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Abstract Many theories in management, psychology,

and other disciplines rely on moderating variables: those

which affect the strength or nature of the relationship

between two other variables. Despite the near-ubiquitous

nature of such effects, the methods for testing and inter-

preting them are not always well understood. This article

introduces the concept of moderation and describes how

moderator effects are tested and interpreted for a series of

model types, beginning with straightforward two-way

interactions with Normal outcomes, moving to three-way

and curvilinear interactions, and then to models with non-

Normal outcomes including binary logistic regression and

Poisson regression. In particular, methods of interpreting

and probing these latter model types, such as simple slope

analysis and slope difference tests, are described. It then

gives answers to twelve frequently asked questions about

testing and interpreting moderator effects.

Keywords Moderation � Interactions � Simple slopes �
Regression

This paper is the eighth in this journal’s Method Corner

series. Previous articles have included topics encountered

by many researchers such as tests of mediation, longitu-

dinal data, polynomial regression, relative importance of

predictors in regression models, common method bias,

construction of higher order constructs, and most recently

combining structural equation modeling with meta-analysis

(c.f., Johnson et al. 2011; Landis 2013). The present article

is designed to complement these valuable articles by

explaining many of the issues surrounding one of the most

common types of statistical model found in the manage-

ment and organizational literature: moderation, or interac-

tion effects.

Life is rarely straightforward. We may believe that

exercising will help us to lose weight, or that earning more

money will enable us to be happier, but these effects are

likely to occur at different rates for different people—and

in the latter example might even be reversed for some.

Management research, like many other disciplines, is

replete with theories suggesting that the relationship

between two variables is dependent on a third variable; for

example, according to goal-setting theory (Locke et al.

1981), the setting of difficult goals at work is likely to have

a more positive effect on performance for employees who

have a higher level of task ability; while the Categoriza-

tion-Elaboration Model of work group diversity (van

Knippenberg et al. 2004) predicts that the effect of diver-

sity on the elaboration of information within a group will

depend on group members’ affective and evaluative reac-

tions to social categorization processes.

Many more examples abound; almost any issue of a

journal containing quantitative research will include at

least one article which tests what is known as moderation.

In general terms, a moderator is any variable that affects

the association between two or more other variables;

moderation is the effect the moderator has on this associ-

ation. In this article I first explain how moderators work in

statistical terms, and describe how they should be tested

and interpreted with different types of data. I then provide

answers to twelve frequently asked questions about

moderation.
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Testing and Interpreting Moderation in Ordinary Least

Squares Regression Models

Moderation in Statistical Terms

The simplest form of moderation is where a relationship

between an independent variable, X, and a dependent var-

iable, Y, changes according to the value of a moderator

variable, Z. A straightforward test of a linear relationship

between X and Y would be given by the regression equation

of Y on X:

Y ¼ b0 þ b1X þ e ð1Þ

where b0 is the intercept (the expected value of Y when

X = 0), b1 is the coefficient of X (the expected change in

Y corresponding to a change of one unit in X), and e is the

residual (error term). The coefficient b1 can be tested for

statistical significance (i.e., whether there is evidence of a

non-zero relationship between X and Y) by comparing the

ratio of b1 to its standard error with a known distribution

(specifically, in this case, a t-distribution with n - 2

degrees of freedom, where n is the sample size).

For moderation, this is expanded to include not only the

moderator variable, Z, but also the interaction term XZ

created by multiplying X and Z together. This is called a

two-way interaction, as it involves two variables (one

independent variable and one moderator):

Y ¼ b0 þ b1X þ b2Z þ b3XZ þ e ð2Þ

This interaction term is at the heart of testing moderation.

If (and only if) this term is significant—tested by comparing

the ratio b3 to its standard error with a known distribution—

we can say that Z is a statistically significant moderator of the

linear relationship between X and Y. The coefficients b1 and

b2 determine whether there is any main effect of X or Z,

respectively, independent of the other, but it is only b3 that

determines whether we observe moderation.

Testing for Two-Way Interactions

Due to the way moderation is defined statistically, testing for

a two-way interaction is straightforward. It simply involves

an ordinary least squares (OLS) regression in which the

dependent variable, Y, is regressed on the interaction term

XZ and the main effects X and Z.1 The inclusion of the main

effects is essential; without this, the regression equation (Eq.

(2) above) would be incomplete, and the results cannot be

interpreted. It is also possible to include any control variables

(covariates) as required.

The first step, therefore, is to ensure the interaction term

can be included. In some software (e.g., R) this can be done

automatically within the procedure, without needing to

create a new variable first. However, with other software

(e.g., SPSS) it is not possible to do this within the standard

regression procedure, and so a new variable should be

calculated. Example syntax for such a calculation is shown

within the Appendix.

An important decision to make is whether to use the

variables X and Z in their raw form, or to mean-center (or

z-standardize) them before starting the process. In the vast

majority of cases, this makes no difference to the detection of

moderator effects; however, each method confers certain

advantages in the interpretation of results. A fuller discussion

in the merits of centering and z-standardizing variables can

be found later in the article; I will assume, for now, that all

continuous predictors (including both independent variables

and moderators; X and Z in this case) will be mean-cen-

tered—i.e., the mean of the variable will be subtracted from

it, so the new version has a mean of zero. Categorical mod-

erator variables are discussed separately later.

Whatever the decision about centering, it is crucially

important that the interaction term is calculated from the

same form of the main variables that are entered into the

regression; so if X and Z are centered to form new variables

Xc and Zc, then the term XZ is calculated by multiplying Xc

and Zc together (this interaction term is then left as it is,

rather than itself being centered). The dependent variable,

Y, is left in its raw form. An ordinary regression analysis

can then be used with Y as the dependent variable, and Xc,

Zc, and XZ as the independent variables.

For an example, let us consider a dataset of 200 employees

within a manufacturing company, with job performance

(externally rated) as the dependent variable. We hypothesize

that the relationship between training provided and perfor-

mance will be stronger among employees whose roles have

greater autonomy. Using PERFORM, TRAIN, and AUTON

to denote as the variables job performance, training provi-

sion, and autonomy, respectively, we would first create

centered versions of TRAIN and AUTON, then create an

interaction term (which I denote by TRAXAUT) by multi-

plying together the two centered variables, and then run the

regression. Syntax for doing this in SPSS is in the Appendix.

In this example, the (unstandardized) regression coeffi-

cients found may be as follows:

PERFORM ¼ 3:20 þ 0:62 � TRAINc þ 0:21 � AUTONc

þ 0:25 � TRAXAUT

In order to determine whether the moderation is

significant, we simply test the coefficient of the interaction

1 This test of moderation involves the same assumptions as does any

‘‘ordinary least squares’’ (OLS) regression analysis—i.e., residuals

are independent and Normally distributed, and their variance is not

related to predictors—and for most of this article I will assume this to

be the case without further comment; I will deal separately with non-

Normal outcomes later.
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term, 0.25; most software will do this automatically.2 In our

example, the coefficient has a standard error of 0.11, and

therefore p = 0.02; the moderation effect is significant.

Some authors recommend that the interaction term is

entered into the regression in a separate step. This is not

necessary for the purposes of testing the interaction;

however, it allows the computation of the increment in R2

due to the interaction term alone. However, for the

remainder of the article I will assume all terms are entered

together unless otherwise stated, and will comment more

on hierarchical entry as part of the frequently asked ques-

tions at the end of the article.

Interpreting Two-Way Interaction Effects

The previous example gave us the result that the associa-

tion between training and performance differs according to

the level of autonomy. However, it is not entirely clear how

it differs. The positive coefficient of the interaction term

suggests that it becomes more positive as autonomy

increases; however, the size and precise nature of this

effect is not easy to divine from examination of the coef-

ficients alone, and becomes even more so when one or

more of the coefficients are negative, or the standard

deviations of X and Z are very different.

To overcome this and enable easier interpretation, we

usually plot the effect so we can interpret it visually. This is

usually done by calculating predicted values of Y under

different conditions (high and low values of the X, and high

and low values of Z) and showing the predicted relation-

ship (‘‘simple slopes’’) between the X and Y at these dif-

ferent levels of Z. Sometimes we might use important

values of the variables to represent high and low values; if

there is no good reason for choosing such values, a com-

mon method is to use values that are one standard deviation

above and below the mean.

In our example above, the standard deviation of TRAINc

is 1.2, and the standard deviation of AUTONc is 0.9. The

mean of both variables is 0, as they have been centered.

Therefore, the predicted value of PERFORM at low values

of both TRAINc and AUTONc is given by inserting these

values into the regression equation shown earlier:

3:2þ 0:62 � �1:2ð Þ þ 0:21 � �0:9ð Þ þ 0:25

� �1:2 � �0:9ð Þ ¼ 2:54

Predicted values of PERFORM at other combinations of

TRAINc and AUTONc can be calculated similarly.

