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Abstract
Growth curve models play an instrumental role in quantifying the growth of biological 
processes and have immense practical applications across all disciplines. The most popular 
growth metric to capture the species fitness is the “Relative Growth Rate” in this domain. 
The different growth laws, such as exponential, logistic, Gompertz, power, and generalized 
Gompertz or generalized logistic, can be characterized based on the monotonic behavior 
of the relative growth rate (RGR) to size or time. Thus, in this case, species fitness can 
be determined truly through RGR. However, in nature, RGR is often non-monotonic and 
specifically bell-shaped, especially in the situation when a species is adapting to a new 
environment [1]. In this case, species may experience with the same fitness (RGR) for two 
different time points. The species precise growth and maturity status cannot be determined 
from this RGR function. The instantaneous maturity rate (IMR), as proposed by [2], helps 
to determine the correct maturity status of the species. Nevertheless, the metric IMR suf-
fers from severe drawbacks; (i) IMR is intractable for all non-integer values of a specific 
parameter. (ii) The measure depends on a model parameter. The mathematical expression 
of IMR possesses the term “carrying capacity” which is unknown to the experimenter. (iii) 
Note that for identifying the precise growth status of a species, it is also necessary to under-
stand its response when the populations are deflected from their equilibrium position at 
carrying capacity. This is an established concept in population biology, popularly known as 
the return rate. However, IMR does not provide information on the species deflection rate 
at the steady state. Hence, we propose a new growth measure connected with the species 
return rate, termed the “reverse of relative of relative growth rate” (henceforth, RRRGR), 
which is treated as a proxy for the IMR, having similar mathematical properties. Finally, 
we introduce a stochastic RRRGR model for specifying precise species growth and status 
of maturity. We illustrate the model through numerical simulations and real fish data. We 
believe that this study would be helpful for fishery biologists in regulating the favorable 
conditions of growth so that the species can reach a steady state with optimum effort.
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1 Introduction

Any species’ relative growth rate (henceforth, RGR) is instrumental in quantifying its under-
lying growth dynamics. RGR is the signature of the species fitness for several stages of the 
life span. RGR is a measure of identifying the species fitness within a current time window. 
It fails to provide any information about the maturity status of the species yet to achieve. So, 
the RGR function cannot determine the species precise growth and maturity status.

Recently Chakraborty et al. [2] proposed a new growth metric, i.e., instantaneous matu-
rity rate (henceforth, IMR), to capture both the species current growth rate within a time 
interval and cumulative growth rate yet to achieve for the maturity. But, IMR suffers from 
some severe drawbacks, viz. (i) The analytical expression of IMR is not available for all the 
growth equations. So, it would be impossible to provide the complete growth status if any 
species follows a growth law, which has no explicit form of IMR. (ii) The measure of IMR 
depends on a model parameter. The mathematical expression of IMR possesses the term 
“carrying capacity,” which is unknown to the experimenter. (iii) Note that for identifying 
the precise growth status of a species, it is also necessary to understand its response when 
the populations are deflected from their equilibrium position at carrying capacity. This is 
an established concept in population biology, popularly known as the return rate. But, IMR 
does not provide any information on the species deflection rate at the steady state. So, it is 
necessary to develop an alternative growth measure to overcome the above shortcomings 
of IMR. So, to explore the possibility of a more realistic growth rate, we need to know the 
clear definition of RGR, IMR, and return rate.

The RGR of a species is defined as the average relative growth rate, given by 
ln(N(t2)) − ln(N(t1))

t2 − t1
 for a time interval (t1, t2) ; t2 > t1 with the population size N(t) [3]. We assume 

the interval ( t1 , t2 ) for notational and mathematical simplicity and considered ( t1 , t2 ) as 
(t, t + Δt) . We use the notation m(t) to designate the IMR for the interval (t, t + Δt) . More 
specifically, this scale invariant measure is the ratio of the two quantities. The numerator is 
the relative growth rate in the interval [t, t + Δt] , and the denominator denotes the cumula-
tive relative growth rate (henceforth, CRGR) required to reach the asymptotic size [2]. The 
CRGR defines as the total fitness required to reach the carrying capacity of the cohort [2]. 
This measure can be empirically estimated with a discretized version which can be 
expressed as the ratio of Fisher’s RGR [3, 4] and cumulative Fisher’s RGR yet to achieve. 
Alternatively, IMR can also be mathematically expressed as the ratio of relative growth rate 
and the log difference between the current size and carrying capacity of the cohort.

The functional form of the return rate (henceforth, RR) explains the relationship between 
the RGR and the log density of the population size, i.e., logN(t) . The analytical form sug-
gests that the measure return rate can be estimated by the slope of RGR vs. logN(t) , at 
the carrying capacity. Now, to provide the precise growth status, it is necessary to observe 
the behavior of the growth measure around the carrying capacity of any species. RR can 
provide the behavior of the species growth rate around the steady state. But to understand 
the complete growth rate trajectory, it is essential to explore the RR for all the intermediate 
size values of the species in between the initial and carrying capacity of the cohort. This 
extended concept of return rate can be seen as the relative of relative growth rate.

