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Abstract
External electric and mechanical stimuli can induce shape deformation in excitable media 
because of its intrinsic flexible property. When the signals propagation in the media is 
described by a neural network, creation of heterogeneity or defect is considered as the 
effect of shape deformation due to accumulation or release of energy in the media. In this 
paper, a temperature-light sensitive neuron model is developed from a nonlinear circuit 
composed of a phototube and a thermistor, and the physical energy is kept in capacitive 
and inductive terms. Furthermore, the Hamilton energy for this function neuron is obtained 
in theoretical way. A regular neural network is built on a square array by activating elec-
tric synapse between adjacent neurons, and a few of neurons in local area is excited by  
noisy disturbance, which induces local energy diversity, and continuous coupling enables 
energy propagation and diffusion. Initially, the Hamilton energy function for a temperature- 
light sensitive neuron can be obtained. Then, the finite neurons are applied noise to obtain 
energy diversity to explore the energy spread between neurons in the network. For keeping 
local energy balance, one intrinsic parameter is regulated adaptively until energy diversity 
in this local area is decreased greatly. Regular pattern formation indicates that local energy 
balance creates heterogeneity or defects and a few of neurons show continuous parameter 
shift for keeping energy balance in a local area, which supports gradient energy distribu-
tion for propagating waves in the network.

Keywords Neural circuit · Thermistor · Phototube · Hamilton energy · Energy balance

1 Introduction

Artificial neuron models can be helpful to explore working mechanism for biological neu-
rons by taming the firing patterns and discovering its energy characteristic. The improved 
and proposed neuron models by applying mathematical and physical theories, which have 
potential practical implications for understanding brain working patterns and constructing 
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brain-like networks. In 1952, Hodgkin and Huxley [1] proposed the first Hodgkin-Huxley 
(HH) neuron model by capturing and analyzing the experimental data about membrane 
potential series from squid axon. Neural networks consisting of HH neurons have been used 
to clarify the mechanisms of neural diseases [2, 3] and the stability of collective behaviors 
in networks [4, 5]. The setting of complex parameters of HH neurons is not conducive to 
the study of a single aspect of the electrical activity of neurons. In 1961, FitzHugh [6] 
designed a simple FitzHugh-Nagumo (FHN) model based on biological features for HH 
model, the FHN model composes two ordinary differential equations, and a variety of fir-
ing patterns can be induced by adjusting the amplitude or frequency of external periodic 
stimulus. In 1984, Hindmarsh and Rose [7] obtained the 3D Hindmarsh-Rose (HR) neuron 
model by voltage clamp experiments in snail nerve cells. The HR model neglects ion chan-
nel effects and is able to mimic the irregular firing behavior produced by mollusk neurons. 
Subsequently, many different types of neuron models have been proposed. For example, 
the Morris-Lecar neuron model [8–10], the Chay neuron model [11, 12], the memristive 
HR model [13], and the memristive FHN model [14].

For the these neuron models, due to the simple structure of the FHN model, the equiv-
alent circuit is easy to achieve, and the rich firing behaviors and other characteristics 
can be explored by changing the external stimulus. Functional neuron models have been 
obtained by introducing different electronic components with special functions into sim-
ple FHN neural circuits. For instance, in Refs. [15, 16], a photosensitive neuron model  
is proposed by connecting a photocell into different branches of a simple neural circuit. 
An auditory neuron model [17] is proposed by connecting a neural circuit to a piezoe-
lectric ceramic into. Xu et al. [18] designed a thermosensitive neuron by applying a ther-
mistor to replace resistor of different branches in the FHN neural circuit. In Ref. [19], an  
ideal Josephson junction and a magnetic flux-affected memristor are in parallel connected 
into a FHN neural circuit for estimating the effect of external magnetic field. Yang et al. 
[20] developed a physical neuron for estimating electric field disturbance by connecting a 
charge-relative memeristor into a simple circuit. An improved photosensitive memristive 
neural circuit [21] is introduced by in parallel connecting a memristor into photosensitive  
neural circuit.