However, various online resources can be used to do

these calculations and plot the effects simultaneously: for

example, www.jeremydawson.com/slopes.htm.

Figure 1 shows the plot of this effect created using a

template at this web site. It demonstrates that the rela-

tionship between training and performance is always

positive, but it is far more so for employees with greater

autonomy (the dotted line) than for those with low auton-

omy (the solid line). Some researchers choose to use three

lines, the additional line indicating the effect at average

values of the moderator. This is equally correct and may be

found preferable by some; however, in this article I use

only two lines for the sake of consistency (when advancing

to three-way interactions, three lines would become

unwieldy).

This may be sufficient for our needs; we know that the

slopes of the lines are significantly different from each

other (this is what is meant by the significant interaction

term; Aiken and West 1991), and we know the direction of

the relationship. However, we may want to know more

about the specific relationship between training and per-

formance at particular levels of autonomy, so for example

we could ask the question: for employees with low

autonomy, is there evidence that training would be bene-

ficial to their performance? This can be done by using

simple slope tests (Cohen et al. 2003).

Simple slope tests are used to evaluate whether the

relationship (slope) between X and Y is significant at a

particular value of Z. To perform a simple slope test, the

slope itself can be calculated by substituting the value of Z

into the regression equation, i.e., the slope is b1 ? b3Z, and

the standard error of this slope is calculated by
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Fig. 1 Moderating effect of autonomy on the training provision–job

performance relationship (two-way interaction with continuous

moderator)

2 Technically, the test is to compare the ratio of the coefficient to its

standard error with a t-distribution with 196 degrees of freedom: 196

because it is 200 (the sample size) minus the number of parameters

being estimated (four: three coefficients for three independent

variables, and one intercept).
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SES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s11 þ Z2s33 þ 2Zs13

p

ð3Þ

where s11 and s33 are the variances of the coefficients b1

and b3, respectively, and s13 is the covariance of the two

coefficients. Most software does not give these variances

and covariances automatically, but will have an option to

include it in the output of a regression analysis.3 The

significance of a simple slope is then tested by comparing

the ratio of the slope to its standard error, i.e.,

b1 þ b3Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s11 þ Z2s33 þ 2Zs13

p ð4Þ

with a t-distribution with n - k – 1 degrees of freedom,

where k is the number of predictors in the model (which is

three if no control variables are included).

An alternative, indirect method for evaluating simple

slopes uses a transformation of the moderating variable

(what Aiken and West 1991, call the ‘‘computer’’ method).

This relies on the interpretation of the coefficient b1 in

Eq. (2): it is the relationship between X and Y when Z = 0;

i.e., if this coefficient is significant then the simple slope

when Z has the value 0 is significant. Therefore, if we were

to transform Z such that the point where we wish to eval-

uate the simple slope has the value 0, and recalculate the

interaction term using this transformed value, then a new

regression analysis using these terms would yield a coef-

ficient b1 which represents that particular simple slope and

tests its significance. In practice, if the value of Z where we

want to evaluate the simple slope is Zss, we would create

the transformed variable Zt = Z - Zss, create the new

interaction term XZt, and enter the terms X, Zt, and XZt into

a new regression. This is often more work than the method

previously described; however, this transformation method

becomes invaluable for probing more complex interactions

(described later in this article).

Again, online resources exist which make it easy to test

simple slopes, including at www.jeremydawson.com/

slopes.htm, and via specialist R packages such as ‘‘pequod’’

(Mirisola and Seta 2013). However, this sometimes results

in researchers using simple slope tests without much

thought, and using arbitrary values of the moderator such as

one standard deviation above the mean (the ‘‘pick-a-point’’

approach; Rogosa 1980). Going back to the earlier example,

it may be tempting to evaluate the significance of the simple

slopes plotted, which are one standard deviation above and

below the mean value of autonomy (3.7 and 1.9, respec-

tively). If we do this for a low value of autonomy (1.9), we

find that the simple slope is not significantly different from

zero (gradient = 0.40, p = .06). However, if we were to

choose the value 2.0 instead of 1.9—which is probably

easier to interpret—we would find a significant slope (gra-

dient = 0.42, p = .04). Therefore, the findings depend on

an often arbitrary choice of values, and in general it would

be better to choose meaningful values of the moderator at

which to evaluate these slopes. If there are no meaningful

values to choose, then it may be better that such a simple

slope test is not conducted, as it is probably unnecessary. I

expand on this point in the frequently asked questions later

in this article.

One approach that is sometimes used to circumvent this

arbitrariness is Johnson–Neyman (J–N) technique (Bauer

and Curran 2005). This approach includes different meth-

ods for describing the variability, or uncertainty, about the

estimates produced by the regression, rather than simply

using hypothesis testing to examine whether the effect is

different from zero or not. This includes the construction of

confidence bands around simple slopes: a direct extension

of the use of confidence intervals around parameters such

as correlations or regression coefficients. More popular,

though, is the evaluation of regions of significance (Aiken

and West 1991). These seek to identify the values of Z for

which the X–Y relationship would be statistically signifi-

cant. This can be helpful in understanding the relationship

between X and Y, insomuch as it indicates values of the

moderator at which the independent variable is more likely

to be important; however, it still needs to be interpreted

with caution. In our example, we would find that the

relationship between training and job performance would

be significant for any values of autonomy higher than 1.94.

There is nothing special about this value of 1.94; it is

merely the value, with this particular dataset, above which

the relationship would be found to be significant. If the

sample size was 100 rather than 200 the value would be

2.58, and if the sample size was 300, the value would be

1.72. Thus the size of the region of significance is depen-

dent on the sample size (just as larger sample sizes are

more likely to generate statistically significant results), and

the boundaries of the region do not represent estimates of

any meaningful population parameters. Nevertheless, if

interpreted correctly the region of significance is of greater

use than simple slope tests alone. I do not reproduce the

tests behind the regions of significance approach here, but

an excellent online resource for this testing is available at

http://quantpsy.org/interact/index.html.

Multiple Moderators

Of course, even a situation of an X–Y relationship moder-

ated by a single variable is somewhat simplistic, and very

often life is more complicated than that. In our example,

3 Note that the variance of a coefficient can be taken from the

diagonal of the coefficient covariance matrix, i.e., the variance of a

coefficient with itself; alternatively, it can be calculated by squaring

the standard error of that coefficient.
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the relationship between training provided and job perfor-

mance is moderated by autonomy, but it may also be

moderated by experience: e.g., younger workers may have

more to learn from training. Moreover, the moderating

effects of experience may itself depend on autonomy; even

if the worker is new, they may not be able to transfer the

training to their job performance if they have little auton-

omy, but if they have a very autonomous role and are

inexperienced, the effects of training may be exacerbated

beyond that predicted by either moderator alone.

Statistically, this is represented by the following exten-

sion to Eq. (2) from earlier in this article:

Y ¼ b0 þ b1X þ b2Z þ b3W þ b4XZ þ b5XW

þ b6WZ þ b7XZW þ e ð5Þ

where W is a second moderator (experience in our exam-

ple). Importantly, this involves the main effects of each of

the three predictor variables (the independent variable and

the two moderators) and the three two-way interaction

terms between each pair of variables as well as the three-

way interaction term. The inclusion of the two-way inter-

actions is crucial, as without these (or the main effects) the

results could not be interpreted meaningfully. As before,

the variables can be in their raw form, or centered, or

z-standardized.

The significance of the three-way interaction term (i.e.,

the coefficient b7) determines whether the moderating

effect of one variable (Z) on the X–Y relationship is itself

moderated by (i.e., dependent on) the other moderator, W.

If it is significant then the next challenge is to interpret the

interaction. As with the two-way case, a useful starting

point is to plot the effect. Figure 2 shows a plot of the

situation described above, with the relationship between

training provision and job performance moderated by both

autonomy and experience.4 This plot reveals a number of

the effects mentioned. For example, the effect of training

on performance for low-autonomy workers is modest

whether the individuals are high in experience (slope 3;

white squares) or low in experience (slope 4; black

squares). The effect is somewhat larger for high autonomy

workers who are also high in experience, but the effect is

greatest for those who are low in experience and have

highly autonomous jobs.

Following the plotting of this interaction, however, other

questions may arise. Is training still beneficial for low-

autonomy workers? For more experienced workers spe-

cifically, does the level of autonomy affect the relationship

between training provision and job performance? These

questions can be answered either using simple slope tests

(in the case of the former example), or slope difference

tests (in the case of the latter).