Moreover, stochasticity is one of the influencing factors that can change the return rate 
at any population size. So, in this article, we have three folds of objectives, (i) to propose 
an alternative growth measure that would be able to portray the complete growth status; 
(ii) to revisit the return rate concept and redefine it for all the intermediate size values; 
(iii) and finally estimating the actual growth status of the species under the light of the 
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stochastic environment. Now, we organize the rest of the manuscript in the following way: 
First, we develop Sect. 2 to describe the utility of the recently proposed metric IMR. Next, 
we discuss our proposed growth measure in the subsequent Sect. 3. We also include the 
unification of the broad family of growth curve models by our proposed measure in Sect. 4. 
The asymptotic properties along with the simulation experiment are being illustrated in 
Sects. 5 and 6 respectively. Finally, we explain the applicability of our proposed measure in 
Sect. 7, and present our conclusions in Sect. 8.

2  Utility of IMR: a case study

In most of the cases [7–13], the modeling expert and the experimental scientists assumed 
the species fitness to be a decreasing function of growth. The variability of the environment 
obliges any species to adapt a new ecosystem by changing its fitness for its sustainability. 
Consequently, the fitness of the species will no longer decrease continuously with increasing  
its age or size. That means the fitness function deviates from the classical RGR profiles 
(logistic, Gompertz). It has been explored from the study of Bhowmick and Bhattacharya 
[1] and Chakraborty et al. [6]. The authors mentioned that the adaptability of any species 
depends mainly on the two yardsticks, i.e., their endogenous changes and, of course, due 
to the environmental changes. Due to these physiological means, initially, the fitness of the 
species shows an increasing trend with its age. After achieving the maximum fitness, the 
RGR profile decreases to zero on increasing their age (see Fig. 1a). Such a non-monotonic 
structure leads to the same fitness level at two distinct phases of the species life span. It will 
highlight the need for a new growth measure, which will provide the precise growth status 
of any species irrespective of their physiological changes.

The graphical pattern in Fig. 1a depicts that initially, the fitness of the species increases 
along the direction AE. However, the RGR value decreases along EB by attaining its maxi-
mum at point E. Here we consider a horizontal (red) line AB (see Fig. 1a) representing the 

(a) (b)

Fig. 1  The sub-figure (a) shows that adaptability in the new environment leads any species to a bell-shaped 
RGR profile so that species can achieve the same amount of fitness at two different time points [1, 5, 6]. 
The sub-figure (b) ensured the parabolic-shaped structure between species fitness and the IMR. At a par-
ticular amount of species fitness, their maturity rate differs significantly
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same level of fitness at two distinct stages of the species life cycle. For convenience, we 
contemplate the two different time points by t1 and t2 . Note that the time point t1 indicates 
the earlier stage of the species growth process, i.e., before gaining the maximum fitness. 
However, another phase of the growth cycle is denoted by the time point t2 , where the spe-
cies are on the verge of maturity. More precisely, the vertical solid (green) line through the 
point A in Fig. 1a is the fitness level at the earlier stage of the species growth cycle, i.e., at 
the time t1 . We denote the fitness level during the time t2 by the vertical solid (green) line 
passing through the point B. Despite having two different stages of life at t1 and t2 , the fit-
ness levels of the species at these distinct time points are the same. This many to one rela-
tionship between the species age with its fitness leads us to select a new metric to conclude 
the accurate growth status of the species.

In this connection, we opt for the measure IMR proposed by Chakraborty et  al. [2] to 
deliver a precise growth status of the species which are subjected to the adaption. It is worthy 
of mentioning that the scale invariant measure IMR has the following functional relationship,

Here, R(t) = 1

N(t)

dN(t)

dt
 denotes the RGR value for any population size N(t) at any instantane-

ous time point t. The application of this new growth metric gives a new dimension to the 
non-monotonic fitness function, which is presented in Fig. 1b. The diagram elucidates the 
variation of IMR according to the change in RGR values. It is worth mentioning that the 
IMR profile regarding the RGR function possesses two branches, i.e., CD and DF. The 
relationship initially traces the path CD, then follows the reverse direction, i.e., DF. The 
distinction of the IMR graph into two branches generates two points, P and Q. These two 
points lie in the same vertical (red) line with the fixed RGR value. That means for a certain 
fitness level, Fig. 1b is enabled to provide two distinct IMR values, which can portray the 
species maturity states in a better way. We observe that at position A, the species have to 
gain more fitness to reach their maturity, which yields a lower amount of IMR value, i.e., 
the stage Q. Consequently, the magnitude of IMR will be higher than the previous case, 
i.e., the point P when the species growth stage is designated by the coordinate B as they 
will cover a low amount of fitness to attain the matured stage. So, the points P and Q are 
contemporary with B and A, respectively, due to the same fitness value say, r∗(= 0.02 time−1 
in Fig. 1). So, the horizontal (red) line AB is mapped into the vertical (red) line QP. Hence, 
IMR can provide the precise growth information of the species instead of RGR.

Note that such a non-monotonic fitness structure does not follow the classical RGR 
growth equations, viz. logistic, extended logistic, Gompertz, etc. In this connection, Bhow-
mick and Bhattacharya (2014) [1] propose a new growth curve model, popularly known as 
the Bhowmick-Bhattacharya extended Gompertz model (henceforth, BBEGM), which can 
cover this type of RGR profile. The analytical expression of that growth model is

with b, a, and c denote the growth rate, decay rate, and adaptability parameter respectively. 
Since RGR is unable to provide precise growth information, one needs to evaluate the closed 
form expression of IMR for the new growth model BBEGM, which is absent in the research 
work of Chakraborty et al. [2] due to the mathematical complexity. A detailed discussion 
about the shortcomings is presented in Sect. 7. Moreover, any enclosed populations have the 

(1)IMR(t) =
R(t)

∫ ∞

t
R(u)du

=
RGR

CRGR
.

