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Abstract
We have analysed the synchronisation scenario and the rich spatiotemporal patterns in the 
network of Hindmarsh-Rose neurons under the influence of self, mixed and cross coupling 
of state variables which are realised by varying coupling phase. We have introduced a cou-
pling matrix in the model to vary coupling phase. The excitatory and inhibitory couplings 
in the membrane potential induce in-phase and anti-phase bursting dynamics, respectively, 
in the two coupled system. When the off-diagonal elements of the matrix are zero, the 
system shows self coupling of the three variables, which helps to attain synchrony. The off-
diagonal elements give cross interactions between the variables, which reduces synchrony. 
The stability of the synchrony attained is analysed using Lyapunov function approach. In 
our study, we found that self coupling in three variables is sufficient to induce chimera 
states in non-local coupling. The strength of incoherence and discontinuity measure vali-
dates the existence of chimera and multichimera states. The inhibitor self coupling in local 
interaction induces interesting patterns like Mixed Oscillatory State and clusters. The 
results may help in understanding the spatiotemporal communications of the brain, within 
the limitations of the size of the network analysed in this study.

Keywords Cross coupling · Stability analysis · Travelling chimera · Synchronicity
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1 Introduction

The mechanism of synapses in both synchronised and desnchronised neural oscillations 
has gained attraction due to its vital role in the propagation and exchange of information 
between neurons [1–3]. The synapses are broadly classified as electrical and chemical. At 
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electrical synapses, the neurons are connected through a gap junction and a direct flow 
of electrical currents occurs. Hence, electrical synapses are much faster than chemical 
synapses [4]. Electrical synapses have great contributions to neural functions at the initial 
stage and continue to function throughout life by controlling sensory processing, rhythmic 
behaviour, pattern generation and motor systems [5].

Earlier, it was assumed that electrical synapses could induce in-phase synchrony only. 
But, later it was proved wrong [3] and stable anti-phase oscillations in electrically coupled 
relaxation oscillators were reported [6]. The stochastic transitions between in-phase and 
anti-phase synchronisations in neural oscillators are still of great interest even after these 
many years [7, 8]. Researchers have proposed different modifications in inhibitory and 
excitatory connections to induce anti- and in-phase oscillations [9, 10]. Memristor effects 
were also used for this purpose [11]. The anti- and in-phase relay synchronisation of oscil-
lators were found in a heterogeneous network of two-dimensional lattices of continuous-
time systems [8].

The study of synchronisation in networks of coupled nonlinear oscillators is an active area 
of research. The interplay of noise, time delay, and topology was analysed in a coupled net-
work to understand the formation of coherence [12]. Studies have found synchronisation in 
weakly coupled systems, indicating that strong coupling is not always a prerequisite for syn-
chrony [13]. Surprisingly, studies have shown that seemingly adverse factors, such as time 
delay and noise, can induce synchronisation in a network of coupled oscillators [14, 15].

The synchronisation of neural networks in numerous brain regions, including the hip-
pocampus, thalamus, neocortex and cerebellar cortex, is characterised by the transition 
between anti-phase and in-phase oscillations in neurons [16]. When the coupled neurons 
fire at the same time, then it is called in-phase oscillations. Anti-phase oscillations arise 
when one neuron exhibits spiking behaviour while the other neuron is in rest [17]. The 
long range in-phase oscillations are considered to be beneficial for the coordination of vari-
ous functions taking part in different parts of the brain [18]. These rhythmic transitions 
are also crucial for animal mobility [9]. Anti-phase oscillations were observed experimen-
tally in different functions such as attention task, sleeping and resting state of the neurons 
[19–24]. A model consisting of two electrically coupled pacemakers was analysed to study 
the in-phase and anti-phase oscillations [25]. The factors that lead to stable anti-phase were 
analysed in the model of neurons with biological applications [26, 27]. Travelling chimera 
were used to identify the tumorous cells [28].