Simple slope tests for three-way interactions are very

similar to those for two-way interactions, but with more

complex formulas for the test statistics. At given values of

the moderators Z and W, the test of whether the relation-

ship between X and Y is significant uses the test statistic:

where b1, b4, etc. are the coefficients from Eq. (6), and s11,

s14, etc. are the variances and covariances, respectively, of

those coefficients. This test statistic is compared with a
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Fig. 2 Moderating effect of autonomy and experience on the training

provision-job performance relationship (three-way interaction with

continuous moderators)

b1 þ b4Z þ b5W þ b7ZW


s11 þ Z2s44 þW2s55 þ Z2W2s77 þ 2 Zs14 þWs15 þ ZWs17 þ ZWs45 þ Z2Ws47 þ ZW2s57ð Þ
p ð6Þ

4 Template for plotting such effects, along with the simple slope and

slope difference tests described later are available at www.jeremy

dawson.com/slopes.htm.
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t-distribution with n – k - 1 degrees of freedom, where

k is the number of predictors in the model (which is seven

if no control variables are present).

This can be evaluated at any particular values of Z and

W; as with two-way interactions, though, the significance

will depend on the precise choice of these values, and so

unless there is a specific theoretical reason for choosing

values the helpfulness of the test is limited. For example,

you may choose to examine whether training is beneficial

for workers with 10 years’ experience and an autonomy

value of 2.5; however, this does not tell you what the sit-

uation would be for workers with, say, 11 years’ experi-

ence and autonomy of 2.6, and so unless the former

situation is especially meaningful, it is probably too spe-

cific to be particularly informative. Likewise regions of

significance can be calculated for these slopes (Preacher

et al. 2006), but the same caveats as described for the two-

way case apply here also.

More useful sometimes is a slope difference test: a test

of whether the difference between a pair of slopes is sig-

nificant (Dawson & Richter, 2006). For example, given an

employee with 10 years’ experience, does the level of

autonomy make a difference to the association between

training and job performance? (This is the difference

between slopes 1 and 3 in Fig. 2). In the case of two-way

interactions there is only one pair of slopes; the signifi-

cance of the interaction term in the regression equation

indicates whether or not these are significantly different

from each other. For a three-way interaction, though, there

are six possible pairs of lines, and there are six different

formulas for the relevant test statistics, shown in Table 1.

Four of these rely on specific values of one or other

moderator (e.g., 10 years’ experience in our example), and

as such the result may also vary depending on the value

chosen—although as they are not dependent on the value of

the other moderator this is a lesser problem than with

simple slope tests. The other two—situations where both

moderators vary—do not depend on the values of the

moderators at all, and as such are ‘‘purer’’ tests of the

nature of the interaction. For example, is training more

effective for employees of high autonomy and high expe-

rience, or low autonomy and low experience? Such ques-

tions may not always be relevant for a particular theory,

however.

Sometimes it might be possible to find a three-way

interaction significant but no significant slope differences.

This is likely to be because it is not the X–Y relationship

that is being moderated, but the Z-Y or W-Y relationship

instead. Mathematically, it is equivalent whether Z and W

are the moderators, X and W are the moderators, or X and

Z are the moderators. So it may be beneficial in these cases

to swap the predictor variables around; for example, it

could be that the relationship between autonomy and job

performance is moderated by training provided and expe-

rience. This should only be done if the alternative being

tested makes sense theoretically; sometimes independent

variables and moderators are almost interchangeable

according to theory, but other times it is absolutely clear

which should be which.

With all of these situations, I have described how the

interaction can be ‘‘probed’’ after it has already been found

significant. This post hoc probing is, in many ways, athe-

oretical; if a hypothesis of a three-way interaction has been

formed, it should be possible to specify exactly what form

the interaction should take, and therefore what pairs of

slopes should be different from each other. I strongly rec-

ommend that any three-way interaction that is hypothe-

sized is accompanied by a full explanation of how the

interaction should manifest itself, so it is known in advance

what tests will need to be done. Examples of this are given

in Dawson and Richter (2006).

It is also possible to extend the same logic and testing

procedures to higher order interactions still. Four-way

interactions are occasionally found in experimental or

quasi-experimental research with categorical predictors

(factors), but are very rare indeed with continuous pre-

dictors. This is partly due to the methodological constraints

that testing such interactions would bring (larger sample

sizes, higher reliability of original variables necessary), and

partly due to the difficulty of theorizing about effects that

are so conditional. However, the method of testing for such

interactions is a direct extension of that for three-way

interactions, and the examination of simple slopes and

slope differences can be derived in the same way—albeit

with considerably more complex equations.

It is also possible to have multiple moderators that do

not interact with each other—that is, there are separate

two-way interactions but no higher order interactions. I will

deal with such situations later, as one of the twelve fre-

quently asked questions about moderation.

Testing and Interpreting Moderation in Other Types

of Regression Models

Curvilinear Effects

So far I have only described interactions that follow a

straightforward linear regression relationship: the depen-

dent variable (Y) is continuous, and the relationship

between it and the independent variable (X) is linear at all

values of the moderator(s). However, sometimes we need

to examine different types of effects. We first consider the

situation where Y is continuous, but the X–Y relationship is

non-linear.

6 J Bus Psychol (2014) 29:1–19
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There are different ways in which non-linear effects can

be modeled. In the natural sciences patterns may be found

which are (for example) logarithmic, exponential, trigo-

nometric, or reciprocal. Although it is not impossible for

such relationships to be found in management (or the social

and behavioral sciences more generally), the relatively

blunt measurement instruments used mean that a quadratic

effect usually suffices to model the relationship; this can

account for a variety of different types of effect, including

U-shaped (or inverted U-shaped) relationships, or those

where the effect of X on Y increases (or decreases) more at

higher, or lower, values of X. Therefore, in this article I

limit the discussion of curvilinear effects to quadratic

relationships.

A straightforward extension of the regression equation

[1] to include a quadratic element is

Y ¼ b0 þ b1X þ b2X2 þ e ð7Þ

where X2 is simply the independent variable, X, squared.

With different values of b0, b1, and b2 this can take on

many different forms, describing many types of

relationships; some of these are exemplified in Fig. 3. Of

course, though, the form (and strength) of the relationship

between X and Y may depend on one or more moderators.

For a single moderator, Z, the regression equation becomes

Y ¼ b0 þ b1X þ b2X2 þ b3Z þ b4XZ þ b5X2Z þ e ð8Þ
Testing whether or not Z moderates the relationship

between X and Y here is slightly more complicated.

Examining the significance of the coefficient b5 will tell us

whether the curvilinear portion of the X–Y relationship is

altered by the value of Z—in other words, whether the form

of the relationship is altered. However, that does not

answer the question of whether the strength of the rela-

tionship between X and Y is changed by Z; to do this we

need to jointly test the coefficients b4 and b5. This can be

done using an F-test between regression models—i.e., the

complete model, and one without the XZ and X2Z terms

included—and can be accomplished easily in most stan-

dard statistical software. As with previous models, example

syntax can be found in the Appendix.

Returning to our training and job performance example,

we might find that training has a strong effect on job per-

formance at low levels, but above a certain level has little

additional benefit. This is easily represented with a qua-

dratic effect. When autonomy is included as a moderator of

this relationship, the equation found is:

Table 1 Test statistics for differences between slopes in a three-way interaction

Slopes Test statistic

(a) (1) and (2) t ¼ b5þb7ZH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s55þZ2
H

s77þ2ZHs57

p 6¼ 0

(b) (1) and (3) t ¼ b4þb7WH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s44þW2
H

s77þ2WHs47

p 6¼ 0

(c) (2) and (4) t ¼ b4þb7WL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s44þW2
L

s77�2WLs47

p 6¼ 0

(d) (3) and (4) t ¼ b5þb7ZL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s55þZ2
L

s77�2ZLs57

p 6¼ 0

(e) (1) and (4) t ¼ b4 ZH�ZLð Þþb5 WH�WLð Þþb7 ZHWH�ZLWLð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZH�ZLð Þ2s44þ WH�WLð Þ2s55þ ZH WH�ZLWLð Þ2s77þ2

ZH � ZLð Þ WH �WLð Þs45

þ ZH � ZLð Þ ZHWH � ZLWLð Þs47

þ WH �WLð Þ ZHWH � ZLWLð Þs57

2

6

4

3

7

5

v

u

u

u

u

t

6¼ 0

(f) (2) and (3) t ¼ b4 ZH�ZLð Þþb5 WL�WHð Þþb7 ZHWL�ZLWHð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZH�ZLð Þ2s44þ WL�WHð Þ2s55þ ZHWL�ZLWHð Þ2s77þ2

ZH � ZLð Þ WL �WHð Þs45

þ ZH � ZLð Þ ZHWL � ZLWHð Þs47

þ WL �WHð Þ ZHWL � ZLWHð Þs57

2

6
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v

u

u

u

u
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6¼ 0

b0 = 1, b1 = -6, b2 = 1
b0 = -5, b1 = 6, b2 = -1
b0 = 1.6, b1 = -0.5, b2 = 0.25
b0 = 4.4, b1 = 0.5, b2 = -0.25

Fig. 3 Examples of quadratic plots
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PERFORM ¼ 3:65 þ 0:40 � TRAINc � 0:15 � TRAINSQ

þ 0:50 � AUTONc þ 0:25 � TRAXAUT

� 0:14 � TRASXAUT

where TRAINSQ is square of TRAINc, TRASXAUT is

TRAINSQ multiplied by AUTONc, and as before, TRA-

XAUT is TRAINc multiplied by AUTONc. As usual, the best

way to begin interpreting the interaction is to plot it; this is

shown in Fig. 4.