(2)R(t) =
1

N(t)

dN(t)

dt
= be−attc,
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basic characteristics to return to their steady state due to the application of the small pertur-
bations. The rate at which the species returns is termed as “Return rate” [14]. The measure 
is used in conserving any species when they are subjected to any external perturbations [15]. 
The IMR is also unable to provide a spotlight on the species return rate too. So, there is an 
urge to propose a new metric that can overcome these difficulties and provide substantial 
information for nurturing the species growth process in a better way.

3  Return rate and its extension: a competitor of IMR

RGR is the growth rate of any species for a specific time window with the current population 
size. Also, the RGR function has the characteristic that it does not depend on any informa-
tion about the whole growth process or the asymptotic size. However, the experimenter needs 
to know how much RGR is necessary for a species to reach the usual size at any time point. 
Keeping this in mind, Chakraborty et al. [2] propose a new growth metric IMR, m(t) to pro-
vide the information on the species maturity status at any time point t. Note that the analytical 
expression of IMR in Eq. 1 possesses an alternative form, which is given by

where K denotes the cohort’s carrying capacity or asymptotic size, as most species have 
an intrinsic property to spend their maximum lifetime around their carrying capacity. 
However, any population should reach its asymptotic size at the mature stage, and hence 
the RGR value vanishes. Species attain their highest maturity at the large time interval of 
the entire growth cycle. So, both the numerator and denominator of the right-hand side of 
Eq. 3 become zero at the large time point. This theoretical concept gives the brainchild of 
a new growth metric. Hence, the mathematical simplicity turns the expression of IMR in 
Eq. 3 into the following form

Since both the RGR function (R(t)) and population size (N(t)) have the first-order continu-
ous derivatives so, the application of the famous L’Hospital rule on the above expression 
will become

We treat the expression − 1

R(t)

dR(t)

dt
 as the new growth measure, which can be termed as the 

“Reverse of Relative of Relative growth rate” (henceforth, RRRGR). For the notational 
simplicity, we denote the metric RRRGR  by �(t) . Since m(t) and �(t) are indistinguishable 
at the large time window, one can use RRRGR as the proxy measure of the IMR.

(3)m(t) =
R(t)

ln(K) − ln(N(t))
,

(4)lim
t→∞

m(t) = lim
t→∞

R(t)

lnK − ln(N(t))

[
0

0
form

]
.

(5)

lim
t→∞

m(t) = lim
t→∞

R(t)

lnK − ln(N(t))

⟹ lim
t→∞

m(t) = lim
t→∞

[
−

1

R(t)

dR(t)

dt

]

∴m(t) ∼ −
1

R(t)

dR(t)

dt
for the large time point.
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3.1  RR and RRRGR are equivalent

In general, when the population size is small, the resource is abundant, and the species have 
sufficient support of food, shelter, and habitat. Naturally, the fitness of the species is high. 
When the population reaches carrying capacity, the resource is exhausted. Consequently, 
the species fitness is reduced. But at the same time, the small population is more sensitive 
to the perturbations. How much a population is affected temporarily by the deflection will 
be an opposite function of the species fitness. Hence, there is a possibility that the small 
population may not return to its original size, but a minor disturbance does not affect the 
population at all when the size of the density is large or the population is reached a steady 
state. Hence, the return rate and RRRGR are showing the equivalent properties.

The return rate of any species is defined as the rate at which the population will return 
to its steady state after deflecting from its stable equilibrium point, i.e., carrying capacity 
[14–16]. May et al. [14] first coined the term and shows the utility of RR in measuring the 
species stability. RR can be estimated as the slope of the relationship between RGR and log 
density at the carrying capacity of the species, which is given by,

The above mathematical form demonstrates that to estimate RR, the species have to reach 
its asymptotic size (K). Although this structural form is expressed as the rate of change 
of RGR to the log size of the population density, the functional relationship of RR can 
highlight another important demographic trait of the species growth cycle. That demo-
graphic characteristic can be elucidated by the negative RGR of RGR at the species carry-
ing capacity. RR measures the species deflection rate at its asymptotic size and enumerates 
the relative fitness value at the steady state of any species. Our proposed growth metric 
RRRGR has a structural similarity with the measure RR. The relationships 5 and 6 show 
that RRRGR becomes identical with RR at the steady state of any species. So, applying 
the metric RRRGR not only quantifies the growth profile but also measures the deflection 
rate just like RR at each population density throughout the species growth process. So, 
by applying the RRRGR measure, we can estimate the return rate of species at any size 
N(i) for the time point i. Here, we explain this situation by the theta-logistic model [12] in 
Fig. 2a and b. The analytical form of the theta-logistic model is given by

Here r, � , and K denote the intrinsic growth rate, density regulation parameter, and carry-
ing capacity, respectively, with the population size N(t) at any time point t. The diagram 
shows a concave upward relationship between the RGR and logN(t)∕K . Due to the non-
linear relationship, the RGR and log density rate become dynamic. Figure 2 also explains 
the case that if the species experiences a small perturbation at any arbitrary size N(i) at the 
time point i, it can stably return to its original size. The growth function RRRGR can meas-
ure this case. Hence, the proposed metric RRRGR quantifies the species growth profile 
and has a strong connection with the stability of the entire growth process of any species.