A chimera state is a peculiar state where a network of identical oscillators splits into two 
groups, one of which oscillates in synchrony while the other is incoherent. Wolfrum and 
Omel’chenko showed that chimera states can be observed in finite-sized systems, which is 
a significant finding because previously these states were only observed in systems with a 
thermodynamic limit [29]. The importance of chimera states and travelling waves were clini-
cally studied and the results were numerically confirmed using FHN and leaky integrate-and-
fire model [30]. Interesting spatio temporal patterns like chimeras, mutichimeras, alternating 
chimeras and travelling chimeras are of special interest to the researchers [31–34]. A novel  
type of chimera called switching chimera which attracts initial conditions and exhibits power-
law switching behaviour in networks of coupled oscillators is reported [35]. Cluster forma-
tions are considered to be the intermediate stage before attaining complete synchrony [36].  
Chimeras can be induced in a network by distance dependent coupling [37, 38], non-local 
coupling [39], cross coupling or rotation matrix coupling [40], modifications in initial condi-
tions and topology [41] or just as an inherent property where the incoherent subpopulation  
stabilises the coherent subpopulation [42]. Whatever may be the mechanism behind the chi-
mera state, the underlying principle is symmetry breaking [43]. Metastable chimeras were 
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obtained in Kuramoto oscillators by giving a phase lag between the different oscillators [44]. 
The generation of interesting phenomena such as phase synchronisation, chimera states, and 
travelling waves was explained in Kuramoto oscillators using this phase lag between oscillators  
[45]. The cross coupling of state variables was realised with the help of a rotation matrix by 
Omelchenko et al. to introduce multichimera states in non-locally coupled FitzHugh-Nagumo 
(FHN) oscillators [46]. The analysis of the rotation matrix on FHN was elaborated by other 
researchers [30, 47] and was also carried out on second order Hindmarsh-Rose(HR) neurons 
[40], by fixing the coupling phase. The authors have carried out an experimental analysis on 
electronic neurons and reported that in-phase synchrony happens for positive couplings and 
anti-phase oscillations for negative couplings in electrical coupling. Whereas, in the chemi-
cal coupling, excitatory mode produces in-phase synchrony and anti-phase oscillations result 
from inhibitory mode [48]. The interesting phenomena of producing in-phase and anti-phase 
oscillations for moderate and strong coupling in the electrical synapse in Hindmarsh-Rose 
neurons is also studied [49]. In this work, coupling phase is used to switch between in-phase 
and anti-phase bursting.

The researchers rely on the master stability function or Lyapunov function approach to ana-
lyse the stability attained by the network [50–55]. The Lyapunov function is also used as a 
controller to induce clusterisation in a network [36]. The Hindmarsh-Rose neurons have been 
widely used in computational neuroscience to study the dynamics of neural activity [56] and 
has contributed to our understanding of the brain and how it works [38, 57–59].

We analyse the synchronisation scenario and pattern formations in HR neural network 
coupled by a rotation matrix which helps to realise different coupling schemes such as self, 
cross and mixed modes, by varying the coupling phase. The work is organised as follows: The 
model for two coupled HR systems and the generation of in-phase and anti-phase oscillations 
are presented in Sect. 2. The synchronisation scenario and the analysis of its stability using 
the Lyapunov function approach have also been discussed in this section. Section 3 has been 
devoted to the analysis of N coupled network with self and cross coupling of variables. The 
synchrony of the network is quantified and the patterns obtained are presented. The quantifiers 
for incoherence, chimera, multichimera and coherence have also been calculated. Section 4 
concludes the study.

2  A system of two coupled Hindmarsh‑Rose neurons

A system of two coupled HR neurons have been analysed under the influence of self, mixed 
and cross coupling of state variables [28, 40]. The dynamic system is expressed by the equa-
tions of the form:

The membrane potential of the neuron is represented by xi . The flow of Na+ ions 
constitute the spiking variable, yi , whereas, the bursting variable zi is constituted by the 

(1)

ẋi = yi − ax3
i
+ bx2

i
− zi + I + g[b11(xj − xi) + b12(yj

− yi) + b13(zj − zi)],

ẏi = c − dx2
i
− yi + g[b21(xj − xi) + b22(yj − yi) + b23

(zj − zi)],

żi = r(s(xi − xe) − zi) + g[b31(xj − xi) + b32(yj − yi)

+ b33(zj − zi)], i, j = 1, 2.
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flow of Ca+ ions [60]. The activation and inactivation of the fast and slow ion chan-
nels are denoted by the parameters a, b, R and xe , respectively [56, 61]. Constants r 
and s approximate the biological behaviour of the model [62]. g represents the coupling 
strength and I is the external current entering the neuron. The interaction takes place 
through a cross coupling scheme between the variables xi , yi and zi , which is modelled 
through a coupling matrix as,

