Model Estimation (Model 3)

Because the structural equation model without the latent inter-
action in Step 2 fitted the data well, we proceeded to the next
step which was to estimate the 2-way interaction effect be-
tween job resources and homesickness on task performance
(Model A3). In Mplus, under the ANALYSIS command, the
statement “TYPE = RANDOM;” was added to request esti-
mates of the random slopes , and the s ta tement
“ALGORITHM = INTEGRATION;” was added to request
the numerical integration for the estimation of interaction ef-
fects. The latent interaction term was defined under the
MODEL command with the statement “JRxHS | JOBRES
xwith HOMES;” where JRxHS denotes the latent interaction
between job resources and homesickness.

Model Fit of the LMS Model We followed the procedure in
Muthén (2012) to evaluate the model fit of the LMS model by
comparing the model fit of the models with and without the
latent interaction term. Although Sardeshmukh and
Vandenberg (2017) suggested comparing the Akaike informa-
tion criterion (AIC) between the two models, Klein and
Moosbrugger (2000) and Muthén (2012) recommended com-
paring the loglikelihood values because the two models are
nested, while AIC is more appropriate for comparing
nonnested models. While Maslowsky et al. (2015) suggested
comparing the scaled loglikelihood values directly, Bryant
and Satorra (2012) pointed out that the difference between
two scaled loglikelihood values is not chi-square distributed.
The proper comparison is a chi-square difference test based on
the loglikelihood values and scaling correction factors esti-
mated from the two models both estimated with the MLR
estimator (Asparouhov & Muthén, 2013, p. 2; Satorra &
Bentler, 2010):

TRd ¼ 2 L1−L0ð Þ p1−p0ð Þ= c1p1−c0p0ð Þ ð6Þ

where TRd is the chi-square distributed difference in scaled
loglikelihood ratios with degrees of freedom equals to (p1 −
p0) and, for the model with latent interaction (Model A3), L1 is
the loglikelihood H0 value, c1 is the H0 scaling correction
factor for MLR, and p1 is the number of free parameters.
Similarly, for the model without latent interaction (Model
A2) estimated in Step 2, L0 is the loglikelihood H0 value, c0
is the H0 scaling correction factor for MLR, and p0 is the
number of free parameters. In our example, L1 = −
23,453.387, c1 = 0.9767, p1 = 148 (from output of Model
A3), L0 = − 23,457.537, c0 = 0.9780, and p0 = 147 (from out-
put of Model A2); therefore, TRd(df = 1) = 10.565 (p =

0.0012) which indicated that the improvement in model fit
through inclusion of the latent interaction effect was statisti-
cally significant. An Excel spreadsheet (Loglikelihood Values
Difference.xlsx) is provided in the supplementary files to fa-
cilitate calculation of the difference in scaled loglikelihood
values.

Testing an Interaction Effect The results of Model A3 showed
that the regression coefficient of JRxHS on TASKP (task
performance), that is, ω12 in Eq. 4, was -0.426
(p < 0.01, β = -0.177). Thus, we conclude that the inter-
action effect was statistically significant and the effect
of job resources on task performance depended on the
level of homesickness.

Standardized Coefficients and R2 Standardized coefficients
and R2 for all endogenous variables can be obtained by includ-
ing “OUTPUT: STDYX;” under the OUTPUT command in
theMplus syntax. Results fromModel A3 show that the R2 for
task performance was 0.217, that is, all the independent vari-
ables in the model together explained 21.7% of variance in
task performance.

Effect Size For a significant interaction, it is valuable to know
the effect size of the interaction effect, with Cohen’s (1988) f 2

recommended (Dawson, 2014). The effect size f 2 represents
the proportion of residual variance in the dependent variable
accounted for by the latent interaction, over and above what is
accounted for by the main effects and other control variables.
The effect size f 2 of the interaction term can be obtained with
the following formula (Cohen, 1988, p. 410; Dawson, 2014,
p. 14):

f 2 ¼ R2
2−R

2
1

1−R2
2

ð7Þ

where R2
2 and R2

1 are the variance of the dependent variable
explained in the models with and without the latent
interaction (Model A3 and Model A2), respectively. In
our example, R2

2 = 0.217 and R2
1 = 0.174. Hence, the change

in R2 is 0.043, and thus, inclusion of the latent interaction
accounted for an additional 4.3% of the variance in task per-
formance with an effect size f 2 = 0.055.

Step 4: Interpreting the Interaction Effect (Model 4)

The objective of Step 4 is to interpret the latent interaction
effect by conducting simple slope tests and probing the latent
interaction effects via two different figures. While this step
involves post-hoc analyses conducted only if an interaction
effect is statistically significant, researchers are encouraged
to specify the form of all interactions a priori in their
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hypotheses, and these tools then “test” the hypothesized forms
of interactions (Dawson, 2014). For example, when hypothe-
sizing that the positive relationship between X and Y is stron-
ger when Z is higher, one can further specify a boundary
condition that the positive relationship only exists when Z is
higher than 3 (on a 7-point scale). An alternative example is to
hypothesize a positive relationship between X and Ywhen Z is
higher than 5 (on a 7-point scale) and a negative relationship
when Z is lower than 2. Step 4 requires running Model A4,
which is a modified version of Model A3 in Step 3, in which
one removes the request for standardized outputs, and adds
estimation of simple main effects and a request for
bootstrapping the results.