(6)return rate = −

[
dR(t)

d lnN(t)

]

K

=

[
−

1

R(t)

dR(t)

dt

]

K

.

(7)RGR = R(t) =
1

N(t)

dN(t)

dt
= r

(
1 −

(
N(t)

K

)�
)
.
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4  Unification of various growth laws through RRRGR 

Recently Chakraborty et al. [17] proposed a unified form of species fitness function. So, in the 
author’s spirit, we will provide a unified form of our proposed growth measure, i.e., RRRGR, 
and demonstrate how it helps to capture a large family of the existing growth curve models. 
The unified form of RGR is

On differentiation with respect to t, we have

Hence, Eq. (9) is the unified form of the RRRGR for the existing growth models. Further 
differentiation of �(t) with respect to t gives

4.1  Tsoularis and Wallace model

According to the unified form of the species fitness (i.e., Eq. 8), the expression of RGR 
for the Tsoularis and Wallace growth model [10] is obtained by putting c = 1 in that 
equation. Therefore, the expression for the RRRGR is

and from the expression 10 we again get that

(8)R(t) =
r

bd
ya(1 − yb)dtc− 1

[
Here, y ≡ y(t) =

N(t)

K

]

(9)�(t) = −
1

R(t)

dR(t)

dt
=

1 − c

t
+

r

bd
ya(1 − yb)d− 1

[
yb(a + bd) − a

]
tc− 1

(10)
d�(t)

dt
=

c − 1

t2
−

[
a +

bdyb

yb − 1

]
dR(t)

dt
+

R2(t)b2dyb

(yb − 1)2

(11)�(t) =
r

bd
ya(1 − yb)d− 1

[
yb(a + bd) − a

]

Fig. 2  The relationship between 
the RGR and the population size 
is measured as log (N(t)∕K) for 
the theta-logistic model 7. Note 
that irrespective of the magnitude 
of the density regulation param-
eter, the relationship always 
shows a concave trait
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Here the second term on the right-hand side is always positive but on the first term the 
positivity of dR(t)

dt
 depends on some condition. Chakraborty et al. [17] shows that dR(t)

dt
> 0 

if 0 ≤ y ≤ (
a

a+ b

) 1

b . Considering this it can be shown that d�(t)
dt

 should be positive if the rela-
tion a ≤ bd holds. Hence, RRRGR should be a increasing function for a ≤ bd.

4.1.1  Marusic‑Bajzer growth model (d = 1)

Since Marusic-Bajzer growth law [18] follows from the Tsoularis and Wallace model 
[10], so the shape of RRRGR must be increasing for the relation a ≤ b and that of 
decreasing for a > b . The various forms of the graph are given in Fig. 3a, b.

Chakraborty et  al. [17] show that the Richard growth curve model [9] can be 
obtained by putting a = 0 and b ≥ −1 in Eq. (8). Moreover, the Monomolecular growth 
law [17] with b = −1, r < 0 ; General Von Bertalanffy model with 0 < b < 1, r < 0 ; Von 

(12)
d�(t)

dt
= −

[
a +

bdyb

yb − 1

]
dR(t)

dt
+

R2(t)b2d yb

(yb − 1)2

(a) (b)

(c) (d)
Fig. 3  The sub-figure (a), (b) denote the shapes of RRRGR profile for the Marusic-Bajzer growth laws, 
whereas the sub-figures (c), (d) indicate several shapes of RRRGR for the Richards law with respect to size 
and time respectively
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Bertalanffy with b = −
1

3
, r < 0 [19]; logistic with b = 1 [7]; and Gompertz with b → 0 

[8] are cited as the special case of the Richard growth curve family. Among which the 
shape of the RRRGR of the first 3 members i.e. the Monomolecular growth law, Gen-
eral Von Bertalanffy model, and Von Bertalanffy take the decreasing pattern but in the 
case of logistic and Gompertz the shape should be increasing. This scenario is depicted 
in Fig. 3c, d for various values of b.

4.1.2  Blumberg growth model (b = 1)

Blumberg’s growth law [20] is also a generalization form of the Tsoularis-Wallace growth 
model [10] which is obtained by replacing the parameter b by 1. Note that RRRGR of 
the Blumberg growth model also follows the decreasing trend by maintaining the rela-
tion a ≥ d along with the increasing pattern for the relation a < d but it is observed that,  
due to the functional form of the RGR equation, the Blumberg growth law also shows some  
bell-shaped structure for a < d . All of these different traits are presented in Fig. 4a, b.

(a) (b)

(c) (d)

Fig. 4  The sub-figure (a), (b) denote the shapes of RRRGR profile for the Blumberg growth laws, whereas 
the sub-figures (c), (d) indicate several shapes of RRRGR for the Weibull growth models with respect to 
size and time respectively.  



204 A. Paul et al.

1 3

4.1.3  Generalized Gompertz model (a = 0, b → 0)

As mentioned above, the relative fitness function takes the decreasing pattern for the 
relation a ≥ bd . Since for the generalized Gompertz the parameter a takes zero value 
and both b and d being positive real number, so it clearly implies that the pattern of 
the relative fitness function should be increasing. But on the special case i.e. for the 
Gompertz law [8] RRRGR should be a constant and it is exactly equal to the species 
intrinsic growth rate. Another special case of this growth law is the second-order expo-
nential model (d =

1

2
) and in this case the RRRGR function is as usual follows the 

increasing pattern.