In common with linear interactions, much can be taken

from the visual study of this plot. For example we can see

that for individuals with high autonomy, there is a sharp

advantage in moving from low to medium levels of train-

ing, but a small advantage at best in moving from moderate

to higher levels of training. However, for low-autonomy

workers there is a far more modest association between

training and job performance which is almost linear in

nature. Thus the nature of the training–performance rela-

tionship (not just the strength) changes depending on the

level of autonomy.

An obvious question, analogous to simple slopes in linear

interactions, might be: is the X–Y relationship significant at a

particular value of Z? This is a more problematic question

than a simple slope analysis; however, because it is important

to distinguish between the question of whether there is a

significant curvilinear relationship at that value of Z, and the

question of whether there is any relationship at all. The rel-

evant test depends on this distinction. Either way we start by

rearranging equation [8] above:

Y ¼ b0 þ b3Z þ b1 þ b4Zð ÞX þ b2 þ b5Zð ÞX2 ð9Þ

If there were a quadratic relationship, the value of

(b2 ? b5Z) would be non-zero. Therefore, a test of a

curvilinear relationship would examine the significance of

this term: using the same logic as tests described earlier,

this means comparing the test statistic

b2 þ b5Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s22 þ Z2s55 þ 2Zs25

p ð10Þ

with a t-distribution with n – k - 1 degrees of freedom,

where k is the number of predictors in the model (including

the five in equation 5 and any control variables). If this

term is significant then there is a curvilinear relationship

between X and Y at this value of Z. A more relevant test,

however, may be of whether there is any relationship

between X and Y (linear or curvilinear) at this value of Z. In

this situation we can revert to the method described earlier:

centering the moderator at the value at which we wish to

test the X–Y relationship. If this is done, then the b1 and b2

terms between them describe whether there is any rela-

tionship (linear or curvilinear) between X and Y at this

point. Therefore, though somewhat counterintuitive, the

best way to test this would be to examine whether the

X and X2 terms add significant variance to the model after

the inclusion of the other terms (Z, XZ, and X2Z). This will

only test the effect for the value of the moderator around

which Z is centered. However, unless there is a specific

hypothesis regarding the curvilinear nature of the associa-

tion between X and Y at a particular value of Z, this latter,

more general, form of the test is recommended.

Sometimes you might expect a linear relationship

between X and Y, but a curvilinear effect of the moderator.

The appropriate regression equation for this would be

Y ¼ b0 þ b1X þ b2Z þ b3Z2 þ b4XZ þ b5XZ2 þ e ð11Þ

and this can be tested in exactly the same way as before, with

the significance of b5 indicating whether there is curvilinear

moderation. The interpretation of such results is more

difficult, however, because a plot of the relationship between

X and Y will show only linear relationships; showing high

and low values of the moderator will give no indication of the

lack of linearity in the effect. Therefore, in such situations it

is better to plot at least three lines, as in Fig. 5. This reveals

that where autonomy is low, there is little relationship

between training provision and job performance; a moderate

level of autonomy actually gives a negative relationship

between training and performance, but at a high level of

autonomy there is a strong positive relationship between

training and performance. If only two lines had been plotted,

the curvilinear aspect of this changing relationship would

have been missed entirely. The test of a simple slope for this

situation has the test statistic

b1 þ b4Z þ b5Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s11 þ Z2s44 þ Z4s55 þ 2 Zs14 þ Z2s15 þ Z3s45ð Þ
p ð12Þ

and this is again compared with a t-distribution with

n – k - 1 degrees of freedom.
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Fig. 4 Moderating effect of autonomy on the curvilinear training

provision–job performance relationship (two-way quadratic interac-

tion with continuous moderator)
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Sometimes researchers specifically hypothesize curvi-

linear effects—either of the independent variable or the

moderator. However, even when this is not hypothesized it

can be worth checking whether such an effect exists, as

linearity of the model is one of the assumptions for

regression analysis. If a curvilinear effect exists but has not

been tested in the model, this would usually manifest itself

by a skewed histogram of residuals, and evidence of a non-

linear effect in the plot of residuals against predicted values

(see Cohen et al. 2003, for more on these plots). If such

effects exist, then it is worth checking for curvilinear

effects of both the independent variable and the moderator.

Of course, it is also possible to have curvilinear three-

way interactions. The logic here is simply extended from

the two separate interaction types—curvilinear interactions

and three-way linear interactions—and the equation takes

the form

Y ¼ b0 þ b1X þ b2X2 þ b3Z þ b4W

þ b5XZ þ b6X2Z þ b7XW þ b8X2W

þ b9ZW þ b10XZW þ b11X2ZW þ e

ð13Þ

It is the term b11 that determines whether or not there is

a significant curvilinear three-way interaction between the

variables. As in the two-way case, simple curves can be

tested for particular values of Z and W by centering the

variables around these values, and testing the variance

explained by the X and X2 terms after the others have been

included in the regression. The three-way case, though,

brings up the possibility of testing for ‘‘curve differences’’

(analogous to slope differences in the linear case). For

example, Fig. 6 shows a curvilinear, three-way interaction

between training provision, autonomy and experience on

job performance (training provision as the curvilinear

effect). The plot suggests that training is most beneficial for

high autonomy, low experience workers; however, it might

be hypothesized specifically that there is a difference

between the effect of training between these and high

autonomy, high experience workers (i.e., for high

autonomy employees, training has a differential effect

between those with more and less experience). A full curve

difference test has not been developed, as it would be far

more complex than in the linear case. However, we can use

the fact that one variable (autonomy) remains constant

between these two curves. If we call autonomy Z and

experience W in equation 7 above, and if we center

autonomy around the high level used for this test (e.g.,

mean ? one standard deviation), then the differential

effect of experience on the training–performance

relationship at this level of autonomy is given by the XW

and X2W terms. Therefore, the curve difference test is

given by the test of whether these terms add significant

variance to the model after all other terms have been

included (but only for the value of Z = 0). Again, syntax

for performing this test in SPSS is given in the Appendix.

Extensions to Non-Normal Outcomes

Just as the assumptions about the distribution of the

dependent variable in OLS regression can be relaxed with

generalized linear modeling (e.g., binary logistic regres-

sion, Poisson regression, probit regression), the same is

true when testing moderation. A binary logistic moderated

regression equation with a logit link function, for example,

would be given by
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Fig. 5 Curvilinear moderating effect of autonomy on the linear

training provision–job performance relationship (two-way interaction

with quadratic moderator)
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Fig. 6 Moderating effect of autonomy and experience on the

curvilinear training provision–job performance relationship (three-

way quadratic interaction with continuous moderators)
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logit Yð Þ ¼ log Y= 1� Yð Þ½ � ¼ b0 þ b1X þ b2Z þ b3XZ þ e

ð14Þ

or, equivalently,

Y ¼ eb0þb1Xþb2Zþb3XZþe

1þ eb0þb1Xþb2Zþb3XZþe
ð15Þ

where Y is the probability of a ‘‘successful’’ outcome.

Given familiarity with the generalized linear model in

question, therefore, testing for moderation is straightfor-

ward: it simply involves entering the same predictor terms

into the model as with the ‘‘Normal’’ version. The signif-

icance of the interaction term determines whether or not

there is moderation.

Interpreting a significant interaction, however, is slightly

less straightforward. As with previously described cases,

the best starting point is to plot the relationship between

X and Y at low and high values of Z. However, because of

the logit link function this cannot be done by drawing a

straight line between two points; instead, an entire curve

should be plotted for each chosen value of Z (even though

the equation for Y involves only X and Z, the relationship

between X and Y will usually appear curved). An approx-

imation to the curve may be generated by choosing regular

intervals between low and high values of X, evaluating

Y from equation [15] at that value of X (and Z), and plotting

the lines between each pair of values.5

For example, we might be interested in predicting

whether employees would be absent due to illness for more

than 5 days over the course of a year. We may know that

employees with more work pressure are more likely to be

absent; we might suspect that this relationship is stronger

for younger workers. The logistic regression gives us the

following estimates:

logit ABSENCEð Þ ¼ �2:11þ 0:42 �WKPRESc � 0:29

� AGEc þ 0:24 �WKPXAGE

where WKPRESc is the centered version of work pressure,

AGEc is the centered version of age, and WKPXAGE is the

interaction term between these two. ABSENCE is a binary

variable with the value 1 if the individual was absent from

work for more than 5 days in the course of the year fol-

lowing the survey, and 0 otherwise.