The system is analysed under the influence of the rotational matrix of the form:

where  � , within the interval [ −�,� ), is the coupling phase. The different values of � 
give the coupling matrices that enable us to realise self, mixed and cross couplings, in 
inhibitory and excitatory modes. For eg. when � = 0 , the elements of the matrix are 
b11 = 1, b12 = 0, b21 = 0 and b22 = 1 . These elements induce the self coupling in x and y 
of Eq. 1. When � = �∕2 , we have b11 = 0, b12 = 1, b21 = −1 and b22 = 0 . Here the x vari-
able is cross coupled to y and vice versa. Also, the cross coupling of x in y is inhibitory. 
Similarly, when � = �∕4 , we have mixed interactions between the x and y variables. Thus, 
the coupling phase represents how a variable is coupled to another variable of the same 
neuron. The coupling matrix in Eq. 2 helps to simplify the representation and realisation 
of these interactions by adjusting a single parameter � . By continuously varying the value 
of � , we can analyse the bifurcation point at which the effect of cross interaction over-
rides the effect of self coupling, and vice versa. The parameters are chosen as: a = 1, b 
= 3, c = 1, d = 5, r = 0.006, s = 4, xe = −1.61, I = 3.1 [63]. Initial conditions are chosen 
randomly to lie in the range [ −0.5,0.5]. The results presented in the entire work are consist-
ent for any choice of initial values. The anti-phase and in-phase bursting dynamics in the 
system with electrical coupling in self, mixed and cross interactions in x and y variables 
is analysed by varying � in Eq. 2 and the plots are shown in Fig. 1. When � = −� , the self 
coupling is inhibitor in x and y. The system shows anti-phase bursts as shown in Fig. 1a. 
When � = −

�

2
 , the coupling is cross in x and y, that is, activator-inhibitor mode and the 

system exhibits anti-phase bursting as shown in Fig. 1b. In this case, the cross coupling 
of y variable to x is inhibitory. The self activator synapse in x and y is realised with � = 0 
and the system shows in-phase burst synchrony as shown in Fig. 1c. When � =

�

4
 , the cou-

pling is mixed (self and cross), with activator self coupling and activator-inhibitor cross 
coupling. The oscillations of the neurons are in-phase as shown in Fig. 1d. The activator 
cross coupling of y variable in x, when � =

�

2
 , induces in-phase synchrony, as shown in 

Fig. 1e. However, the synchrony is obtained at a comparatively high coupling strength as 
the coupling of x in y is inhibitory. An activator-activator cross coupling is realised when 
b21 is chosen to be positive which promotes synchronisation at a weaker coupling strength 
as shown in Fig. 1f. The system exhibits anti-phase oscillations for inhibitor coupling in 
the x variable and in-phase synchrony for activator coupling, whether the coupling is self 
or cross. Synchrony is obtained at a lower coupling strength when the nature of the connec-
tion is activator-activator in cross-coupling.

B =

⎛
⎜⎜⎝

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞
⎟⎟⎠

(2)B =

⎛⎜⎜⎝

cos � sin � 0

− sin � cos � 0

0 0 0

⎞⎟⎟⎠



349In‑phase and anti‑phase bursting dynamics and synchronisation…

1 3

2.1  Synchronisation scenario

The synchrony in the system is analysed with the help of normalised synchronisation 
error given by the equation [64]:

(3)E =

√√√√ e2
x
+ e2

y
+ e2
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Fig. 1  Time series of membrane potential of two coupled HR neurons for different coupling phases. 
a  � = −� , g = 0.02,  b  � =

−�

2
 , g = 0.04,  c  � = 0 , g = 0.02,  d  � =

�

4
 , g = 0.09 , e  � =

�

2
 , g = 0.32 , 

f � =
�

2
, g = 0.12, b21 = sin �
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where, ex = x2 − x1, ey = y2 − y1, ez = z2 − z1 . The synchronisation scenario of two cou-
pled systems has been analysed for self coupling in x, y and z variables and is shown in 
Fig.  2. The blue line represents the synchronisation error with self coupling in x alone 
which is realised with b11 = 1 and all the other components are zero. The synchrony is 
obtained at g ≈ 0.5 . The self coupling in y along with x, realised with b11 = b22 = 1 , helps 
to induce synchrony at a lower coupling strength. The red line shows that synchrony is 
obtained at g ≈ 0.01 . When b11 = b22 = b33 = 1 , i.e. self coupling in x, y and z variables 
further reduces the value of g at which synchrony is obtained, as represented by the yellow 
line. The coupling strength at which synchronisation is obtained decreases as the number 
of self coupled variables increases.