4.1.4  Generic model (a = b(1 − d))

Generic model [21] is also another special case of the Tsoularis and Wallace model [10]. 
Therefore, the relative fitness profile shows a decreasing pattern for the relation a ≥ bd i.e. 
in this case d ≤ 1

2
 . But, this condition is not enough for justifying the decreasing or increas-

ing pattern of the RRRGR function due to the presence of the function dR(t)
dt

 in d�(t)
dt

 (10). 
In the above discussed growth model, this phenomena did not happen because any of the 
parameter takes either zero or the value 1.

In order to follow the increasing pattern, the required condition is d ≤ 1 and dR(t)
dt

≤ 0 . 
Chakraborty et  al. [17] show that RGR for generic model would be decreasing if (

a

a+ b

) 1

b ≤ y ≤ 1 . Following this condition, we get that relative fitness shows increasing 

pattern for 
(

b(1− d)

2b− 2d

) 1

b ≤ y ≤ 1 and it will show a decreasing trend for 0 ≤ y ≤ (
b(1− d)

2b− 2d

) 1

b 
along with d > 1.

4.2  Korf model

The Korf model [22] is followed from the unified equation of RGR (8) by putting 
a = 0, d = 0, c < 0 . Therefore, d�(t)

dt
=

c− 1

t2
 . Since c < 0 so it implies that d𝜔(t)

dt
< 0 . 

Therefore, the relative fitness of any species under the Korf model follows a decreas-
ing trend always.

4.3  Koya‑Goshu model

Chakraborty et al. [17] show that from Eq. (8) the RGR of the Koya-Goshu model [23] 
can be expressed in multiple ways depending on the choice of the parameter a, b. Note 
that the parameter d is always 1 for this model. One of the standard form is obtained by 
considering the parameter a = 0 and b < 0 . In this case, the expression for the RRRGR is

and,

(13)�(t) =
1 − c

t
−

byb

yb − 1
R(t)
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Since b < 0 , yb − 1 < 0 , and for c ≤ 1 , Chakraborty et al. [17] show that dR(t)
dt

 is negative so 
combining all of these things we can say that d�(t)

dt
 is also negative. This clearly implies that 

for c ≤ 1 RRRGR function is decreasing and in a similar way we can show that for c > 1 
the species relative fitness should be increasing.

4.3.1  Weibull model

The RGR of the Weibull growth model [24] can be obtained by considering the param-
eter a as −1, b, and d as 1 in the unified RGR Eq. (8). In a similar way, the expression 
for the RRRGR is

and similarly from (10) we get that,

Therefore, the following two cases will arise:

• The first term on the right-hand side of the above expression (16) will be negative if 
c < 1 . But to maintain the negativity of d�(t)

dt
 , one extra condition is that y < rtc

c− 1+ rtc
.

• Moreover for c > 1 , the function d�(t)
dt

 is also negative if 

Hence, it is quite clear that, for both the cases i.e. for c < 1 and for c > 1 , RRRGR of 
Weibull model should be decreasing. All possible shapes are provided in Fig. 4c, d.

4.3.2  Extended Gompertz model

The RGR of the extended Gompertz growth law [6] can be expressed as

Therefore, the expression of RRRGR is given as

and on differentiation with respect to t we have

(14)
d�(t)

dt
=

c − 1

t2
−

[
a +

bdyb

yb − 1

]
dR(t)

dt
+

R2(t)b2dyb

(yb − 1)2

(15)�(t) =
1 − c

t
+ ry−1tc− 1.

(16)

d�(t)

dt
=

c − 1

t2
−

1

y − 1

dR(t)

dt
+

R2(t)y

(y − 1)2

=
c − 1

t2
+

1

y − 1

[
R2(t)y

y − 1
−

dR(t)

dt

]
.

c − 1

t

[
1

t
+ ry−1(1 − y)tc− 1

]
< r2y−2(1 − 2y)t2c− 2

(17)R(t) = r (−lny) tc− 1

(18)�(t) = r tc− 1 −
c − 1

t

(19)
d�(t)

dt
= (c − 1)

[
r tc− 2 +

1

t2

]
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It is quite clear that,

• If c < 1 , d𝜔(t)
dt

< 0 which implies that �(t) must be a decreasing function of size and 
time both.

• If c > 1 , d𝜔(t)
dt

> 0 which implies that �(t) must be a increasing function of size and time 
both.

The possible shapes of RRRGR are given in Fig. 5a, b.

4.3.3  Extended logistic model

Chakraborty et al. [6] proposed an extended version of the logistic growth law popularly 
known as the proposed extended logistic model (PELM). The fitness function of this 
growth model is described as

(20)R(t) = r (1 − y) tc− 1

(a) (b)

(c) (d)

Fig. 5  The sub-figure (a), (b) denote the shapes of RRRGR profile for the Extended Gompertz growth laws, 
whereas the sub-figures (c), (d) indicate several shapes of RRRGR for the Extended logistic growth models 
with respect to size and time respectively
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Hence from Eq. (8), the RRRGR expression for this growth is,

and on differentiation with respect to t

It is quite clear that if c > 1 holds, the relative fitness function must be increasing and 
for c < 1 the RRRGR function follows the decreasing pattern. The possible shapes are 
included in Fig. 5c, d.