Simple Slope Tests If the latent interaction effect estimated in
Step 3 using Model A3 is statistically significant, one can
conduct simple slope tests in a new model (Model A4) to
examine the statistical significance of the simple main effect
of X on Y at various levels of the moderator Z (Aiken &West,
1991). In our example, we examined homesickness moderat-
ing the relationship between job resources and task perfor-
mance. Based on Eq. 4, the relationship between job resources
and task performance can be expressed as follows:

TASKP ¼ γ1−ω12HOMESð Þ*JOBRES ð8Þ

By default in Mplus, the means of latent variables are set to
zero and the variances of exogenous variables are estimated.

Evaluate appropriateness of the measures 
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Fig. 2 Procedures for testing latent interactions with LMS and RCSLMS approaches (continued on next page)
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The value of one standard deviation of the moderator, in this
case homesickness, can be obtained by first labeling the esti-
mated variance of homesickness (varHS) and then creating a
new variable (stdHS) for the standard deviation of homesick-
ness and defining that as the square root of the variance of
homesickness using the MODEL CONSTRAINT option in
Mplus. For example (and as per Model A4),

HOMES varHSð Þ;

MODEL CONSTRAINT :

NEW stdHSð Þ;

stdHS ¼ SQRT varHSð Þ;

The common method for examining the simple main ef-
fects, as suggested by Aiken and West (1991), is to assess
these at two levels of the moderator by simply substituting
the values of mean plus 1 standard deviation and mean minus
1 standard deviation of homesickness into Eq. 8. Instead, to
provide greater detail, we estimate the simple main effects of
job resources on task performance at five levels of homesick-
ness as follows: (a) 2 standard deviations below the mean, (b)
1 standard deviation below the mean, (c) at the mean, (d) 1
standard deviation above the mean, and (e) 2 standard

For example, if the objective is to test a 3-

way interaction, then Model 3 should 

include all linear effects, three 2-way 

interactions, and one 3-way interaction; 

Model 3b should include linear effects 

and three 2-way interactions only.

If standardized outputs are not provided 

for the model (for example, standardized 

outputs are not available for 3-way 

interactions), for the model is (1 –

residual variance of Y/total variance of Y). 

Residual variance of Y can be found in 

outputs of Model 3/3b and total variance 

of Y can be found in outputs of Model 1.

Report change and effect size 

between Model 3 and Model 2 or 

between Model 3 and Model 3b.

Based on bias-corrected confidence intervals 

from bootstrapping.

Johnson-Neyman Figure in Excel file 

“Johnson Neyman Figure.xlsx”.

Standardized Main Effect Figure in Excel file 
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Note: 

Step 4
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Repeat 

Steps 2 & 

3 with 

RCSLMS

Run an SEM model Report results

Fig. 2 (continued)
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deviations above the mean.7 Estimating the conditional main
effects at five or more levels enables probing of the interaction
effects in a figure using the Johnson-Neyman approach as
described below. In order to substitute different levels of
homesickness into Eq. 8, in the Mplus syntax (Model A4),
we first labeled γ1 and ω12 in Eq. 8 as b1 and b3, and then
created new variables by using the MODEL CONSTRAINT
option. For example:

TASKP ON JOBRES b1ð Þ;
TASKP ON JRxHS b3ð Þ;
MODEL CONSTRAINT :

NEW Slope 2L Slope L Slope M Slope H Slope 2Hð Þ;
Slope 2L ¼ b1þ b3* −2*stdHSð Þ;
Slope L ¼ b1þ b3* −1*stdHSð Þ;
Slope M ¼ b1þ b3* 0*stdHSð Þ;
Slope H ¼ b1þ b3* 1*stdHSð Þ;
Slope 2H ¼ b1þ b3* 2*stdHSð Þ;

Then a statistical test was conducted for the simple main
effect of job resources on task performance at each specified
level of homesickness by estimating the CI of each simple
main effect using bootstrapping. Since Mplus does not allow
for bootstrapping with the MLR estimator, the ML estimator
is used instead. Note that both the MLR and ML estimators
give the same estimated parameters, and because
bootstrapping is used to estimate the standard errors of the
estimated parameters, there is no need to adjust the estimated
standard errors with the MLR estimator. The ML estimator is
specified by including “ESTIMATOR = ML;” under the
ANALYSIS command. We suggest generating 2000 boot-
strap samples by including “BOOTSTRAP = 2000;” under
the ANALYSIS command. Bias-corrected confidence inter-
vals (BCCI) are obtained by including “OUTPUT:

CINTERVAL(BCBOOTSTRAP);” under the OUTPUT
command. The results from the output file of Model A4 show
that when homesickness was one standard deviation below the
mean, the effect of job resources on task performance was
statistically significant (b = 0.463; p < 0.01; 95% CI [0.257,
0.771]). When homesickness was one standard deviation
above the mean, the effect of job resources on task perfor-
mance was not statistically significant (b = 0.144; p > 0.10;
95% CI [-0.044, 0.348]).