2.1.1  Stability of synchronisation

The stability of the synchrony induced under in-phase bursting dynamics is analyti-
cally verified in this section. The coupling matrix is taken of the form as in Eq.  2. 
This matrix is a simple way to realise self activator coupling ( b11,b22 ) and activator-
inhibitor cross coupling ( b12,b21 ) by a single parameter � . The choice of cross cou-
pling in and of z variable is discarded, because only cross coupling in x and y exhibits 
bursting dynamics. We have analysed the system of HR neurons in three different 
cases: (i) Self coupling in x and y, � = 0 . (ii) mixed coupling in x and y, � =

�

4
 . (iii) 

Cross coupling in x and y, � =
�

2
.

The time derivative of the Lyapunov function is used to determine the stability 
of the system under the influence of different coupling phases [65]. The complete 
synchronisation of the coupled system occurs when the two neurons exhibit identical 
behaviour, that is,

For synchronised states,

(4)

||x2(t) − x1(t)|| → 0

||y2(t) − y1(t)|| → 0

||z2(t) − z1(t)|| → 0

Fig. 2  Synchronisation error of 
two coupled HR neurons for self 
coupling in state variables
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The error states ex = x2 − x1, ey = y2 − y1, ez = z2 − z1 , are defined by introducing coor-
dinates that are transverse to the synchronisation manifold. We have the error dynamics of 
the system without self coupling in z variable as:

We define a new variable U = x2 + x1 . Then, x2
2
− x2

1
= Uex and x3

2
− x3

1
= ex(e

2
x
+ 3U2)∕4

On simplifying,

The Lyapunov functions are evaluated from this error dynamics. In Lyapunov func-
tion approach, we define a continuous, positive-definite Lyapunov function V, using Eq. 7, 
which has the form:

The first derivative of the Lyapunov function is continuous and the time derivative 
along trajectories of the error dynamical system gives

On substitution and simplifying,

The terms x1, x2, ex, ey, ez in Eq. 10 are obtained by solving Eqs. 1 and 7 simultaneously. 
Similarly, the Lyapunov function for the system with self coupling in z variable is obtained 
as:

(5)

x1(t) = x2(t) = x(t)

y1(t) = y2(t) = y(t)

z1(t) = z2(t) = z(t)

(6)

ėx = ey − a(x3
2
− x3

1
) + b(x2

2
− x2

1
) − ez − 2g cos 𝛿ex

− 2g sin 𝛿ey

ėy = −d(x2
2
− x2

1
) − ey + 2g sin 𝛿ex − 2g cos 𝛿ey

ėz = rsex − rez

(7)

ėx = (−0.25a(e2
x
+ 3U2) + bU − 2g cos 𝛿)ex + (1 − 2g sin 𝛿)ey − ez

ėy = (2g sin 𝛿 − dU)ex − (1 + 2g cos 𝛿)ey

ėz = rsex − rez

(8)V(ex, ey, ez) =
1

2
[e2

x
+ e2

y
+ e2

z
]

(9)
dV

dt
= exėx + eyėy + ezėz

(10)
dV

dt
= (−0.25a(e2

x
+ 3U2) + bU − 2g cos �)e2

x
− (1 + 2g

cos �)e2
y
− re2

z
+ (1 − dU)exey + (rs − 1)exez

(11)
dV

dt
= (−0.25a(e2

x
+ 3U2) + bU − 2g cos �)e2

x
− (1 + 2g

cos �)e2
y
− (r + 2g)e2

z
+ (1 − dU)exey + (rs − 1)exez
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The stability of the synchrony in the system by varying coupling phases given in 
Eq. 2 is analysed with b33 = 0 and b33 = 1 using Eqs. 10 and 11, respectively. The vari-
ations in dV

dt
 with g and b33 = 0 is presented in Fig. 3a. The value of dV

dt
 is greater than 

0 for g < 0.06 , in the system with self coupling in x and y ( � = 0 ), represented by the 
blue line. The system exhibits desynchrony in this region. For g > 0.06 , the system is 
synchronised with dV

dt
= 0 . For the system with mixed coupling ( � =

�

4
 ), the synchrony 

is obtained at a higher value of g = 0.12 , represented by the red line. The complete 
synchrony in the system with cross coupling ( � =