Remark 1 The analytical expression of the RRRGR for a broad family of growth models is avail-
able in Table 1 of the supplementary material. We also prepare Table 1 to compare the shape of 
RGR and RRRGR functions for the mentioned growth models. Figures 6 and 7 also illustrate the 
pattern of the RRRGR functions for the broad family of growth laws according to the popula-
tion size and time, respectively. However, the closed form expression of the size variable for the 
cooperation model [25] and BBEGM [1] does not exist. Consequently, the analytic form of IMR 
is intractable for these growth models. In this connection, we prepare the table to incorporate the 
RGR and RRRGR expressions for both the mentioned growth laws and the asymptotic values of 
our proposed growth measure. The table is available in the supplementary file.

(21)�(t) = r y tc− 1 +
1 − c

t

(22)
d�(t)

dt
= r y tc− 1

[
R(t) +

c − 1

t

]
+

c − 1

t2

Table 1  Classification of growth curves with their shapes. Here, the notations I, D, B, and U represent the 
increasing, decreasing, bell-shaped, and bath-tub trends

Srl. Growth models Shape of RGR over size Shape of 
RRRGR over 
size

1 Exponential C C
2 Power I D
3 Logistic D I
4 Monomoleculer D D
5 Richards D I
6 Gompertz D C
7 Generalized Gompertz D I

d< 1,Dd> 1  
8 Second-order exponential polynomial D I
9 Von Bertalanffy D D
10 Generalized Von Bertalanffy D D
11 Weibull D D
12 Tsoularis and Wallace D

a≤ 0,Ba> 0   D
a> 0,Ua< 0  

13 Korf D D
c< 1, Ic> 1  

14 Extended logistic B
c> 1,Dc≤ 1   I

c> 1,Dc< 1  
15 Extended Gompertz B

c> 1,Dc≤ 1   I
c> 1,Dc< 1  

16 Marusic and Bajzer’s D
a≤ 0,Ba> 0   -

17 Blumberg D
a≤ 0,Ba> 0   I

d≤ 1,Bd> 1  
18 Generic B

d< 1,Dd≥ 1   -
19 Hyperbolic D D
20 Koya-Goshu model (b < 0) B

c> 1,Dc≤ 1   I
c> 1,Dc< 1  
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Remark 2 Like the RGR and IMR, the proposed measure RRRGR can also be identified by 
its shape and population size or time. Since RRRGR is an alternative form of IMR, in most 
cases, the behavior of �(t) should be similar to m(t). For example, the shape of the RGR 
function for the Richard law [9] is decreasing in Fig. 8a, b; though the shape of the RRRGR 
profile has the monotonic increasing structure in Fig. 8c, d. We also observe in Fig. 9a, b 
that the RGR profiles are showing a decreasing pattern, but the RRRGR functions are con-
stant for the Gompertz law [8] (see Fig. 9c, d). Note that IMR also has the same property 
for these two growth curve models. Hence, unlike the IMR, the metric RRRGR can also be 
used as the characterization growth response function to identify the true underlying model.

Fig. 6  Classification of various growth curves according to the shapes of RRRGR to the population density

Fig. 7  Classification of various growth curves according to the shapes of RRRGR to the time
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Remark 3 Despite having such similarities, some growth laws still exist for which a distinc-
tion is observed in the shape of IMR and RRRGR. In this connection, we consider two 
growth laws, viz. Korf [22] and Von-Bertalanffy model [19] for conducting the experi-
ment. Figure  10a, d, and b, e illustrate that the RGR and IMR profile of both the Von-
Bertalanffy [19] and Korf functions [22] are showing a decreasing trend, which is mislead-
ing for any experimenter to identify the true growth law. However, Fig. 10c and f ensure 
that the trait of RRRGR profile of Von-Bertalanffy law maintains the decreasing character 
unlike IMR, though it is not the same for the Korf growth model, since the RRRGR profile 
shows the monotonic increasing character for the Korf growth function (see Fig. 10f). In 
the subsequent section, we shall discuss the properties of the proposed measure RRRGR 
for a broad family of growth curves.

Remark 4 The proposed measure RRRGR has the dimension Time−1 , which shows that the 
proposed measure has a close synergy with the frequency of any wave motion. So, depend-
ing on the RRRGR function, one can easily tune the species growth profile.

(a) (b)

(c) (d)

Fig. 8  The plot of the Richard growth law (b < 1 ) [9] over size and time. The first column (sub-figure a, c) 
denotes the profile of the RGR and RRRGR over size, whereas the second column (sub-figure b, d) indi-
cates the same over time. The diagram reflects that although the trait of the RGR profile is decreasing for 
the Richard growth law [9], the trend of the RRRGR function shows an increasing character
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Remark 5 Allee effect phenomenon is characterized by the increasing fitness profile of any 
species at its low density. The mathematical expression of the Allee growth model [26] is

Here r, K, and  A indicate the instantaneous growth rate, carrying capacity, and Allee 
threshold parameters respectively. Saha et al. [27] modify Eq. (23) by introducing the con-
cept of density dependence, which can be expressed by

Note that the model (24) is popularly known as the Allee-Saha model (ASM) with � as the 
density-dependent parameter. Hence, the analytical expression of RRRGR function of the 

Allee growth equation is given by �(t) = rN(t)

[
1

1−
N(t)

A

+
�N−1(t)(
K

N(t)

)�

−1

](
N(t)

A
− 1

)(
1 −

(
N(t)

K

)�
)
. 

(23)
dN(t)

dt
= rN(t)

(
N(t)

A
− 1

)(
1 −

N(t)

K

)
.