Plotting the Interaction Effect with the Johnson-Neyman
Technique For a moderator which is a continuous variable,
such as homesickness, the moderating effect can be displayed
graphically using the Johnson-Neyman technique (Johnson &
Neyman, 1936) which plots the unstandardized simple main
effects (Y-axis) at various levels of the moderator (X-axis). We
provide an Excel file in the supplementary files (Johnson
Neyman Figure.xlsx), which plots the unstandardized effects
of job resources on task performance at various levels of
homesickness as per Fig. 3. The entries in the highlighted cells
were the estimated standard deviation of homesickness (mod-
erator), the estimated simple main effects, and the correspond-
ing 95% BCCI that can be found under “New/Additional
Parameters” of the Mplus output file of Model A4. This
Excel file can be adapted by researchers using their own
Mplus output values. Draw a horizontal line at the value of
zero on the Y-axis; note where this line intercepts with the CI
(either the lower limit or the upper limit) and draw a vertical
line down to the X-axis. This indicates the boundary between
significant and nonsignificant regions. The region where the
horizontal line is outside the CI is significant, and the region
where the horizontal line is within the CI is nonsignificant.
Figure 3 reveals that the higher the level of homesickness, the
lower was the positive effect of job resources on task perfor-
mance. Figure 3 also shows that we have identified a bound-
ary condition for the effect of job resources on task perfor-
mance. That is, job resources only had a statistically signifi-
cant positive effect on task performance when the level of
homesickness was lower than 0.3 standard deviations above
the mean. However, one should interpret the level of the mod-
erator that defines the boundary conditions cautiously because
this is sample specific and sample size will affect the width of
the CIs and hence the boundary conditions.

Plotting the Standardized Effects at Various Levels of
Moderator While the graph using the Johnson-Neyman tech-
nique is superior (Fig. 3) because it provides substantially
more information, reviewers may still request the standard
graph plotting the simple main effects of the moderator at
one standard deviation above and below the mean. Hence,
we also plotted the standardized effects of job resources on
task performance at homesickness values of one standard de-
viation above and below the mean to illustrate the nature of the

7 However, these five levels are arbitrarily selected and if other levels (at least
five levels for a continuous variable because the confidence intervals are not
linear) of the moderator can be meaningfully identified, these more specific
levels should be used instead. An example is when the moderator is a directly
observed variable measured on a 5-point scale, then using 1, 2, 3, 4, and 5 as
the five levels may be more meaningful. Note that since the moderator is
mean-centered when converted into a latent variable before estimating the
latent interaction effects, each level of the moderator in a simple slope test
should be mean-centered as well. For example, suppose the mean of the mod-
erator Z is 3.25 on a 5-point scale, this mean should be subtracted from each of
the five levels of the moderator and the simple slope of the relationship be-
tween X and Y at Z equals 1 can be defined as the following under MODEL
CONSTRAINT:

Slope2L ¼ b1 þ b3* −2:25ð Þ; !1−3:25 ¼ −2:25:
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interaction effect (Fig. 4). The standardized coefficients can be
obtained from the output of Model A3. The results show that
the standardized form of Eq. 8 can be expressed as follows:

TASKP* ¼ 0:336−0:177*HOMES*
� �

*JOBRES* ð9Þ

where TASKP*, HOMES*, and JOBRES* are the standard-
ized values of TASKP, HOMES, and JOBRES, respec-
tively. We plotted two lines in Fig. 4. The first line was
plotted by substituting HOMES* with 1 and JOBRES*
with values from − 3 to 3, and the second line was
plotted by substituting HOMES* with − 1 and JOBRES* with
values from − 3 to 3. To facilitate this, we provide an Excel
file (Standardized Effects Figure.xlsx) in the supplementary
files that plots the standardized effects in Fig. 4. Researchers
can adapt this Excel file by inputting the values from their
Mplus output into the relevant highlighted boxes. Note that
this graph is more meaningful if the moderator is a dichoto-
mous variable. If the moderator is a continuous variable, one
should interpret this graph cautiously because the two levels
of moderator chosen may not meaningfully represent the sam-
ple (Dawson, 2014).

We next present Examples B to G covering a range of other
interactions researchers may wish to investigate.

Example B: Three-Way Interactions
(Models B3, B3b, and B4) Du et al. (2018) also hypothesized
that the moderating effect of homesickness was moderated by
emotional stability. The test of this hypothesis involves three
two-way interactions and one three-way interaction. For this
example, the measurement model in Step 1 (Model A1), and
the model with only linear effects in Step 2 (Model A2) are the
same as those in Example A described above; therefore, we do
not repeat these first two steps.

In Step 3, we added to Model A2 the three-way interac-
tion among job resources, homesickness, and emotional
stability, as well as the three two-way interactions, to pro-
duce Model B3. Since Mplus 8.4 does not provide stan-
dardized outputs for three-way interactions yet, the request
for standardized outputs on the OUTPUT command was
removed. Comparing the loglikelihood values between
Model A2 (L0 = − 23,457.537, c0 = 0.9780, and p0 = 147)
and Model B3 (L1 = − 23,450.593, c1 = 0.9739, and p1 =
151) resulted in TRd(df = 4) = 16.870 (p < 0.01), which in-
dicated that adding the three-way interaction and three
two-way interactions improved the model fit significantly.
Results from the output of Model B3 show that the effect
of the three-way interaction among job resources, home-
sickness, and emotional stability on task performance was
statistically significant (b = -0.430, p = 0.02). Following
Muthén (2012, p. 7), the standardized coefficient can be
estimated by dividing the unstandardized coefficient by the
standard deviation of the dependent variable and then

multiplying it by the standard deviations of all the compo-
nents of the interaction term. The standard deviations of
the latent variables can be obtained from the measurement
model in Model A1 and the unstandardized coefficient
from Model B3. Thus, the standardized effect of the
three-way interaction on task performance equaled to

−0:430*
ffiffiffiffiffiffiffiffiffiffiffi
0:160

p
*

ffiffiffiffiffiffiffiffiffiffiffi
0:144

p
*

ffiffiffiffiffiffiffiffiffiffiffi
0:765

p
ffiffiffiffiffiffiffiffiffiffiffi
0:126

p ¼ −0:161.