A plot of the interaction is shown in Fig. 7. As with OLS

regression, this plots the expected values of Y for different

values of X, and at high and low values of Z. Here, the

expected values of Y means the probability that an indi-

vidual is absent for more than 5 days; the expected value is

calculated by substituting the relevant values of work

pressure and age into the formula

EðYÞ ¼ e�2:11þ0:42�WKPRESc�0:29�AGEcþ0:24�WKPRESc�AGEc

1þ e�2:11þ0:42�WKPRESc�0:29�AGEcþ0:24�WKPRESc�AGEc

In this plot, the values of X (work pressure) range from

1.5 standard deviations below the mean to 1.5 standard

deviations above, with values plotted every 0.25 standard

deviations and a line drawn between these to approximate

the curve. It can be seen that the form of the interaction is

not so straightforwardly determined from the coefficients

as it is with OLS regression. However, the signs of the

coefficients are still helpful; the positive coefficient for

work pressure means that more work pressure is generally

associated with more absence, the negative coefficient for

age means that younger workers are more likely to be

absent than older workers, and the positive interaction

coefficient means that the effect is stronger for older

workers. A plot, however, is essential to see the precise

patterns and extent of the curvature.

Extensions to three-way interactions are possible using

the same methods. In both the two-way and three-way

cases, an obvious supplementary question to ask may be

whether the relationship between X and Y is significant at a

particular value of the moderator(s)—a direct analogy to

the simple slope test in moderated OLS regression. As with

curvilinear interactions with Normal outcomes, the best

way of testing whether the simple slopes/curves (i.e., the

relationship between X and Y at particular values of the

moderator) are significant is to center the moderator around

the value to be tested before commencing; then the sig-

nificance of the b1 term gives a test of whether the slope is

significant at that value. Some slope difference tests for

three-way interactions can also be run in this way. For

those pairs of slopes where one moderator remains constant

(cases a to d in Table 1) that variable can be centered
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Fig. 7 Moderating effect of age on the work pressure–absenteeism

relationship (two-way binary logistic interaction with continuous

moderator)

5 This is the method used by the relevant template at

www.jeremydawson.com/slopes.htm, where there are also appropri-

ate templates for three-way interactions, and two- and three-way

interactions with Poisson regression.
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around that constant value, and then the slope difference

test is given by the resulting significance of the interaction

between the other two terms. For example, if we want to

test for the difference of the slopes for high Z, high W and

high Z, low W, then we center Z around its high value,

calculate all the interaction terms and run the three-way

interaction test, and the slope difference test is given by the

significance of the XW term.

Extensions to other non-Normal outcomes are similar.

For example, if the dependent variable is a count score,

Poisson or negative binomial regression may be suitable.

The link function for these is usually a straightforward log

link (rather than the logit, or log-odds, link used for binary

logistic regression)—which makes the interpretation

slightly easier—but otherwise the method is directly

equivalent. Say, for example, we are interested in counting

the number of occasions on which an employee is absent,

but otherwise use the same predictors as in the previous

example. We find the following result:

log TIMESABSð Þ ¼ 0:23þ 0:82 �WKPRESc � 0:09

� AGEc þ 0:20 �WKPXAGE

In this case, the expected values of TIMESABS (the

number of occasions an employee is absent) is given by the

formula

e0:23þ0:82�WKPRESc�0:09�AGEcþ0:20�WKPRESc�AGEc

because the exponential is the inverse function of the log

link. This effect is plotted in Fig. 8. Extensions to three-

way interactions, simple slope tests and slope difference

tests follow in the same way as for binary logistic

regression.

Note that the methods for plotting and interpreting the

interaction depend only on the link function, not the precise

distribution of the dependent variable, so exactly the same

method could be used for either Poisson or negative

binomial regression. Testing interactions using other

generalized linear models—e.g., probit regression, ordinal

or multinomial logistic regression—can be done in an

equivalent way.

Twelve Frequently Asked Questions Concerning

Testing of Interactions

Does it Matter Which Variable is Which?

It is clear from equation [2] that the independent variable

and moderator can be swapped without making any dif-

ference to the regression model—and specifically to the

test of whether an interaction exists. Therefore, mathe-

matically, Z moderating the relationship between X and Y is

identical to X moderating the relationship between Z and

Y. The decision about which variable should be treated as

the independent variable is, therefore, a theoretical one;

sometimes this might be obvious, but at other times this

might be open to some interpretation. For example, in the

model used at the start of this article, the relationship

between training and performance was moderated by

autonomy; this makes sense if the starting point for

research is understanding the effect of training on job

performance, and determining when it makes a difference.

However, another researcher might have job design as the

main focus of their study, hypothesizing that employees

with more autonomy would be better able to perform well,

and that this effect is exacerbated when they have had more

training. In both cases the data would lead to the same main

conclusion—that there is an interaction between the two

variables—but the way this is displayed and interpreted

would be different.

Sometimes this symmetry between the two variables can

be useful. When interpreting this interaction (shown in

Fig. 1) earlier in the article, we focused on the relationship

between training and performance: this was positive, and

became more positive when autonomy was greater. But a

supplementary question that could be asked is about the

difference in performance when training is high; in other

words, are the two points on the right of the plot signifi-

cantly different from each other? This is not a question that

can be answered directly by probing this plot; however, by

re-plotting the interaction with the independent variable

and moderator swapped around, we can look at the dif-

ference between these points as a slope instead (see Fig. 9).

The question of whether the two points in Fig. 1 are dif-

ferent from each other is equivalent to the question of

whether the ‘‘high training’’ slope in Fig. 9 (the dotted line)

is significant. Thus, using a simple slope test on this

alternative plot is the best way of answering the question.

For three-way interactions, the same is true, but there

are three possible variables for the independent variable.
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Fig. 8 Moderating effect of age on the work pressure–absence

episodes relationship (two-way Poisson interaction with continuous
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For curvilinear interactions, however, this would be more

complex; if a curvilinear relationship between X and Y is

moderated (linearly) by Z, then re-plotting the interaction

with Z as the independent variable would result in straight

lines, and thus the curvilinear nature of the interaction

would be far harder to interpret.

While the independent variables and moderators are

interchangeable, however, the same is definitely not the

case with the dependent variable. Although in a simple

relationship involving X and Y there is some symmetry

there, once the moderator Z is introduced this is lost; in

other words, determining which of X, Y, and Z is the cri-

terion variable is of critical importance. For further dis-

cussion on this see Landis and Dunlap (2000).

Should I Center My Variables?

Different authors have made different recommendations

regarding the centering of independent variables and mod-

erators. Some have recommended mean-centering (i.e.,

subtracting the mean from the value of the original variable

so that it has a mean of 0); others z-standardization (which

does the same, and then divides by the standard deviation, so

that it has a mean of 0 and a standard deviation of 1); others

suggest leaving the variables in their raw form. In truth, with

the exception of cases of extreme multicollinearity, the

decision does not make any difference to the testing of the

interaction term; the p value for the interaction term and the

subsequent interaction plot should be identical whichever

way it is done (Dalal and Zickar 2012; Kromrey and Foster-

Johnson 1998). Centering does, however, make a difference

to the estimation and significance of the other terms in the

model: something we use to our advantage in the indirect

form of the simple slope test, as the interpretation of the

X coefficient (b1 in equation [2]) is the relationship between

X and Y when Z = 0. Therefore, unless the value 0 is

intrinsically meaningful for an independent variable or

moderator (e.g., in the case of a binary variable), I recom-

mend that these variables are either mean-centered or

z-standardized before the computation of the interaction term.

The choice between mean-centering and z-standardization

is more a matter of personal preference. Both methods will

produce identical findings, and there are some minor advan-

tages to each. Mean-centering the variables will ensure that the

(unstandardized) regression coefficients of themain effects can

be interpreted directly in terms of the original variables. For

many people this is reason enough to use this method. On the

other hand, z-standardization allows easy interpretation of the

form of the interaction by addition and subtraction of the

coefficients, makes formulas for some probing methods more

straightforward, and is easily accomplished with a simple

command in SPSS (Dawson & Richter, 2006).

Whichever method is chosen, there are some rules that

should be obeyed. First, it is essential to create the interaction

term using the same versions of the independent variable and

moderator(s) that are used in the analysis. The interaction

term itself should not be centered or z-standardized (this also

applies to the two-way interaction terms when testing three-

way interactions, etc.). The regression coefficients that are

interpreted are always the unstandardized versions. Also, it is

highly advisable to mean center or (z-standardize) any

independent variables in the model that are not part of the

interaction being tested (e.g., control variables), as otherwise

the predicted values are more difficult to calculate (and the

plots produced by some automatic templates will display

incorrectly). Finally, the dependent variable (criterion)

should not be centered or z-standardized; doing so would

result in interpretations and plots that would fail to reflect the

true variation in that variable.

What If My Moderator is Categorical?