Neurons can be excited to show a rich dynamic behavior, such as resting state, spiking 
firing, bursting firing, chaotic firing and mixed firing. For memristive neurons, appearance 
of multistability supports coexistence of multiple firing patterns. The process of electrical 
activity requires a supply of energy. The Hamilton energy function for a neuron in oscilla-
tor form can be obtained by applying the Helmholtz’s theorem [22], and the energy func-
tion can also be mapped from the field energy for its equivalent neural circuit. In Refs. 
[23, 24], the energy correlation with firing modes of neuron model was discussed. Energy 
feedback control of dynamic for neuron model is investigated in Refs. [25–27]. Energy for 
a memristor coupled neurons model is calculated in Ref. [28]. For two or more neurons, 
energy propagation and exchange target to possible energy balance, so that the coupled 
neurons can be tamed in synchronous firing patterns. For example, energy balance [29–33] 
between neurons and energy balance in the neural networks [34] are explored. According 
to in Ref. [35], the exact Hamilton energy function is the most suitable Lyapunov func-
tion for this system. For further guidance, approach of Hamilton energy functions for some 
chaotic systems are presented in Refs. [36–38]. Energy flow is used to control the growth 
of synaptic [39] and synchronization between neurons [40, 41], in this way, adaptive regu-
lation mechanism in parameter and energy shift for neurons are clarified. The recent work 
in Ref. [42] claimed that four main firing modes in the Hindmarsh-Rose neuron are rel-
ative to four energy levels approached by calculating the average energy under different  
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firing modes. Mathematical neuron models seldom provide exact energy functions rather 
than generic Lyapunov functions. When specific electric components are used to connect 
nonlinear circuits for developing potential neural circuits [43–46], and the field energy kept 
in capacitor, inductor and memristors can be classified as capacitive and inductive forms. 
Ideal Josephson junction can discern external magnetic field but it seldom saves energy at 
all. Based on these memristive neurons, diverse electromagneitc induction [47–51], uni-
form and non-uniform electromagnetic radaition [52–55] can be discerned by measuring 
the pattern stability and wave propagation in the memristive networks. Furthermore, field 
coupling between memristive neurons throws light on knowing self-organization of neural 
networks without synaptic connections [56–59]. For a neural network, heterogeneity [60] 
can be formed by accumulating energy for finite neurons, and defect area [61] is obtained 
when reduction energy of finite neurons in the network.

The shape deformation of neurons is irregular due to their flexible structures and energy 
absorption from external stimuli. It is interesting to investigate energy diffusion phenom-
enon when the shape deformation of neuron occurs under noise disturbance and non- 
uniform stimuli. When energy function is available, energy distribution and energy balance 
between neurons present some clues to explore the wave propagation and self-organization 
in the functional neural network clustered with functional neurons. In this work, a regular 
network composed of temperature-light sensitive neurons is designed, energy function is 
defined and adaptive law is presented to control parameter shift for keeping local energy 
balance, which supports emergence of gradient energy distribution for emitting wave 
fronts. This study presents some guidance for exploring and understanding the transition of 
collective behaviors in a neural network controlled by energy flow.

2  Model and scheme

A temperature-light sensitive neural circuit is designed by connecting a phototube and 
a thermistor in a simple nonlinear circuit. This neuron can perceive external light and 
changes of temperature, and its the relation between electric components is displayed in 
Fig. 1.

According to the Kirchhoff’s law, the circuit variables for Fig. 1 can be controlled under 
the criterion

where the current through the nonlinear resistor RN in Fig. 1 can be estimated by

where ρ and V0 represent the normalized parameters, and the variant voltage Vs for the pho-
totube is considered with periodic form

(1)

⎧⎪⎨⎪⎩

C
dV

dt
=

Vs − V

RT

− iL − iN ;

L
diL

dt
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(2)iN = −
1

�
(V −

1

3

V3

V2
0

);

(3)Vs = B0 + A0 cos(f0t);
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where B0 is a constant and A0 and f0 represent the amplitude and angular frequency of the 
periodic voltage source. The resistance across thermistor can be estimated by

where q is the activation energy, T denotes the temperature, K represents the Boltzmann 
constant, and R∞ is a constant corresponding to the thermistor resistivity at an infinitely 
high temperature T (T→∞). The physical parameters and variables for Eqs. (1–  4) are 
replaced with dimensionless forms as follows

where T0 is the reference temperature and it is selected a value as the material constant B′ 
(=q/K). Therefore, the neuron model controlled by photocurrent and temperature can be 
described by

Furthermore, the physical field energy in the neural circuit in Fig. 1 is calculated by

(4)RT = R∞e
B�

T ,B� =
q

K
;

(5)

⎧⎪⎨⎪⎩

x =
V
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, y =
�iL

V0

, � =
t

�C
, a =

E
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, b =
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�
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�2C

L
, f = �Cf0;