Since the R2 for the three-way interaction model is not
provided by Mplus, it is estimated by (1 − residual variance
of Y/total variance of Y) where residual variance of Y is ob-
tained fromModel B3 and total variance of Y fromModel A1.
Hence, the R2 for task performance in Model B3 is estimated
as (1− 0:094

0:126 ) = 0.254. In order to estimate the R2 change and
effect size Cohen’s f 2 attributable to the three-way interaction,
an additional model needs estimating without the three-way
interaction effect. This model (Model B3b) has all the linear
effects and three two-way interactions; the R2 for task perfor-
mance in this model is 0.220. The R2 change in task perfor-
mance attributable to the three-way interaction is (0.254 −
0.220) = 0.034 and Cohen’s f 2 = 0:034

1−0:254

� �
= 0.046.

To conduct Step 4, and following Dawson (2014, p. 5), four
different moderating effects with different combinations of high
and low levels of homesickness and emotional stability on the
job resources–task performance relationship were estimated for
the simple slope tests for the three-way interaction. The three-
way interaction also requires six pairwise comparisons for dif-
ferences between slopes. Although Dawson (2014, pp. 5–7)
provided the standard error for the simple slope tests and the
comparisons between slopes, formulae for those standard errors
are complicated and the test statistics likely have nonnormal
distributions. Hence, we suggest using bootstrapping to con-
duct the simple slope test and the comparisons between slopes.
Model B4 in the supplementary files shows the Mplus syntax
for conducting simple slope tests with bootstrapping using
LMS. As it took about 5 minutes to run Model B3, we ran
Model B4 with just five bootstrap samples (instead of the usual
2000 samples) to estimate the elapsed time. It took 17.25 mi-
nutes to run Model B4 and hence it is estimated that running
Model B4 with 2000 bootstrap samples may take up to 4 days.
Where researchers find this too long to run a model, we recom-
mend RCSLMS as an alternative approach to testing interaction
effects and illustrate this in Example C below.

Example C: Three-Way Interaction with RCSLMS (Models C2,
C3, C3b, and C4) Since RCSLMS has much reduced
computational demands compared to LMS, RCSLMS is
recommended for testing more complex interactions when
bootstrapping is required to conduct the simple slope test and
the comparisons between slopes. We next demonstrate how to
use RCSLMS to test for a three-way interaction. Identical to
Step 1 in LMS, Step 1 in RCSLMS is to conduct a CFA by
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estimating the measurement model with all items to assess
measurement quality. That was completed in Model A1 in
our numerical example. We estimated all subsequent models
in Example C with the Mplus demo version.

Step 2 of the RCSLMS approach was to create a new data
set to represent each variable using the simple average of item
scores (Example2.dat in the supplementary files). Then the
variance and Cronbach’s alpha for each variable were estimat-
ed with R. An initial model with only linear effects (Model
C2) was estimated to provide baseline fit indices against
which to evaluate the fit of models with latent interactions.
Thus, Model C2 was created by replacing each latent variable
in Model A2 with the simple average score as a single indica-
tor, fixing the factor loading to 1, and the residual variance to
(1 − reliability) times the variance of the variable. For exam-
ple, the simple average of the indicators for job resources was
labeled as SJobRes, which had a variance at 0.289 and a reli-
ability at 0.735. Hence, JOBRES was defined as:

JOBRES BY SJobRes@1; SJobRes@0:076585;

Since the variables are modeled as latent variables with
single indicators in RCSLMS, the variables will be centered
by default in Mplus. All the fit indices for Model C2 indicated
the model fitted the data perfectly. However, since the fit
indices are not sensitive to missing nonlinear effects
(Mooijaart & Satorra, 2009), we examine if the inclusion of
the latent interactions can improve model fit using the
loglikelihood values difference test.

Step 3 comprises estimating a model (Model C3) in which
the three two-way latent interactions and the three-way inter-
action are added to Model C2, which parallels the LMS pro-
cess via Model B3. Comparison of the loglikelihood values
between Model C3 and Model C2 resulted in TRd(df = 4) =
18.514 (p < 0.001), which indicated that adding the three two-
way interactions and the three-way interaction improved the
model fit significantly. Results of Model C3 were com-
parable with those of Model B3. The effects of the
interaction between job resources and homesickness,
and the three-way interaction among job resources,
homesickness, and emotional stability on task perfor-
mance, were -0.453 (p = 0.001) and -0.436 (p = 0.011),
respectively, from Model C3 and were -0.446 (p =
0.008) and -0.430 (p = 0.020), respectively from Model
B3. Latent variance of a variable in RCSLMS equals to
observed variance minus residual variance, which were
all obtained in Step 2. Thus, the standardized three-way
interaction effect on task performance equaled to

−0:436*
ffiffiffiffiffiffiffiffiffiffiffi
0:212

p
*

ffiffiffiffiffiffiffiffiffiffiffi
0:148

p
*

ffiffiffiffiffiffiffiffiffiffiffi
0:710

p
ffiffiffiffiffiffiffiffiffiffiffi
0:161

p ¼ −0:162.

The residual variance for task performance in Model C3
was 0.121. Hence, the R2 for task performance in Model C3 is

estimated as (1− 0:121
0:161 ) = 0.251. As before, estimation of the

additional model (Model C3b) with only the linear effects and
three two-way interactions, but not the three-way interaction
effect, was required to find the R2 change and effect size
Cohen’s f 2 attributable to the three-way interaction. R2 for
task performance in Model C3b was 0.223. The R2 change
in task performance brought by the three-way interaction is
(0.251 − 0.223) = 0.028 and Cohen’s f 2 = 0:028

1−0:251

� �
= 0.037.