Sometimes our moderator variable may be categorical in

nature, for example gender or job role. If it has only two

categories (a binary variable) then the process of testing for

moderation is almost identical to that described earlier; the

only difference is that it would not be appropriate to center

the moderator variable (however, coding the values as 0

and 1 makes the interpretation somewhat easier). It would

also be straightforward to choose the values of the mod-

erator at which to plot and test simple slopes: these would

necessarily be the two values that the variable can take on.6

However, if a moderator has more than two categories,
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Fig. 9 Moderating effect of training provision on the autonomy–job

performance relationship (a reversal of the plot in Fig. 1)

6 There is a specific template for binary moderators at

www.jeremydawson.com/slopes.htm, as well as a generic template

which allows any combination of binary and continuous independent

and moderating variables.
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testing for moderation is more complex. This can be done

either using an ANCOVA approach (see e.g., Rutherford

2001), or within regression analysis using dummy variables

(binary variables indicating whether or not a case is a

member of a particular category).

In this latter approach, dummy variables are created for

all but one of the categories of the moderator variable (the

one without a dummy variable is known as the reference

category). These would be used directly in place of the

moderator variable itself—so that if a moderator variable

has k categories, then there would be k - 1 dummy vari-

ables entered into the regression as raw variables, and k - 1

separate interaction terms between these dummy variables

and the independent variable. Some software (e.g., R) will

automatically create dummy variables as part of the regres-

sion procedure if a categorical moderator is included; how-

ever, much other software (e.g., SPSS) does not, and so the

dummy variables need to be created separately. Example

syntax for creating dummy variables and testing such inter-

actions is given in the Appendix.

Plotting these interactions is slightly more difficult than

plotting a straightforward two-way interaction because it

requires more lines; specifically, there will be a separate

line for each category of the moderator. The question of

whether a line for a given category differs significantly

from the line of the reference category is given by the

significance of the interaction term for that particular cat-

egory. If it is necessary to test for differences between two

other lines, neither of which is for the reference category,

then the regression would need to be re-run with one of

these categories as the reference category instead.

An important consideration about categorical moderators

is that they should only be used when the variable was

originally measured as categories. Continuous variables

should never be converted to categorical variables for the

purpose of testing interactions. Doing so reduces the statis-

tical power of the test, making it more difficult to detect

significant effects (Stone-Romero and Anderson 1994;

Cohen et al. 2003), as well as throwing up theoretical ques-

tions about why particular dividing points should be used.

Should I Use Hierarchical Regression?

As mentioned earlier in the article, sometimes researchers

may choose to enter the variables in a hierarchical manner,

i.e., in different steps, with the interaction term being

entered last. This may be as much to do with tradition as

anything else, because there is limited statistical rationale

for doing it this way. Certainly, if the interaction term is

significant, then it does not make sense to interpret versions

of the model that do not include it, as those models will be

mis-specified and therefore violating an assumption of

regression analysis. (Of course if the interaction term is not

significant, then removing it and interpreting the rest of the

model may be a sensible approach.)

Why then might you choose to use hierarchical entry of

predictor variables? There are at least two reasons why this

might be appropriate. First, in order to calculate the effect

size for the interaction (see question 5), it is necessary to

know the increment in R2 due to the interaction. This could

be achieved either by entering the interaction term after the

rest of the model, or by removing the interaction term from

the full model in a second step. Second, in order to perform

the version of the simple slope test I recommended for

moderation of curvilinear effects, it is necessary to enter

the X and X2 terms in a final step after the Z, XZ, and X2Z

terms. However, only the full model in each case would be

plotted and interpreted.

Should I Conduct Simple Slope Tests, and If So, How?

In some sections of the literature, simple slope tests have

almost become ‘‘de rigueur’’—a significant interaction is

seldom reported without such tests. Sometimes these are

requested by reviewers even when the author chooses not

to include them. This is unfortunate, because simple slope

tests in themselves often tell us little about the effect being

studied.

A simple slope test is a conditional test; in the simple

two-way case, this tests whether there is a significant

association between X and Y at a particular value of Z. The

fact that this is about a particular value of Z is paramount to

the interpretation of the test, although this is often over-

looked. For example, a common supplement to the testing

of the interaction effect plotted in Fig. 1 would be per-

forming simple slope tests on the two lines shown in the

plot. However, this merely tells us whether there is evi-

dence of a relationship between training and job perfor-

mance when autonomy has the value 1.9 or 3.7. There is

nothing particularly meaningful about these values; they

are purely arbitrary examples of relatively low and high

levels of autonomy, and neither has any real intrinsic

meaning nor represents generic low and high levels.

Therefore, the significance or otherwise of these slopes is

indicative of something of very limited use.

Moreover, such testing—particularly for two-way

interactions—often overshadows the significance of the

interaction itself; if the interaction term is significant, then

that immediately tells us that the association between X and

Y differs significantly at different levels of Z. Often this is

sufficient information (along with the effect size/plot) to

tell us what we need to know about whether the hypothesis

is supported.

This is not to say that simple slope tests should never be

used. However, only in certain circumstances would it be

necessary to test the association between X and Y at a

J Bus Psychol (2014) 29:1–19 13

123



particular value of Z. Such situations are clear in the case of

categorical moderators: for example, testing whether

training is related to job performance for different job

groups. Even for continuous moderators, however, this

might be beneficial: for example, if it is known that the

autonomy level 4.0 corresponds to the level where

employees can make most key decisions about their own

work, then testing the association at this level would be

meaningful. Likewise, if age is the moderator, then testing

the association when age = 20 or age = 50 would give

meaningful interpretations of the relationship for people of

these ages. However, such insight is rarely gained by

automatically choosing values one standard deviation

above and below the mean.

If you do conduct simple slope tests, then there are two

main methods for doing this. Detail of these for the dif-

ferent models is given in the relevant earlier section of this

article; broadly, though, the direct method is to test the

significance of a specific combination of regression coef-

ficients and coefficient covariances; the indirect method

involves centering the moderator around the value to be

tested, and re-running the regression using this new version

of the variable. The indirect method is somewhat more

long-winded, but has the advantage of being applicable in

non-linear forms of moderation as well, where no precise

equivalent of the direct method exists.

How do I Measure the Size of a Moderation Effect?

It is generally recognized that R2 is not an ideal metric for

measuring the size of an interaction effect, due to the

inevitability of shared variance between the X, Z, and XZ

terms. Rather, it is more helpful to examine f2, the ratio of

variance explained by the interaction term alone to the

unexplained variance in the final model:

f 2 ¼ R2
2 � R2

1

1� R2
2

ð16Þ

where R1
2 and R2

2 represent the variance explained by the

models including and excluding the interaction term,

respectively (Aiken and West 1991). Aguinis et al. (2005)

found that, for categorical variables, the values of f2 found

in published research were very low: a median of .002

across 30 years’ worth of articles in three leading journals

in management and applied psychology. For comparison,

Cohen et al. (2003) describe .02 as being a small effect

size. It is clear, therefore, that many studies which find

significant interaction effects only have small effect sizes.

As researchers it is important to acknowledge this, and

focus on the practical relevance of findings rather than their

statistical significance alone, e.g., by determining whether

the extent of change in the association between X and Y due

to a (say) one standard deviation change in Z is something

that would be clearly relevant to the participants. It may

also help to use relative importance analysis (Tonidandel

and LeBreton 2011) to demonstrate the relative importance

of the interaction effect compared with the main effects.

What Sample Size Do I Need?

Choosing a sample size for any analysis is far from an easy

process; although rules of thumb are sometimes used for

certain types of analysis, these are generally approxima-

tions based on assumptions that may or may not be

appropriate. All decisions are informed by statistical power

(the ability to detect effects where they truly exist) and

precision (the accuracy with which parameters can be

estimated; power and precision being two sides of the same

coin). However, this becomes less straightforward the more

complex the analysis is.

It is a well-known result that the power of testing

interaction effects is generally lower than for testing main

effects (McClelland and Judd 1993). As with all types of

analysis, sample size is the single biggest factor affecting

power; however, a number of factors have been shown to

reduce power for moderator effects specifically. For

example, measurement error (lack of reliability) is a major

source of loss of power; if both the independent variable

and moderator suffer from this, then the measurement error

in the interaction term is exacerbated (Dunlap and Kemery

1988). Other factors known to attenuate power for detect-

ing interactions include intercorrelations between the pre-

dictors (Aguinis 1995), range restriction (Aguinis and

Stone-Romero 1997), scale coarseness and transformation

of non-Normal outcomes (Aguinis 1995, 2004), differing

distributions of variables (Wilcox 1998), and artificial

categorization of continuous variables (Stone-Romero and

Anderson 1994). The presence of any of these issues will

increase the sample size needed to achieve the same power.

So the answer to the question ‘‘What sample size do I

need?’’ is difficult to give, other than to say it is probably

substantially larger than for non-moderated relationships.