T � =
T

T0
, �(T �) =

�

RT

= �e
−

1

T� ,B(T �) =
�B0

RTV0

= Be
−

1

T� ,A(T �) =
�A0

RTV0

= Ae
−

1

T� ;

(6)

{
dx

d�
= x(1 − �(T �)) −

1

3
x3 − y + B(T �) + A(T �) cos(f �);

dy

d�
= c(x − by + a);

(7)W =
1

2
CV2 +

1

2
Li2

L
;

Fig. 1  Schematic diagram for a thermal neural circuit driven by photocurrent. A and K denote the anode 
and cathode of the phototube. RT is thermistor, R and RN are linear and nonlinear resistors, E, L and C repre-
sent constant voltage source, induction coil and capacitor, respectively
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By applying the scale transformation in Eq. (5), the dimensionless Hamilton energy 
function is mapped from Eq.(7), it presents

From Eq. (8), the Hamilton energy function of an isolated neuron mainly depends on 
the variables (x, y) and parameters c. To theoretically approach of the Hamilton energy 
function for the neuron, the Helmholtz’s theorem requires a vector form for the neuron 
models in Eq. (6) as follows

The Helmholtz theorem defines that the Hamilton energy function H meets the fol-
lowing criterion

A sole Hamilton energy function can be exact solution for formula as follows

The superscript T indicates transpose operation of matrices for the gradient energy. 
As a result, a solution for Eq.(11) can be obtained to match the Hamilton energy func-
tion presented in Eq. (8).

When the neurons are activated by applying with different external stimuli, energy 
diversity between neurons can be generate. The connected channels will open and trans-
mit energy for keeping energy balance. In presence of resistive coupling between these 
neurons, a regular network on a square array can be described by

where the subscripts (i, j) mean the node position and Gij denotes adjacent regulation on the 
node (i, j) in the regular network, k is the coupling intensity for electric synaptic connec-
tion. For an isotropic network, all nodes have the same parameters setting, while a gradient 
distribution of temperature may induce spatial diversity and homogeneity in the network.
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(10)∇HTFc = 0 ;∇HTFd = Ḣ =
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;
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3  Results and discussion

In this section, the numerical solutions for a single functional neuron and coupled neu-
rons regular network are obtained on the MATLAB platform by applying the fourth-order 
Runge-Kutta algorithm with time step h=0.01. The bifurcation diagrams for the single neu-
ron by changing one parameter are shown in Fig. 2.

The results in Fig.  2 show that photocurrent can excite the neuron to show periodic 
and chaotic firing patterns by adjusting parameter values including forcing signal and tem-
perature. Furthermore, Fig. 3 plotted the largest Lyapunov exponent (LLE) with different 
parameters.

From Fig. 3, LLE greater than zero means occurrence of chaotic state, while LLE less 
than zero predicts appearance of periodic patterns. In fact, bursting and spiking firing pat-
terns are periodic modes, furthermore, the sampled time series for membrane potential and 
Hamilton energy by changing frequency f are shown in Fig. 4.

Fig. 4 illustrates that the neuron occurs three kinds of firing modes by adjusting the fre-
quency, and the neuron has higher mean value of Hamilton energy with bursting and spik-
ing firing patterns, while it has lower mean value of Hamilton energy with chaotic modes. 
To investigate collective dynamical behaviors for neural networks presented in Eq. (12), the 
firing patterns in networks under different coupling intensities k are calculated, the results 
are displayed in Fig. 5 for the network composed of 120*120 neurons by applying no-flux 
boundary condition. For simplicity, all nodes start from the random values within 0~1.

From Fig. 5, it is demonstrated that spiral wave segments can coexist with target wave 
in local area of the network during adjusting coupling intensity. With the further increase 
of coupling intensity, the target waves will be broken to develop a spiral wave close to the 
border of the network. The energy diffusion and energy distribution in the network with 
different coupling intensities k are shown in Fig. 6.