Step 4 required conducting simple slope tests of the three-
way interaction and comparisons between slopes with Model
C4, which added the bootstrapping function toModel C3 with
2000 bootstrap samples to estimate the CIs. Whereas Model
C3 required 47 seconds to run, Model C4 took about 26 hours
to run. Results show that the relationships between job re-
sources and task performance were not statistically significant
when both homesickness and emotional stability were high
(b = -0.116, p > 0.10, 95% BCCI = [-0.435, 0.150]) and when
both homesickness and emotional stability were low (b =
0.283, p > 0.05, 95% BCCI = [-0.050, 0.613]). However, the
relationships between job resources and task performance
were statistically significant when homesickness was high
and emotional stability was low (b = 0.218, p < 0.05, 95%
BCCI = [0.008, 0.422]), and when homesickness was low
and emotional stability was high (b = 0.515, p < 0.01, 95%
BCCI = [0.262, 0.780]). Based on Dawson (2014), Jeremy
Dawson has provided Excel files on his personal web page
for probing two-way and three-way interactions (www.
jeremydawson.com/slopes.htm), which are also applicable
for results obtained from RCSLMS.

Other Models with More Complex
Interactions

In this section, analytical procedures for models with more
complex interactions are presented based on LMS. All analy-
ses should go through the 4-step procedure described above.
Note that Step1 (measurement model), Step 2 (model with
linear effects only), and Step 4 (bootstrapping and probing
with figures) remain the same when testing various nonlinear
effects; only the models for Step 3 vary and therefore will be
briefly discussed, with Examples D to G below representing a
range of interactions that researchers may want to investigate.
The tests for interactions should be based on theoretically-
derived hypotheses and here we posit possible interactions
for the sake of demonstration only.

Example D: Quadratic Effect (Model D3)

Besides moderating effects, U-shaped or inverted U-shaped
relationships representing quadratic effects are also commonly
examined in business and psychology studies (Dawson, 2014,
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Equation 7). LMS can be used to examine the quadratic effect
of a latent variable by simply creating a latent interaction term
with the latent variable itself. For example, a latent quadratic
term for job resources was defined in Model D3 under the
MODEL command with the statement “JRxJR | JOBRES
xwith JOBRES;”. Comparing the loglikelihood values be-
tween Model D3 and Model A2 gave TRd(df = 1) = 6.985
(p = 0.0082), indicating that adding the latent quadratic effect
made a statistically significant improvement to model
fit. The results showed that the regression coefficient
of JRxJR on TASKP (task performance), that is ω11,

was -0.286 (p < 0.05, β = − 0.124), and R2
2 = 0.212.

Comparing these with results of Model A2 showed the
latent quadratic effect of job resources accounted for an
additional 3.8% of the variance in task performance
with an effect size of f 2 = 0.048.

Example E: Moderated Quadratic Effect (Model E3)

The quadratic effect of job resources on task performance
might be moderated by homesickness. Thus, both the latent
interaction between job resources and homesickness, and that
between the quadratic term of job resources and homesick-
ness, were added to Model D3 to produce Model E3
(Dawson, 2014, Equation 8). Comparing the loglikelihood
value of Model E3 with that of Model A2 gave TRd(df =
3) = 11.584 (p < 0.01), suggesting that this model fits the data
significantly better than the model without latent interaction.
However, the moderating effect of homesickness on the cur-
vilinear relationship between job resources and task perfor-
mance was -0.034 (p = 0.903), which is not statistically sig-
nificant. TheR2 for task performance inModel E3 is estimated
as (1− 0:099

0:126 ) = 0.214. Calculation of the R2 change in task
performance brought by the moderated quadratic effect re-
quired estimation of Model E3b that dropped the moderated
quadratic effect from Model E3. The R2 for task performance
in Model E3b is also 0.214, the same as Model E3, indicating

that including the moderated quadratic effect explained no
additional variance in task performance.

Example F: Polynomial Regression (Model F3)

A simple extension of the quadratic effect is the polynomial
regression model shown in Eq. 1. Su et al. (2019) recently used
simulation to show that using LMS and RCSLMS to model
polynomial regression when examining congruence is superior
to the regression approach that ignores measurement errors. In
this polynomial regressionmodel (Model F3), the latent quadrat-
ic term of job resources, latent quadratic term of homesickness,
and the latent interaction between job resources and homesick-
ness were added to Model A2. Comparing the loglikelihood
value of Model F3 with that of Model A2 gave TRd(df = 3) =
13.476 (p = 0.0037), indicating that the inclusion of the latent
quadratic terms and the latent interaction improved the model fit
significantly. However, the results of Model F3 showed that
none of these additional terms had statistically significant effects
on task performance. We note a debate between researchers
about including quadratic terms. Some researchers (e.g.,
Cortina, 1993; Edwards, 2009) suggest that whenever an inter-
action effect is estimated, one should also include the quadratic
terms in the model such that the estimated interaction effect will
not include spurious effects from omitted quadratic terms. Yet
other researchers (e.g., Dawson, 2014) suggest that inclusion of
the quadratic terms is only essential when the correlation be-
tween X and Z is above 0.5 to provide a more conservative test
for the interaction effect. However, Su et al. (2019) found in
their simulation that when quadratic effects did not exist in the
population, inclusion of the quadratic terms in the model result-
ed in higher type I error for the quadratic effects and lower
power for testing the interaction effects; this was due to attenu-
ation in the estimates of the interaction effects. Hence, joining
with other researchers (e.g., Aiken & West, 1991; Cheung,
2009; Harring, Weiss, & Li, 2015; Su et al., 2019), we recom-
mend that the decision as to whether quadratic effects should be
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included or excluded in a model testing interaction effects
should be based on theory and related hypotheses.