(24)
dN(t)

dt
= rN(t)

(
N(t)

A
− 1

)(
1 −

(
N(t)

K

)�
)
.

(a) (b)

(c) (d)

Fig. 9  The plot of the Gomperz growth law  [8] over size and time. The first column (sub-figure a, c) 
denotes the profile of the RGR and RRRGR over size, whereas the second column (sub-figure b, d) indi-
cates the same over time. The diagram reflects that although the trait of the RGR profile is decreasing for 
the Gompertz law, the RRRGR function becomes constant
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The shapes of the RRRGR function for distinct magnitudes of � are presented in Fig. 11a. 
The time series structure in Fig. 11b demonstrates the sigmoidal pattern, whereas the pop-
ulation size profile of Fig. 11a elucidates the U-shaped trend.

(a)

(d) (e) (f)

(b) (c)

Fig. 10  Comparison between the shape of RGR, IMR, and RRRGR profiles between Von Bertalanffy [19] 
and Korf model [22]. The figures (a), (b) and (d), (e) demonstrate that for both the Von Bertalanffy [19] 
and Korf growth model [22], the trait of the RGR and IMR follows the decreasing pattern, whereas the laws 
can be distinguished by their RRRGR character, which is reflected in the sub-figure (c), (f). Since the Von-
Bertalanffy model [19] possesses a decreasing character, the Korf law [22] has an increasing trend for the 
RRRGR function

(b)(a)

Fig. 11  Several shapes of RRRGR profile for the extended Allee growth function (24). The different 
traits are generated for the distinct level of density regulation parameter, which is mentioned in the legend 
of the figures (a), (b). Here the unit level of density regulation indicates the Allee growth Eq. (23)
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5  Asymptotic distribution of RRRGR 

We develop this section to study the statistical properties of the empirical estimate of the 
proposed measure RRRGR. This kind of statistical manipulation will help to construct the 
likelihood functions during the parameter estimation process. Here, we use the notation Nt 
to distinguish a random variable whose realizations are the observed data. Moreover, we 
also consider Nt as the population density at time point t, where t = t1, t2,… , tq and denote 
N =

(
N(t1);N(t2);… ;N(tq)

)� as the vector of the observations. Let us suppose that at each 
time point, we collect the data of n individuals so that we have n independent and identically 
distributed (iid) observations at each time point tj , and the data matrix is thus given by:

Here Nij represents the size of i-th individual at the  j-th time point for i = 1, 2,… , n and 
j = t1, t2,… , tq . It is worthy to mention that the row vectors of the matrix Nn× q represent 
the iid of order q. Now, for the sake of convenience, let us fix any particular column of 
the matrix Nn× q , where each component of this column vector is independent and identi-
cally distributed. In the spirit of Pal et al. [4], we also consider that each row of the data 
matrix Nn× q follows the multivariate normal distribution, whose mean is specified by 
the underlying deterministic growth equation. The further assumption on the structure of 
the variance-covariance matrix will be explained later. In the following, we consider the 
extended Gompertz growth equation as a test-bed to develop the asymptotical distribution 
of RRRGR. Note that the methodology can be easily extended for other growth equations 
as well. Now, the analytical expression of the RRRGR function can be represented by,

So, the estimate of RRRGR is given by

Remark 6 Here the growth observation vectors of each individual are not independent, and 
hence we assume multivariate normality with a specific (Koopmans) covariate structure. 
We assume the mean of this multivariate normal is an asymmetric growth curve, which is 
more realistic in population dynamics. Moreover, for a given time point, the independent 
growth observations of different individuals follow the normal distribution, where the mean 
is the realization of the Gompertz model for the same time point. So, the growth observa-
tions of the same individuals over time points are not independent, but the observation vec-
tors for the different individuals are the independent sample from multivariate normal.

Nn×q =

⎡
⎢⎢⎢⎢⎣

N1t1
N1t2

… N1tq

N2t1
⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋮

Nnt1
Nnt2

… Nntq

⎤
⎥⎥⎥⎥⎦
.

�(t) = −
1

R(t)

dR(t)

dt
.

(25)

�̂(t) = log

(
R(t)

R(t + 1)

)

= log

[
logN(t + 1) − logN(t)

logN(t + 2) − logN(t + 1)

]
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Note that the analytical expression of �̂(t) possesses a highly non-linear structure of the 
three random variables Nti

 for i = 1, 2, 3 , whose joint distribution is multivariate normal 
(hence, each Nti

 has the marginal normal distribution). In this connection, we will use the 
following lemma [2, 4, 28, 29] to derive the required asymptotic distribution.

Lemma 1 The multivariate delta method: Let Yn = (Yn1, Yn2, ...,Ynk)
� ∈ ℝ

n be a sequence 
of random vectors such that

where � ∈ Rk . Let g ∶ ℝ
k
→ ℝ have derivative Δg(�) at � ∈ Rk and derivatives are non-

zero. Then,

Hence, we now require the joint distribution of Nt, Nt+ 1 to obtain the asymptotic distri-
bution of �̂(t) . It is observed that due to the increment in the time difference, the correla-
tion between the size variables decreases. So, we consider the following joint distribution 
between Nt , Nt+ 1 , and Nt+ 2 is given as

Let us consider N(t) = U ; N(t + 1) = V  ; and N(t + 2) = W . So, the expression 25 becomes,

Now, for the asymptotic distribution

√
n(Yn − �)

d
�����→ N(0,Σ),

√
n(g(Yn) − g(�))

d
�����→ N(0,Δg(�)

�ΣΔg(�)).