Fig. 2  Bifurcation diagram for a neuron with different parameters setting. For a ξ=0.175, B=0.6, A=0.9; 
b T′=5.5, B=0.6, A=0.9; c T′=5.5, ξ=0.175, A=0.9; d ξ=0.175, T′=5.5, B=0.6. Other parameters are cho-
sen as a=0.7, b=0.8, c=0.1, f=1, and initial value is set as (0.1, 0.3). xpeak denotes peak values of membrane 
potential x 
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Fig. 3  Distribution of LLE for a neuron with different parameters. For a ξ=0.175, B=0.6, A=0.9; b T′=5.5, 
B=0.6, A=0.9; c T′=5.5, ξ=0.175, A=0.9; d ξ=0.175, T′=5.5, B=0.6. Other parameters are fixed at a=0.7, 
b=0.8, c=0.1, f=1, and initial value is set as (0.1, 0.3)

Fig. 4  Evolution of membrane potential and Hamilton energy with different angular frequencies f. For 
a  f=0.02; b  f=0.2; c  f=0.7079. Setting parameters a=0.7, b=0.8, c=0.1, ξ=0.175, B=0.6, T′=5.5, A=0.9, 
and initial value is set as (0.1, 0.3). <H> denotes the average value of Hamilton energy



 F. Yang et al.

1 3

Similar to results in Fig.  5, random diffusion of energy will form the coexistence of 
target waves and spiral waves, when the coupling intensity continues to increase, the coex-
istence of travelling waves will evolve into a single spiral wave. To dicern the collective 
behaviors response of neural network under noisy excitation, the dynamic equations of the 
coupled functional neural network are expressed by

where ζ(τ) denotes the Gaussian white noise with zero average. The statistical relation 
is <ζ(τ)>=0, <ζ(τ)ζ(τ′)>=2Dδ(τ-τ′), here D means noise intensity and D=exp(−1/T′) 
accounts for temperature-dependent noisy disturbance. The noise is imposed on the net-
work in two ways. When noisy disturbance is applied on different regions, the energy  
injection from external stimuli breaks the energy balance and induces parameter diversity 
in the network. In the first case, the noise is applied on the center of the network, and the 

(13)

⎧⎪⎪⎨⎪⎪⎩

dxij

d�
= xij(1 − �(T �)) −

1

3
x3
ij
− yij + B(T �) + A(T �) cos(f �)

+ k(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xij);
dyij

d�
= c(xij − byij + a) + � (�);

Fig. 5  Developed patterns in the network at 1000 time units. For a  k=0.08; b  k=0.085; c  k=0.088; 
d k=0.09. Parameters fixed at a=0.7, b=0.8, c=0.1, ξ=0.175, B=0.6, T′=1.53, f=1, A=0.1, and initial val-
ues are selected as random within (0, 1). Snapshots are plotted in color scale
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size of the region is selected as N/2−10≤i, j≤N/2−10. In the second case, the noise is added 
on the boundary region of the network, and the size of the region is fixed as 1≤i≤10, 1≤j≤N. 
Firstly, the case that noise is imposed on the center of the network is investigated. The firing 
patterns in networks in presence of different noise intensities are displayed in Fig. 7.

It is confirmed that the stable and perfect target wave can be formed in the network with 
the decrease of noise intensity D (temperatures T′ increase). Indeed, noise is applied on 
the center area, which captures external energy for further spatial diffusion, and wave can 
be propagated in the network. Furthermore, the energy propagation in the network is ana-
lyzed by changing noise intensity carefully, and the energy patterns are plotted in Fig. 8 for 
showing the energy distribution under synaptic coupling.

The results in Fig. 8 show that energy diffusion in the network formed stable and perfect 
target waves by applying noise on center region of network. It is interesting to investigate 
the case when the noise is added on the boundary region of the network, and the firing pat-
terns of the network by adjusting noise intensity are displayed in Fig. 9.

It is demonstrated from Fig. 9 that the modes in the network are transferred from a het-
erogeneity state to a stable traveling wave when noisy excitation is applied on the bound-
ary region of the network. This result indicates that noisy excitation on the boundary of 

Fig. 6  Distribution of energy values in the network at 1000 time units. For a k=0.08; b k=0.085; c k=0.088; 
d  k=0.09. Setting a=0.7, b=0.8, c=0.1, ξ=0.175, B=0.6, T′=1.53, f=1, A=0.1, and initial values are 
selected as random within (0, 1). Snapshots are plotted in color scale
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the network can be effective to induce similar plane wave with further increasing the tem-
perature in the network. Fig. 10 show that energy propagation in the network during the 
wave propagation. It is found that the profile of energy levels has similar distribution of 
the membrane potential, that is, firing patterns are relative to the energy level in close way.