Example G: Curvilinear Three-Way Interaction
(Model G3)

Finally, the moderating effect of homesickness on the curvi-
linear (quadratic effect) relationship between job resources
and task performance might also be moderated by emotional
stability, leading to a curvilinear three-way interaction
(Dawson, 2014, Equation 13). This final model, Model G3,
combined the three-way interaction and the quadratic effect of
job resources, and can be created by inclusion of a second
moderator W to the moderated quadratic effect model
(Model E3) discussed above. Specifically, the additional lin-
ear effect of W, two-way interactions of XW and ZW, three-
way interaction of XZW, and the moderated quadratic effects
of X 2W and X 2ZW were added to Model E3. Comparing the
loglikelihood value of Model G3 with that of Model A2
gave TRd(df = 8) = 19.758 (p < 0.05), indicating that the
model fits the data significantly better than the model
with only linear effects. Results of Model G3 showed
that the linear three-way interaction (b = -0.402,
p < 0.05) had statistically significant effects on task per-
formance. The R2 for task performance in Model G3 is esti-
mated as (1− 0:093

0:126 ) = 0.262; comparison of the R2 obtained in
Model E3 (which serves as Model G3b) gives an R2 change at
0.048 and Cohen’s f 2 = 0:048

1−0:262

� �
= 0.065.

Some Frequently Asked Questions
About Modeling Interactions with LMS
and RCSLMS

In this final section, we provide answers to questions that we
suspect might otherwise puzzle researchers and restrict their
ability to implement LMS and RCSLMS appropriately.

What Sample Size Is Required for LMS and RCSLMS
to Test Latent Interactions?

The appropriate sample size to test interactions using LMS or
RCSLMS depends on the complexity of the model and effect
size being tested. At a minimum, the sample size must be
larger than the number of estimated parameters; otherwise,
the model will be unidentified and no estimated parameters
will be provided. Mplus will provide an error message under
such circumstances. In this regard, RCSLMS requires a small-
er sample size than LMS because fewer parameters are esti-
mated. Simulation results in Table 3 show that, for both LMS
and RCSLMS, N = 400 is required to achieve adequate power
for testing a small interaction effect and N = 150 is re-
quired for testing a medium interaction effect. Although
in general N = 100 provides adequate power for testing a
large interaction effect for both LMS and RCSLMS, in
particular when α is 0.8 or higher, our simulation re-
sults also show that using RCSLMS with a small sam-
ple size yields inflated type I error rates. Hence, our overall
recommendation is to use a minimum sample size of 150
when testing latent interactions.

How Can the Required Computing Resources
Be Reduced?

A common criticism of LMS is that it takes a long time to
estimate the model parameters (e.g., Kelava et al., 2011; Klein
& Moosbrugger, 2000; Sardeshmukh & Vandenberg, 2017).
With ongoing improvements in computing speed, this concern
should gradually diminish. Among the models we demon-
strated, Model G3 is the most complex, containing eight qua-
dratic and interaction terms; the elapsed time for that model
was about 16 minutes on a desktop computer with an Intel
Core i7-6700T CPU @ 2.80GHz and 16GB RAM. While
elapsed time may be acceptable for a single model, combining
bootstrapping and complex models with LMS may take a
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much longer time to run. There are a few tricks one can use to
shorten the elapsed time. Our first suggestion is to increase the
number of processors for Mplus by spec i fy ing
“PROCESSORS = 8;” under the ANALYSIS command if
the computer has eight core processors. While most modern
computers have multiple processors (normally eight), Mplus
uses only one processor by default. The above syntax instructs
Mplus to use multiple processors, shortening the elapsed time
by more than 50%.

The second trick is relevant to highly complex models; for
these, use RCSLMS to estimate the parameters instead of a
full model with all indicators. Multiple simulation studies
(Cheung & Lau, 2017; Su et al., 2019), including those in this
teaching note, find that RCSLMS provides similar results to
those from LMS. Further, unlike PI, RCSLMS does not have
the problem of item parceling that gives different results de-
pending on how the items are combined into parcels.

Finally, LMS adopts numerical integration to approximate
the mixture of multivariate normal distributions. The most
commonly encountered warning and error messages when
running LMS with Mplus are “this model requires a large
amount of memory and disk space. It may need a substantial
amount of time to complete” and “there is not enoughmemory
space to run Mplus on the current input file.” The higher the
number of integration points, the longer elapsed time it will
take and the more accurate the results are. While the Mplus
default number of integration points is 15, one may try to
reduce the elapsed time by using a smaller number of integra-
tion points by specifying, for example, “INTEGRATION =
8;” under the ANALYSIS command. Researchers can then
gradually increase the number of integration points, although
usually the results show minimal change at 8 or more integra-
tion points. However, we do not recommend researchers use
small numbers of integration points, such as 4 as suggested by
Preacher, Zhang, and Zyphur (2016), as doing so will usually
lead to nonconvergent solutions or inaccurate estimates.

What Should I Do with Missing Data?