However, Shieh (2009) gave some formulas to aid deter-

mination of sample sizes for specific levels of power and

effect size. Although such sample size determination is rare

in management research for interaction effects specifically,

it is noteworthy that Shieh finds the sample size required to

detect a relatively large effect (equivalent to an f2 of around

0.3) with 90 % power is about 137-154 cases (depending

on the method of estimation used). By way of comparison,

the sample size to detect a simple correlation with the same

f2with the same level of power is just 41. Thus even for

simple two-way interactions without any significant atten-

uating effects, a considerable sample size is advisable.
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Should I Test for Curvilinear Effects Instead of,

or as well as, Moderation?

As noted earlier in the article, curvilinear relationships

between independent and dependent variables are not

uncommon, and quadratic regression (regressing Y on

X and X2) is a relatively comprehensive tool to capture

them. However, there is a danger that this could, instead, be

picked up as an interaction between X and Z if the inde-

pendent variable and moderator are correlated. As Cortina

(1993) explains, the stronger the relationship between

X and Z, the more likely a (true) curvilinear effect is to be

(falsely) picked up as a moderated effect. Looking at it

another way, a quadratic relationship in X is the same as a

relationship between X and Y moderated by X—the nature

of the association depending on the value of X. Despite

this, testing for moderation is far more prevalent in man-

agement research than testing for curvilinear effects.

Therefore, it is advisable that curvilinear effects be tested

whenever there is a sizeable correlation between X and

Z. Cortina (1993) suggests entering the terms X, Z, X2, and Z2

before entering the XZ term into the regression; as I pointed out

above, the hierarchical entry is not strictly necessary here.

Nevertheless, the inclusion of all five terms provides a con-

servative test of the interaction—if the XZ term is still sig-

nificant despite the inclusion of the other terms, then there is

likely to be a true moderating effect above and beyond any

curvilinear effects. However, the conservative nature of the test

means there is a relative lack of statistical power. As a result, I

would suggest that such tests are advisable when there is a

moderate correlation between X and Z (between 0.30 and 0.50),

and essential when there is a large correlation (above 0.50).

The inclusion of all five terms means that this test is

equivalent to second-order polynomial regression

(Edwards 2001; Edwards and Parry 1993)—although this is

known more for testing congruence between predictors, it

is also appropriate for testing and interpreting interaction

effects when the curvilinear effects are also found. If a

significant interaction is found, but the X2 and Z2 terms are

not significant, then it is more parsimonious to interpret the

usual form of the interaction using the methods described

earlier in this article. If both curvilinear and interaction

terms are found to be significant, then it would often make

sense to test for curvilinear moderation as described earlier

in this article. For an introduction to polynomial regression

in organizational research, see Shanock et al. (2010).

What Should I do if I have Several Independent

Variables All Being Moderated, or Multiple Moderators

for a Single Independent Variable?

Regression models including multiple independent vari-

ables (X1, X2, etc.) are common. If you introduce a

moderator to these models, how should you test this? This

scenario might involve, for example, the effect of person-

ality on proactivity, moderated by work demands.

Researchers commonly use the Big Five model of per-

sonality, and thus there would be five independent vari-

ables to consider here.

The situation is relatively straightforward to test, but

more difficult to interpret, particularly if there are corre-

lations between the independent variables. Ideally, the

regression should include all independent variables, the

moderator, and interactions between the moderator and

each independent variable (a total of 11 variables in the

scenario above). It is important in this situation that all

predictors are mean-centered or z-standardized before the

calculation of interaction terms and the regression anal-

ysis. The initial test then depends on the precise

hypothesis; for example, if the hypothesis were as general

as ‘‘the relationship between personality and proactivity is

moderated by work demands’’ then the required test

would determine whether a significant increment in R2 is

made by the five interaction terms between them. More

frequently, however, there may be separate hypotheses for

different independent variables (e.g., ‘‘the relationship

between neuroticism and proactivity is moderated by

work demands’’); this would allow individual coefficients

of the relevant interactions to be tested. Non-significant

interactions can also be removed from this model to allow

optimal interpretation of the significant interactions; this

helps to reduce multicollinearity. Each significant inter-

action can then be plotted and interpreted separately;

importantly though, the interpretation of the interaction

between X1 and Z is at the mean level of all other inde-

pendent variables X2, X3, etc.

The situation of multiple moderators is not dissimilar,

except that there is a greater chance that the moderators

would themselves interact, thus creating three-way or

higher order interactions. For example, consider a rela-

tionship between X and Y which might be moderated by

both Z1 and Z2. The test of this would be a regression

analysis including the terms X, Z1, Z2, XZ1, and XZ2. It

is possible that XZ1 is significant and XZ2 is not (so Z1

moderates the relationship but Z2 does not) or vice

versa, or indeed that both are significant. However, if

both Z1 and Z2 affect the relationship between X and

Y then it would be natural also to test the three-way

interaction between X, Z1, and Z2. If this three-way

interaction is significant then it should be interpreted

using the methods described earlier in this article. If it is

not, then the interactions are most easily interpreted

separately, again with the interpretation being at mean

levels of the other (potential) moderator—the lack of a

three-way interaction means that such an interpretation

is reasonable.
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Should I Hypothesize the form of My Interactions

in Advance?

In a word: yes! The methods described in this article have

relied on testing the significance of interaction effects: i.e.,

null hypothesis significance testing (NHST). NHST has

some detractors, and the use of methods such as effect size

testing (EST) with confidence intervals to replace or sup-

plement NHST is growing in management and psychology

(Cortina and Landis 2011); nevertheless, even methods

such as EST and the Johnson-Neyman technique (Bauer

and Curran 2005) are based on an underlying expectation

that an effect exists. Therefore, not only should the exis-

tence of an interaction effect be predicted, but also its form.

In particular, whether a moderator increases or decreases

the association between two other variables should be

specified as part of the a priori hypothesis. For two-way

interactions this is relatively straightforward; simply stat-

ing the direction of the interaction is often sufficient,

although sometimes suggesting whether the main

X–Y effect would be positive, negative, or null at high and

low values of the moderator may be beneficial too. This

would require stating what is meant by ‘‘high’’ and ‘‘low’’

values, and this would give rise to meaningful simple slope

tests at these values.

For three-way (and higher) interactions, however, this

requires more work. In particular, it is advisable to

hypothesize how the lines in a plot of such an interaction

should differ. This then enables the a priori specification of

which slope difference tests should be used, and reduces

the likelihood of a type I error (an incorrect significant

effect). For examples of how this might be done, see

Dawson and Richter (2006).

Do These Methods Work with Multilevel Models?

Within multilevel models, the method of testing the inter-

actions themselves is directly equivalent to the methods

explained above. This is regardless of whether the inde-

pendent variables (including moderators) exist at level 1

(e.g., individuals), level 2 (e.g., teams), or a mixture

between the two (cross-level interactions). The precise

methods of testing such effects are covered in detail in

many other texts (see for example Pinheiro and Bates 2000;

Snijders and Bosker 1999; West et al. 2006), and depend

on the software used.

It is worth noting, however, that the interpretation of

such interactions may be less straightforward. Effects can

usually be plotted using the same templates as for single-

level models, but further probing is more complicated. The

formulas for simple slope tests, slope difference tests and

regions of significance do not apply, and unless models

contain no random effects, only approximations of these

tests exist (Bauer and Curran 2005). The indirect version of

the simple slope test described earlier in this article can still

be used, however. Tools for probing such interactions—

both two-way and three-way—can be found at http://

quantpsy.org/interact/index.html.

Can I Test Moderation Within More Complex Types

of Model?

Yes, it is generally possible to test for moderators within

more sophisticated modeling structures, although there is

some variation in extent to which different types of models

can currently incorporate different elements of moderation

testing (e.g., regions of significance, non-Normal

outcomes).

A good example of this is combining moderation with

mediation. Two distinct (but conceptually similar) methods

for testing such models were developed simultaneously by

Preacher et al. (2007), and by Edwards and Lambert

(2007). Both methods evaluate the conditional effect of

X on Y via M at different levels of the moderator, Z. The

detail of these methods is not reproduced here, but for

further details see the original papers; online resources to

help with the testing and interpretation of these effects can

be found at http://quantpsy.org/medn.htm for Preacher

et al.’s method, and at http://public.kenan-flagler.unc.edu/

faculty/edwardsj/downloads.htm for Edwards and Lam-

bert’s method. A good summary of mediation in organi-

zational research, including combining mediation and

moderation, is given by MacKinnon et al. (2012).

Other recent developments have enabled the testing of

latent interaction effects in structural equation modeling

without having to create interactions between individual

indicators of the variables (Klein and Moosbrugger 2000;

Muthén and Muthén 1998–2011), which partially circum-

navigates the problem of decreasing reliability of interac-

tion terms (Jaccard and Wan 1995). This is particularly

relevant when the independent variable and/or moderator

are formed of questionnaire scale items. Meanwhile, there

is a large literature on the specific issues with categorical

moderator variables; for example methods have been

developed to control for heterogeneity of variance across

groups (Aguinis et al. 2005; Overton 2001). Likewise

methods exist for testing interaction effects in multilevel

and longitudinal research, and interactions in meta-

analysis.