Similar to the results in Fig.  9, the stable traveling wave can be formed by applying 
noise on the boundary region of the network. Based on the adaptive property of biological 
neurons, a neural network with energy diversity controls parameter shifts is described as 
follows

(14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxij

d�
= xij(1 − �(T �)) −

1

3
x3
ij
− yij + B(T �) + A(T �) cos(f �)

+ k(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xij);
dyij

d�
= c(xij − byij + aij);

daij

d�
= g ⋅ aij ⋅ �(ΔHij − �),m1 ≤ i ≤ n1,m2 ≤ j ≤ n2;

ΔHi =
���4Hij − Hi+1,j − Hi−1,j − Hi,j+1 − Hi,j−1

���.

Fig. 7  Developed patterns in the network under noise at 3000 time units. For a  T′=3; b  T′=4; c  T′=5; 
d T′=6. Setting a=0.7, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, and initial values are selected 
as random within (0, 1). Snapshots are plotted in color scale
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where the superscripts and subscripts (i, j) mean the node position in the regular network, 
m and n represent the heterogeneity size or defect size. g denotes the gain for adjusting 
the internal parameter a. As presented in Eq. (6), the neuron model has several adjust-
able parameters including (a, b, c) and two parameters (A, B) are relative to temperature. 
The parameter a in Eqs. (6) and (14) accounts for the reverse voltage of the neural cir-
cuit and resting potential of one ion channel. In presence of energy diversity or external 
energy injection for electric stimuli, the excitable media suffers from depolarization and 
thus the reverse potential of ion channels can be switched. Therefore, Eq.  (14) describes 
the adaptive growth of parameter a under energy flow. For extensive studies, readers can 
explore similar case for mode transition, pattern formation and energy shift when other 
adjustable intrinsic parameters (b, c) are regulated in similar adaptive law. The Heaviside 
function θ(*) is used to control the growth of parameter a. For finite neurons, higher ener-
gies occur in heterogeneous regions, while lower energies occur in defect regions. When 
m1=m2=N/2−10, n1=n2=N/2+10, the parameter a in the center of the network is increased 
from 0.1, and the parameter a for other areas remains 0.7. In this case, firing patterns in the 
network are shown in Fig. 11.

Fig. 8  Energy propagation in neural network under noise at 3000 time units. For a T′=3; b T′=4; c T′=5; 
d T′=6. Parameters are chosen as a=0.7, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, and initial 
values are selected as random within (0, 1). Snapshots are plotted in color scale
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From Fig.  11, continuous target waves can be induced by applying the possible shift 
in the center of the network presenting in chaotic and/or periodic states. Heterogeneous 
regions will form target waves in the network within finite transient period. In this case, 
energy diffussion in the network is shown in Fig. 12.

It is confirmed that the propagation of target wave in the network is supported by energy 
diversity formed from center of the network. Furthermore, m1= m2=1, n1=10, n2=N, the 
parameter a on the boundary region of the network is increased from 0.1, and the param-
eter a for other areas remains 0.7. The firing patterns in the network in this case are shown 
in Fig. 13.

Similar to the case of the noise is applied on the boundary region of the network, stable 
and perfect traveling waves can be formed. The coexistence of traveling wave and spiral 
wave is formed within finite periods. The energy propagation in the network is shown in 
Fig. 14.

The results in Fig.  14 show that energy diversity exists on the boundary of the net-
work, and parameter shift is induced to regulate energy diversity for reaching local energy 

Fig. 9  Developed patterns in the network under noise at 3000 time units. For a T′=1.3; b T′=1.6; c T′=1.8; 
d T′=2.1. Parameters are chosen as a=0.7, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, and initial 
values are selected as random within (0, 1). Snapshots are plotted in color scale.
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balance and synchronization. The distribution of energy values is similar to the profile of 
membrane potential patterns because the firing patterns are relative to the energy levels of 
the neurons.

In a summary, connection of phototube and thermistor makes the photocurrent become 
dependent on the temperature. As a result, any changes of temperature will modify the 
excitability and mode selection is controlled completely. As a result, energy level is 
switched during the changes of temperature in a single neuron. When more neurons are 
clustered, synaptic coupling is helpful to decrease energy diversity and energy balance sup-
ports complete synchronization for developing homogeneous states in the network. Local 
noisy disturbance injects energy and breaks energy balance for developing wave fronts, 
which can diffuse the energy in the network. For fast approach of energy balance, one 
intrinsic controllable parameter shows adaptive growth under energy diversity until they 
reach stable energy balance and the growing parameter will keep a saturation value, which 
supports stable wave propagation and regular spatial patterns in the neural network.