It is not uncommon to have missing values in the data. An
important first step is to identify the nature of the missingness.
There are three broad categories of missingness, missing
completely at random (MCAR), missing at random (MAR,
where missingness is a function of observed variables), and
missing not at random (MNAR; Rubin, 1976). One can ex-
amine if the missing values are due toMCAR by using Little’s
MCAR test (Little, 1988) with SPSS or R.8 Analysis can pro-
ceed if data are MCAR or MAR, and the total amount of
missing values is less than 10%. When missing values are

defined, Mplus by default uses full information maximum
likelihood (FIML) estimation, which is based on the
loglikelihood value of individual observations instead of the
sample covariance matrix. Interested readers are referred to
Enders (2001) and Newman (2014). Missing values can be
defined using the MISSING option under the VARIABLE
command. For example, if the number 99 is used to represent
missing values for the four items x1 to x4 for measuring X,
then the following option can be included to define the miss-
ing value:

MISSING ARE x1−x4 99ð Þ;

When adopting the RCSLMS approach, average scale
scores should be calculated based on all available values for
a variable. If there are values for three out of four indicators for
a variable, then the three values should be averaged to repre-
sent the value of the variable. If a variable has all indicator
values missing, then the value of that variable will be missing.
When data are MNAR or the total amount of missing values is
more than 10%, one or more auxiliary variables can be used to
convert MNAR toMAR (Graham, 2003; Newman, 2014). An
auxiliary variable is a variable that correlates with the substan-
tive variable that has missing data (Collins, Schafer, & Kam,
2001). This can be done by using the AUXILIARY option
under the VARIABLE command. For example, if aux1 and
aux2 are used as auxiliary variables, then add the following
line in the Mplus syntax:

VARIABLE : AUXILIARY ¼ mð Þ aux1 aux2;

How Should I Test for Interaction Effects
When There Are Multiple Independent Variables
or Multiple Moderators?

A research design may have multiple independent variables,
such as X1 and X2, in a study all being moderated by a mod-
erator Z. In this case, all interaction effects should be tested
simultaneously in one model. That is,

Y ¼ αþ γ1X 1 þ γ2X 2 þ γ3Z þ ω13X 1Z þ ω23X 2Z ð10Þ

If one instead specifies multiple models, each including
only one moderating effect, the estimated interaction effects
may be biased due to the omitted terms in the equations.
Similarly, if there is one independent variable X and multiple
moderators Z1 and Z2, all the interactions should be tested
simultaneously in one model such as the following:

Y ¼ αþ γ1X þ γ2Z1 þ γ3Z2 þ ω12XZ1 þ ω13XZ2 ð11Þ

An additional consideration, suggested by Dawson (2014,
p. 15), is that when multiple moderators are involved, it is
probable that the moderators will interact with each other as

8 Little’s MCAR test is also available in the R package –BaylorEdPsych by A
Alexander Beaujean at https://www.rdocumentation.org/packages/
BaylorEdPsych/versions/0.5.
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well. If one suspects that the two moderators also interact with
each other, then a three-way interaction model is required for
the analysis, which can be tested using Model B3 (using
LMS) or Model C3 (using RCSLMS) as described above.

What Should I Do with Control Variables?

Many business and psychological studies include one or more
control variables. These control variables are treated as exog-
enous variables in SEM and should be included in all models
in the 4-step procedure. In order to ascertain the contributions
of the linear effects and interaction effect of X and Z in
explaining the variance of Y beyond the control variables, an
additional model that includes only the control variables as
exogenous variables (Model 2a) can be estimated before esti-
mating Model 2. The R2 change between Model 2a with only
control variables and Model 2 will show the additional
proportion of variance in Y that can be explained by X and Z
beyond the control variables, and the R2 change between
Model 2 and Model 3 will show the additional proportion of
variance in Y that can be explained byXZ. Readers are referred
to Becker (2005) and Bernerth and Aguinis (2016) for recom-
mendations on the appropriate use and selection of control
variables, and then reporting and interpreting results of anal-
yses with control variables.

Do LMS and RCSLMS Work with Nested Data
and Multilevel Models?

All examples in this teaching note assume that all data are at
one level; yet quite frequently, data in business and psycho-
logical studies collected at a lower level are nested within
higher level units. The examples provided here can easily be
tailored for nested data by specifying the grouping variable by
including “CLUSTER = grouping variable name;” under the
VARIABLE command and “TYPE = COMPLEX
RANDOM;” under the ANALYSIS command so that the
standard errors of the estimated parameters are adjusted for
nonindependence. When latent interactions are hypothesized
at multiple levels, the same procedure described in this teach-
ing note applies. Cross-level moderations are not discussed in
this teaching note because normally no latent interaction term
is required. Recently, Preacher et al. (2016) demonstrated an
Mplus syntax using latent interactions to examine cross-level
moderations. Nevertheless, modeling latent interaction effects
at multiple levels requires extensive computing resources and
hence the models do not always converge. Readers should
note that bootstrapping does not normally work for nested
data or multilevel data because the number of level 1 units
within each level 2 unit cannot be controlled. Currently,
Mplus 8.3 and 8.4 allow for bootstrapping with nested data,
with the bootstrap procedure implemented at level 2 units
(such as teams). Since sampling is conducted at level 1 units

(such as individuals) in many business and psychological
studies, this approach is not recommended. Instead, for mul-
tilevel models, we recommend using the Monte Carlo simu-
lation approach within Mplus to find the CI of estimated pa-
rameters. Interested readers are referred to Preacher and Selig
(2012).

Do LMS and RCSLMSWork with Moderated-Mediation
Models?