�

2
 ) is obtained at g = 0.2 . The inset 

shows that synchrony is more difficult to achieve in systems with mixed coupling than 
in systems with self coupling. The variation in dV

dt
 for the system with self coupling in z 

variable ( b33 = 1 ) along with cross coupling in x and y is analysed using eq. (11) and is 
presented in Fig. 3b. In contrast to a system lacking self coupling in z, synchrony sta-
bilisation occurs at lower values of g. The synchrony is attained at g = 0.02, 0.03, 0.07 
for self, mixed and cross coupling, respectively. In the inset, it is justified that in mixed 
coupled systems the coupling strength at which synchrony is obtained is greater than 
self coupled systems. When � =

�

2
 , the interaction is cross alone and the synchrony is 

obtained at high coupling strength compared to the system with self and mixed coupling. 

Fig. 3  Variations in derivative of 
Lyapunov function with coupling 
strength, for different values of � . 
a b33 = 0 , b b33 = 1

(a)

(b)
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The system with self coupling attains synchrony at low coupling strength compared to 
a system with sole cross coupling. Cross coupling has a desynchronising impact while 
self coupling has a synchronising effect.

The parameter space shown in Fig. 4 characterises the complete synchronisation scenario by  
varying g and � , for b33 = 0 and b33 = 1 , at low and high coupling strength. The variations  
in the time derivative of the Lyapunov function with b33 = 0 is presented in Fig. 4a with  
low g and Fig. 4b with high g. For values near � = 0 , the system has self interactions and 
synchrony is obtained at g ≈ 0.05 , which is visible from Fig. 4a. With the increase in the 
value of � , the coupling strength at which the stabilised synchrony is obtained increases 
due to the contributions from cross coupling. On further increase in the value of � , the 
interaction from self coupling decreases and cross coupling increases and the synchrony is 
obtained at a higher value of g. When � =

�

2
 , the interaction is cross coupling alone and the 

synchrony is obtained at g ≈ 0.2, which is observed from Fig. 4b.
The synchronisation scenario of the system with b33 = 1 as shown in Fig. 4c and d. For 

low values of � , the interaction is self coupling and the synchrony is obtained at g ≈ 0.02 , as 
shown in Fig. 4c. With the increase in � , cross coupling works along with self coupling and 
the value at which synchrony is obtained increases to g ≈ 0.03 . With further increase in � , 
interactions are solely from cross coupling and the value of g at which synchrony obtained 
increases, as visible from Fig.  4d. The system with self coupling has the lowest coupling 
strength at which synchrony is obtained. The parameter space is rich and complex due to the 
coupling scheme of the network, and it remains consistent for any values of initial conditions.

(a) (b)

(c) (d)

Fig. 4  Colour coded variations in time derivative of Lyapunov function with coupling strength and phase. 
Coupling phase is plotted along X-axis, coupling strength along Y-axis and derivative of Lyapunov function 
is represented by colourbar. a b33 = 0 (low coupling strength), b b33 = 0 (high coupling strength), c b33 = 1 
(low coupling strength), d b33 = 1 (high coupling strength)
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3  System of N coupled Hindmarsh‑Rose neurons

A network of HR neurons with interactions represented by a rotation matrix, with global, 
non local and local (nearest neighbour) interactions have been analysed in a ring topology.

The dynamical equations are of the form:

where N is the total number of neurons in the network. A periodic boundary condition 
x0 = xN , x−1 = xN−1 and xN+1 = x1 is considered to realise the ring configuration. p is the 
number of neighbours to which each neuron is coupled in either direction of the ring. The 
network is analysed with N = 525 . The global, non local and local interactions are realised 
by fixing p = N−1

2
 , 10 and 1, respectively. The synchrony pattern in the network with global 

interaction for different coupling phases are quantified using the statistical factor of syn-
chronisation, R [66],:

where, F =
1

N

∑N

i=1
xi and ⟨ ⟩ represents the average of the variable over time. The system 

attains complete synchrony when R = 1 and desynchrony when R = 0.
The variations in R with g, for different values of coupling phases are shown in Fig. 5. 