Conclusions

This article has described the purpose of, and procedure

for, testing and interpreting interaction effects involving

moderator variables. Such tests are already well-used
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within management and psychology research; however,

often they may not be used to their full potential, or

understood fully. The expansion to curvilinear effects and

non-Normal outcome variables should enable some

researchers to test and interpret effects in a way that might

not have been possible previously. The description of

simple slope tests, slope difference tests, and other probing

techniques should clarify some matters about how and

when these can be done, and the limitations of their use.

The answers to twelve frequently asked questions (which

reflect questions often posed to me over the last 10 years)

should help give some guidance on issues that researchers

may be unclear about.

There is still much to be learned about moderation,

however. Although the basic linear models for Normal

outcomes are well-established, there is more to be learned

about testing and probing non-linear relationships (partic-

ularly beyond the relatively simple quadratic effects

described in this article), and for non-Normal outcomes and

non-standard data structures. Possible directions for future

research in this area include the development of probing

techniques (e.g., to allow more accurate estimation of

confidence intervals) with such models, further investiga-

tion into power and sample size calculations for non-

standard models, and the development of effect size met-

rics for non-Normal outcomes.
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Appendix: SPSS Syntax for the Models Described

in the Article

In this Appendix, variable names are shown in upper case

(capitals) and SPSS commands in lower case. In reality the

case does not matter for either.

Variable names:

Dependent variable (DV) 1—PERFORM (Job perfor-

mance—continuous)

Dependent variable (DV) 2—ABSENCE (Absentee-

ism—binary)

Dependent variable (DV) 3—TIMESABS (Number of

occasions absent—discrete)

Independent variable (IV) 1—TRAIN (Training provi-

sion—continuous; mean 3.42)

Independent variable (IV) 2—WKPRES (Work pres-

sure—continuous; mean 2.95)

Moderator 1—AUTON (Autonomy—continuous; mean

3.20)

Moderator 2—EXPER (Experience—continuous; mean

6.5)

Moderator 3—AGE (Age—continuous; mean 43.7)

Moderator 4—ROLE (Job role—three levels, scored 1, 2, 3)

*Descriptions of what the commands are doing are

shown with asterisks in front of them. SPSS will ignore any

commands that begin with an asterisk. Note that the exe-

cute commands are not necessary to run any analysis, but

commands that do not produce output will not be per-

formed until either a command that does produce output, or

an execute command, is run afterwards.

*(1) Syntax to create centered versions of continuous

IVs and moderators:

compute TRAINC = TRAIN - 3.42.

compute WKPRESC = WKPRES - 2.95.

compute AUTONC = AUTON - 3.20.

compute EXPERC = EXPER - 6.5.

compute AGEC = AGE - 43.7.

execute.

*(2) Syntax to created standardized versions of contin-

uous IVs and moderators. N.B. the variables created will

have the same names as the originals but preceded by a Z.

descriptives TRAIN WKPRES AUTON EXPER AGE

/save.

*(3) Syntax to create and test 2-way interaction with

continuous moderator. Note that the inclusion of ‘‘bcov’’

ensures that coefficient variances and covariances are

included in the output—helpful for testing of simple slopes.

compute TRAXAUT = TRAINC*AUTONC.

regression /statistics = r coeff cha anova bcov

/dependent = PERFORM

/method = enter TRAINC AUTONC

/method = enter TRAXAUT.

*(4) Syntax for alternative method of testing simple

slope: for value of AUTON = 4.10. Test of simple slope is

given by significance of TRAINC term in final model.

compute AUTONT = AUTON - 4.10.

compute TRAXAUTT = TRAINC*AUTONT.

regression /statistics = r coeff cha anova bcov

/dependent = PERFORM

/method = enter TRAINC AUTONT

/method = enter TRAXAUTT.

*(5) Syntax for ANCOVA version of 2-way interaction

with categorical moderator (NB can involve any combi-

nation of continuous and categorical IVs/moderators; cat-

egorical variables follow ‘‘by’’ command and continuous

variables follow ‘‘with’’ command.

glm PERFORM by ROLE with TRAINC

/print = parameter

/design = TRAINC ROLE TRAINC*ROLE.
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*(6) Syntax to create and test 3-way interaction with

continuous moderators.

compute TRAXAUT = TRAINC*AUTONC.

compute TRAXEXP = TRAINC*EXPERC.

compute AUTXEXP = AUTONC*EXPERC.

compute TRXAUXEX = TRAINC*AUTONC*

EXPERC.

regression /statistics = r coeff cha anova bcov

/dependent = PERFORM

/method = enter TRAINC AUTONC EXPERC

TRAXAUT TRAXEXP AUTXEXP

/method = enter TRXAUXEX.

*(7) Syntax to test curvilinear interaction.

compute TRAINSQ = TRAINC*TRAINC.

compute TRASXAUT = TRAINSQ*AUTONC.

regression /statistics = r coeff cha anova bcov

/dependent = PERFORM

/method = enter TRAINC TRAINSQ AUTONC

/method = enter TRAXAUT TRASXAUT.

*(8) Syntax to test for (linear or curvilinear) relationship

between IV and DV at particular value of moderator

(‘‘simple curve’’) at AUTON = 4.10. The simple curve or

slope is significant if the second step adds significant var-

iance to the model.

compute TRAINSQ = TRAINC*TRAINC.

compute AUTONT = AUTON - 4.10.

compute TRAXAUTT = TRAINC*AUTONT.

compute TRASXAUTT = TRAINSQ*AUTONT.

regression /statistics = r coeff cha anova bcov

/dependent = PERFORM

/method = enter AUTONT TRAXAUTT

TRASXAUTT

/method = enter TRAINC TRAINSQ.

*(9) Syntax to test for difference between simple curves

in a curvilinear three-way interaction. In this example the

test is for difference between the curvilinear effect of

training provision on job performance at high autonomy/

high experience and high autonomy/low experience. High

autonomy is defined by AUTON = 4.10. The simple

curves are significantly different if the second step adds

significant variance to the model.

compute TRAINSQ = TRAINC*TRAINC.

compute AUTONT = AUTON - 4.10.

compute TRAXAUTT = TRAINC*AUTONT.

compute TRASXAUTT = TRAINSQ*AUTONT.

compute TRAXEXP = TRAINC*EXPERC.

compute AUTTXEXP = AUTONT*EXPERC.

compute

TRXAUTXEX = TRAINC*AUTONT*EXPERC.

compute TRSQXAUTXEX = TRAINSQ*AUTONT*

EXPERC.

regression /statistics = r coeff cha anova bcov

/dependent = PERFORM

/method = enter TRAINC TRAINSQ AUTONT

EXPERC TRAXEXP AUTTXEXP TRXAUTXEX

TRSQXAUTXEX

/method = enter TRAXAUTT TRASXAUTT.

*(10) Syntax to test 2-way interaction with continuous

moderator and binary dependent variable. Note that it is not

necessary to create the interaction term separately, but it is

still advisable to use centered versions of the IV and

moderator.

logistic regression variables ABSENCE

/method = enter WKPRESC AGEC WKPRESC*

AGEC.

*(11) Syntax to test simple slope of an independent

variable (WKPRESC) on binary dependent value

(ABSENCE) when the moderator, AGE, is equal to 30.

Test of simple slope is given by significance of WKPRESC

term.

compute AGET = AGE - 30.

logistic regression variables ABSENCE

/method = enter WKPRESC AGET WKPRESC*

AGET.

*(12) Syntax to test 2-way interaction with continuous

moderator and count dependent variable using Poisson

regression. For negative binomial alternative use ‘‘distri-

bution = negbin’’ instead.

genlin TIMESABS with WKPRESC AGEC

WKPRESC*AGEC

/model WKPRESC AGEC WKPRESC*AGEC

distribution = poisson link = log.

*(13) Syntax to create dummy variables for a categorical

moderator ROLE.

recode ROLE (1 = 1)(2 3 = 0) into ROLE1.

recode ROLE (2 = 1)(1 3 = 0) into ROLE2.

recode ROLE (3 = 1)(1 2 = 0) into ROLE3.

execute.

*(14) Syntax to create and test 2-way interaction with

categorical moderator (with three levels: for more levels,

add in dummy variables and interaction terms accordingly).

compute TRAXRO1 = TRAINC*ROLE1.

compute TRAXRO2 = TRAINC*ROLE2.

regression /statistics = r coeff cha anova bcov

/dependent = PERFORM

/method = enter TRAINC ROLE1 ROLE2

/method = enter TRAXRO1 TRAXRO2.
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