Although the discussions and examples in this teaching note
are about moderation and curvilinear relationships, the Mplus
syntax provided in the supplementary files can be easily ex-
tended to estimating moderated-mediation effects by multi-
plying the moderating effects with the additional path coeffi-
cients using the MODEL CONSTRAINT option. Cheung and
Lau (2017) have demonstrated the procedure for testing mod-
erated mediation with LMS using Mplus, while Sardeshmukh
and Vandenberg (2017) have provided Mplus syntax for esti-
mating six frequently examined moderated-mediation models
with LMS. Although they commented that LMS may not be
applicable to complex moderation and mediation models
(Sardeshmukh & Vandenberg 2017, p. 742), our examples
reveal that LMS with Mplus can handle complex models.
The Mplus syntax and output files for models in the four-
step procedure using both LMS and RCSLMS, based on the
example in Cheung and Lau (2017), and the data file
Example3.dat are also provided in the supplementary files
(Models H and I respectively). The Excel file for plotting the
Johnson-Neyman graph can be used directly by relabeling the
Y-axis to “indirect effect of X on Y through M,” instead of the
values of Y. The Excel file for plotting the standardized effects
can also be adopted to plot the conditional standardized indi-
rect effects by substituting the main effect in the file with the
standardized indirect effect (a1*b in the sample output for
Model 3) and substituting the interaction effect with the prod-
uct of the interaction effect and the mediating path (a3*b in the
sample output for Model 3).

Conclusion

This teaching note contributes to the literature testing latent
interactions in several ways. First, we started our teaching note
with a brief explanation highlighting how LMS avoids the
complexities of PI in constructing a latent interaction term,
with LMS estimating latent interaction effects from their un-
derlying latent variables by matrix multiplications. This
removes the requirement to create products of indicators to
“measure” the latent interaction and therefore simultaneously
avoids the need to derive complicated nonlinear constraints.
Second, we presented simulation results to demonstrate how
LMS and RCSLMS outperform MMR based on a general
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latent interaction model, instead of more specific models such
as the moderated-mediation model (Cheung & Lau, 2017) and
the polynomial regression model (Su et al., 2019). Third, we
went beyond previous simulation studies to demonstrate that
RCSLMS is robust for testing latent interactions of constructs
with unequal factor loadings. Fourth, we demonstrated com-
prehensive processes with numerical examples for utilizing
LMS to test for a range of latent interaction effects and
RCSLMS to test for three-way latent interactions. The recom-
mended 4-step procedure resolves many previously-raised
problems in implementing LMS, such as evaluating model
fit for models with latent interactions, estimating standardized
coefficients, and conducting simple slope tests. The 4-step
procedure starts by evaluating measurement quality using
CFA in Step 1; establishing baseline fit indices with the model
without latent interactions in Step 2; testing the latent interac-
tion effects, and estimating standardized coefficients and the
effect size in Step 3; and finally, conducting simple slope tests
and probing the interaction effects using figures in Step 4. We
have provided separate Excel files that facilitate the calcula-
tion of loglikelihood values difference for estimation of model
fit and produce two types of figures for probing interaction
effects. We also demonstrated how simple slope tests can be
conducted using bootstrapping, instead of relying on a com-
plicated formula to estimate the standard errors of the slopes.
Finally, we provided sample Mplus syntax and brief explana-
tions for estimating more complex models, including those
with three-way interactions, quadratic effects, moderated qua-
dratic effects, moderated three-way interactions, and moder-
ated mediation. A narrated PowerPoint file is provided with
the supplementary materials to further support implementa-
tion of LMS and RCSLMS.

Limitations and Future Directions The simulations reported in
this teaching note used simulated data based on normal distri-
butions for both the latent variables and indicators. Klein and
Moosbrugger (2000) found, in their simulation study, that
LMS is robust in testing for interaction effects when the var-
iables moderately deviate from the normal distribution as-
sumption. Similarly, Cham, West, Ma, and Aiken (2012)
found that LMS performed well when the distributions of
variables were normal or symmetric with excess kurtosis of
less than 1. Future studies are required to examine the perfor-
mance of LMS when data are not normally distributed, espe-
cially under highly nonnormal conditions.

Additionally, the simulations in this teaching note were
based on the simple interaction model shown in Eq. 4. While
this is the most commonly studied model in previous simula-
tions that examined the effectiveness of LMS, other simulations
inmoderated-mediation (Cheung&Lau, 2017) and polynomial
regression (Su et al., 2019) have also been conducted to dem-
onstrate the accuracy of LMS and RCSLMS in testing latent
interactions. Future simulation research is required to

investigate if the performance of LMS and RCSLMS can be
generalized to models with other nonlinear effects, such as
models with quadratic terms. Similarly, there is an urgent need
to examine whether the problems associated with MMR in
testing for two-way interaction effects identified in this study
also occur when MMR is used to analyze equations with qua-
dratic terms and three-way interactions.

To summarize, efforts to identify appropriate methods to
examine latent interactions can be traced back almost four de-
cades to when Kenny and Judd (1984) first suggested the early
PI approach. Meanwhile, LMS has been developed for almost
two decades. Despite most empirical researchers recognizing
the problems of measurement errors in estimating relationships
among variables, and thus using SEM with latent variables in
estimating linear effects, typically when estimating moderating
effects, they turn to regression-based approaches such as MMR
that ignoremeasurement errors.Multiple simulation studies (for
example, Cheung & Lau, 2017), together with the simulation
results reported in this teaching note, have shown that ignoring
measurement errors when estimating moderating effects will
lead to seriously biased estimates and confidence intervals.
Hence, results of significance tests may be flawed and any
theoretical developments and practical recommendations are
similarly likely to be erroneous. Therefore, we recommend fu-
ture researchers follow the 4-step procedure outlined in this
teaching note to estimate moderating and quadratic effects of
latent variables with LMS.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10869-020-09717-0.
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