Fig. 10  Energy propagation with noise intensity at 3000 time units. For a  T′=1.3; b  T′=1.6; c  T′=1.8; 
d T′=2.1. Parameters are chosen as a=0.7, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, and initials 
are selected as random values within (0, 1)
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4  Open problem

As is known, thermistors are divided into two types considering the its negative or positive 
signs for dR/dT. For negative temperature coefficient thermistor (NTCT) dR/dT<0 and its 
resistance is decreased by increasing the temperature. A positive temperature coefficient 
thermistor (PTCT) requires dR/dT>0, and the resistance is increased with temperature. 
When the thermistor in Fig.  1 is considered as a PTCT, the neural circuit described in 
Fig. 1 is the same as in Eq.(1). The channel current along RN in Fig. 1 can be estimated by 
Eq. (2) or other forms, and the time-varying voltage Vs across the phototube is considered 
as Eq. (3). The resistance across PTCT can be estimated by

R∞ measures the maximal resistance for the PTCT at T→0. Similar scale transformation 
for the physical variables and intrinsic parameters are updated with a group of dimension-
less variables as follows

(15)RT = R∞ exp(−
B�

T
),B� =

q

K
;

Fig. 11  Developed patterns in the network. For a 1600 time units; b 2000 time units; c 2500 time units; d 
3000 time units. Parameters are chosen as T′=1.53, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, 
ε=0.00001, g=0.001, and initial value for each node is set as random (0, 1)
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As a result, temperature-light sensitive neuron model can be updated as follows

(16)

⎧⎪⎪⎨⎪⎪⎩

x =
V

V0

, y =
�iL

V0

, � =
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E
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�
, c =
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{
dx

d�
= x(1 − �(T �)) −

1

3
x3 − y + B(T �) + A(T �) cos(f �);

dy

d�
= c(x − by + a).

Fig. 12  Energy propagation with. For a 1600 time units; b 2000 time units; c 2500 time units; d 3000 time 
units. Parameters are chosen as T′=1.53, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, ε=0.00001, 
g=0.001, and initial value for each node is set as random (0, 1)
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The field energy is mainly kept in two energy storage components including the 
capacitor and induction coil, the two kinds of neural circuits (and the equivalent neu-
ron models) have the same energy function even the temperature changes have differ-
ent impact on the mode transition and energy propagation in the neurons. This neuron 
model can be further used to explore the collective patterns and energy distribution in 
neural networks with gradient temperature distribution. Furthermore, memristive terms 
can also be introduced into Eq.(17), and the energy is shunted and shared in the memris-
tive channel besides the capacitive and inductive components. When the functional neu-
ral network is excited by spatial stimuli, for example, gradient distribution in the illu-
mination and temperature, all the neurons become non-identical, the self-organization 
and emergence of regularity in the networks can give possible clues to understand the 
regulation role of energy flow in the network. Besides the functional electric component 
as thermistor and piezoelectric ceramic, memristor is considered as important candidate 
for intelligent computation in AI design and adaptive control [62].

Fig. 13  Developed patterns in the network. For a 1600 time units; b 2000 time units; c 2500 time units; d 
3000 time unites. Parameters are chosen as T′=1.6, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, 
ε=0.00001, g=0.001, and initials are selected as random value within (0, 1)
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5  Conclusion

In this work, a temperature-light sensitive neuron is obtained by connecting a phototube 
and a thermistor into a simple capacitive-inductive circuit coupled with a nonlinear resis-
tor. A regular network on square array is built to discern energy distribution during pattern 
formation and wave propagation under synaptic coupling. The heterogeneity and defect 
created accompanying with shift of the parameter a in a few neurons when noisy excitation 
is applied on local area of the network. Energy diffusion for center area and boundary area 
in the network are investigated, respectively. The result indicates that the energy diversity 
of different regions of the network will form stable and perfect target and traveling waves. 
Adaptive growth of one or more intrinsic parameters are helpful for decreasing energy 
diversity, and stable energy balance in the network is effective to induce continuous wave 
fronts and regular patterns can be developed in the network. As a result, external signals 
can be perceived and then signals are propagated in the network in effective way.

Fig. 14  Energy propagation with. For a 1600 time unites; b 2000 time units; c 2500 time units; d 3000 time 
units. Parameters are chosen as T′=1.6, b=0.8, c=0.1, ξ=0.175, B=0.6, k=0.08, f=1, A=0.1, ε=0.00001, 
g=0.001, and initial value is set as random (0, 1)
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