The synchrony in the network with self coupling is presented in Fig. 5a. The synchrony 
attained in the system with self coupling in x variable alone is presented by the blue line. 
The red and yellow lines represent the synchrony pattern with self coupling in x, y and 
x,  y,  z variables, respectively. With the increase in the number of variables having self 
coupling, the coupling strength at which synchrony is obtained decreases. The synchrony 
obtained in the system with cross coupling in x and y variables and no self coupling in z 
variables ( b33 = 0 ) is shown in Fig. 5b. For g ≈ 0.4 , the system attains complete synchrony 
for mixed coupling ( � =

�

4
 ), whereas for cross coupling the complete synchrony is obtained 

for g ≈ 0.7 . For values above 0.7, the synchrony for mixed and cross coupling coincides 
with each other. The amount of synchrony obtained with cross coupling in x and y vari-
ables and self coupling in z variable ( b33 = 1 ) is shown in Fig. 5c. In comparison to the 
system with no self coupling in the z variable, the synchronisation is reached at a lower 
coupling strength. The system attains complete synchrony at g = 0.1 and 0.7 for mixed and 
cross coupling, respectively. The coupling strength at which synchrony is achieved for N 
coupled neurons, however, is higher than in a system with two neurons.

(12)

ẋi = yi + ax2
i
− bx3

i
− zi + I +

g

2p

j=i+p∑
j=i−p

[b11(xj − xi)+

b12(yj − yi) + b13(zj − zi)],

ẏi = c − dx2
i
− yi +

g

2p

j=i+p∑
j=i−p

[b21(xj − xi) + b22(yj − yi)

+ b23(zj − zi)],

żi = r(s(xi − xe) − zi) +
g

2p

j=i+p∑
j=i−p

[b31(xj − xi) + b32

(yj − yi) + b33(zj − zi)], i = 1, 2, ...,N.

(13)R =
⟨F2⟩ − ⟨F⟩2

1

N

∑N

i=1
[⟨x2

i
⟩ − ⟨xi⟩2]
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The network with b33 = 1 shows a richer pattern and cluster formations in non local 
and local interactions and is shown in Fig.  6. The multichimera pattern obtained for 
non local interaction in the system with self coupling in x, y and z variables, for � = 0 , 
is shown in Fig.  6a. The self coupling in the state variables is capable of inducing 

Fig. 5  The variations in Statisti-
cal factor of synchronisation with 
coupling strength in HR neural 
network with global interaction 
for different values of coupling 
phase. a Self coupling in vari-
ables, b b33 = 0 , c b33 = 1

(a)

(b)

(c)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6  Emergence of interesting patterns in HR network by the variations in coupling phase non local and 
local interactions. a multichimera (p = 10, � = 0 , g = 0.1 ) b chimera (p = 10, � =

�

4
 , g = 0.19 ) c travelling 

chimera (p = 10, � =
�

2
− 1 , g = 0.09 ) d travelling chimera (p = 10, � =

�

2
− 1 , g = 0.1 ) e multichimera (p = 

10, � =
�

2
 , g = 0.17 ) f multichimera (p = 10, � =

�

2
 , g = 0.24 ) g MOS (p = 1, � = −� , g = 0.2 ) h cluster (p 

= 1, � = −� , g = 0.3)
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chimera states. The same is not obtained when the coupling is in a single variable (not 
shown in this work). This proves that a network is self sufficient of exhibiting chimeras 
without distance dependent coupling or cross coupling. The mixed coupling in x and y 
variables and self coupling in z variable, for � =

�

4
 induces a chimera state as shown in 

Fig. 6b. Travelling chimera is obtained for mixed coupling with � =
�

2
− 1 for g = 0.09 

and 0.1, as shown in Fig. 6c and d, respectively. Multichimera states are obtained for 
� =

�

2
 , at g = 0.17, 0.24 , as shown in Fig. 6e and f, respectively. The inhibitor self cou-

pling with � = −� in nearest neighbour interaction induces a mixed oscillatory state, 
as shown in Fig. 6g. The oscillators are grouped into three clusters for locally coupled 
networks, with � = −� as shown in Fig. 6h.

The emergence of chimera and multichimera states in the network with self, cross 
and mixed coupling of state variables is analysed with the help of a quantitative meas-
ure called strength of incoherence (SI). The local standard deviation, �(m) , has been 
defined from the time series. We divide the total number of oscillators into ‘M’ bins of 
equal length ‘n’ = N/M and obtain the difference dynamical variable as �j = xj − xj+1 . 
Then the local standard deviation is defined as [67]:

where m = 1,2,...,M; ⟨�⟩ = 1

N

∑N

i=1
�i(t) . ⟨...⟩t denotes the average over time. The term SI 

is defined as:

where H is the Heaviside step function and � is a predefined threshold. The values of SI 
are 1, 0 or between 1 and 0, representing incoherent, coherent and chimera or multichimera 
states, respectively. In order to distinguish chimera from multichimera states, we calculate 
discontinuity measure (DM) [67], which is defined as:

where sM+1 = s1 . For the chimera state, DM = 1 and for the multichimera state 2 ≤ DM ≤ M

2
.

The self coupling in three variables x, y and z induces chimera states in non locally  
coupled network as shown in Fig. 7a. Figure 7b justifies the presence of chimera states. The  
emergence of chimera or multichimera states in non locally coupled networks with mixed  
coupling in x, y and self coupling in z is shown in Fig.  7c. The variations in DM as  
shown in Fig. 7d distinguish the chimera and multichimera states. The cross coupling 
in x and y, along with the self coupling in the z variable also induces chimera and 
multichimera states in the non locally coupled network which is visible from Fig. 7e.  
Figure 7f shows that there are no chimeras and that the patterns obtained are multichi-
meras. Studies have shown that under the influence of a rotation matrix, chimera states 
are induced in the non locally coupled networks with self, mixed and cross interaction 
and in locally coupled network, neurons show clusterisation. In mixed and cross cou-
pling, the possibilities for chimera states are minimum, but it is high for self coupling.

(14)�(m) =

�����1

n

mn�
j=n(m−1)+1

�
�j − ⟨�⟩�2

�

t

,

(15)SI = 1 −

∑M

m=1
sm

M
, sm = H(� − �(m)),

(16)DM =

∑M

i=1
�si+1 − si�
2

,
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4  Conclusions

The synchronisation and patterns emerging due to the self and cross interactions of vari-
ables are analysed in networks of HR neurons. Activator self coupling in the x  
variable induces in-phase synchrony whereas the inhibitory mode induces anti-phase 
synchrony in two coupled systems. When the self coupling in y and z variables are intro-
duced synchrony is attained at a lower coupling strength. Based on the Lyapunov func-
tion approach, the stability of activator coupling in x variable is verified for self, mixed 
and cross coupling modes. When the system achieves synchrony, the time derivative 
of the function tends to zero. The synchronisation scenario is explained in detail by 
the parameter space with coupling phase and coupling strength, as the parameters. The 
complete synchronisation is achieved at a lower coupling strength when self coupling 
is present in the variables, and as cross interactions come into play, synchronisation is  
achieved at a higher coupling strength.

A network arranged in ring topology has been analysed with global, non local and 
local interactions. The in-phase synchrony obtained for activator coupling in x variable  
with self, mixed or cross coupling has been justified in the globally coupled systems as  
well. Chimera, multichimera and travelling chimera states are obtained by the 
interplay of coupling phase and coupling strength, in non local interactions. It is  
observed that the presence of chimera states is low, in systems with mixed or cross  
coupling and high in networks with self coupling. The inhibitor self coupling in x, y and 
activator self coupling in z variable induces in-phase, anti-phase and out of phase oscil-
lations which result in the occurrence of mixed oscillatory state and clusters in nearest  
neighbour interactions.

Fig. 7  Strength of incoherence 
(SI) and discontinuity measure 
(DM) for different coupling 
phases in non local interactions. 
The left panel shows the values 
of SI. a � = 0 , c � =

�

4
 , e � =

�

2
 . 

The right panel shows the varia-
tions in DM for the correspond-
ing values of left panel. Here, 
M = 35 , � = 0.04 , p = 10

(a) (b)

(c) (d)

(e) (f)
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The observed in-phase and anti-phase oscillations might be an indicator of the pres-
ence of distinct frequency rhythms and oscillatory patterns in separate regions of extended 
neural networks. The findings of this work reveal the dynamic processes that cause the 
coupled neurons to exhibit in-phase and anti-phase oscillations, which is useful for under-
standing how synapses regulate the rhythms of brain activity.
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