⎛⎜⎜⎝

N
t

N
t+ 1

N
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⎞⎟⎟⎠
∼ N3
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⎛⎜⎜⎝

�(t)
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,
1

n
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��2 �2�2 �2
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⎞⎟⎟⎠
.

�̂(t) = log

[
logV − logU

logW − logV

]
= �(U,V ,W)
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logw − log v
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(
log v − log u
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=
1

u log
(
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=
1

�t log
(
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)

=
ac
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(
e−a(t+ 1)c − e−at

c
)
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[
b

ac
(1 − e−at
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Now, by applying the multivariate delta method, we obtain the distribution of �̂(t) for the 
extended Gompertz growth model, which is given as

where Δ� =
(

��

�u
,
��

�v
,
��

�w

)||||� = �̂

 and Σ is the variance covariance matrix.

6  Simulation study

We will now perform the simulation experiment by considering the following growth process

Note that the error vector ∈t= (∈1,∈2,… ,∈s)
� follows the multivariate normal distribution 

with zero mean and the dispersion matrix 
∑

 . In growth studies, it is a common assump-
tion that observations at closer time points are highly correlated, and as the time difference 
increases, correlations between them diminish [4, 30]. In this connection, one should opt 
for the covariance matrix with the Koopman structure [31], which is given by

��

�v
=

logw − log v

log v − log u

�
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(
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(
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�
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�
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�

(26)Nt = �t+ ∈t, t = 1, 2,… , s.
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It is observed that for large s, elements away from the principal diagonal would be almost 
zero. It is clear that the covariance between Nt and Nt+ j will be higher for small j and close 
to zero for large j. We generate the size variable Nt at s = 20 time points for n = 20 different 
individuals from multivariate normal distribution using the mean structure (�1,�2,… ,�s)

� 
with the aforementioned dispersion matrix. We perform the simulation experiment for the 
four growth equations, elaborated separately below.

6.1  Gompertz growth law

We use the following size model for the simulation purpose in the case of the Gompertz 
growth law

with b = 1;a = 0.25;� = 0.01;� = 0.5;N0 = 0.1 . The mean size and the respective RGR at 
20 time points are enumerated by the formulas Nt =

1

20

∑20

i= 1
Nit for t = 1(1)20 , and 

R̂(t) = log
(

Nt+ 1

Nt

)
 for t = 1(1)19 respectively. We also estimate the RRRGR using the esti-

mator 25. The estimated magnitudes of the RGR and that of RRRGR are presented in Fig. 12a  
and b. The RGR profile in Fig.  12a shows the decreasing character, which overlaps with  
the Richard, Von Bertalanffy growth model, etc. But, the constant nature of RRRGR pro-
file in Fig.  12b ensures us to capture the underlying true Gompertz growth model. Note  
that the solid (red) line in the figure is generated from the general estimator mentioned in  
the expression 25.

6.2  Richard growth model

We simulate the Richard growth model to obtain the size data from the following expression

Here we consider b = 0.05;r = 5;� = 0.0001;� = 0.5;N0 = 0.1;K = 10 to perform the 
experiment for 20 time points. We plot the simulated RGR and RRRGR values in Fig. 13. 
The decreasing fashion of the RGR (Fig. 13a) compels any experimenter to look at another 
measure, viz. RRRGR to capture the true model. The RRRGR profile in Fig. 13b makes 
it easy for anyone to conclude that the underlying growth mechanism must belong to the 
Richard family.

�
= �2

⎛
⎜⎜⎜⎝

1 � … �s− 1

� 1 … �s− 2

⋮ ⋮ ⋱ ⋮
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.
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6.3  Extended Gompertz growth law

We generate the data of the extended Gompertz model from the following size profile

which is proposed by Chakraborty et al. [6]. Here we use b = 1, c = 0.5, � = 0.001, � = 0.5;

N0 = 0.1, a = 0.5 to simulate the growth data for 20 time points. Note that the author 
remarks that for c ≤ 1 , the fitness function should follow the decreasing pattern (see 
Fig.  14a). These characteristics of RGR are also being overlapped with the Richards, 

(29)�t = N0e

[
b

ac
(1− e−at

c
)
]
,

(a) (b)

Fig. 12  Sub-figure a represents the RGR over time from the simulated data from Gompertz growth model 
for b = 1, a = 0.25, � = 0.01, � = 0.5,N0 = 0.1 . Sub-figure b depicts the general estimator of RRRGR over 
time for the same data

(a) (b)

Fig. 13  Sub-figure a represents the RGR over time from the simulated data from Richard growth model 
for b = 0.05, r = 5, � = 0.0001, � = 0.5,N0 = 0.1,K = 10 . Sub-figure b depicts the empirical RRRGR over 
time for the same data using general estimator of RRRGR. The plot of RRRGR shows how the estimated 
RRRGR is close to the theoretical RRRGR 
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Gompertz, Von Bertalanffy, etc., model. We again choose the RRRGR metric to search for 
the true model in this connection. The RRRGR profile in Fig. 14b depicts the decreasing 
pattern, which certainly excludes the Gompertz, Richard law.

6.4  Von‑Bertalanffy law

We generate the data of the Von-Bertalanffy growth model from the following size profile

(a) (b)

Fig. 14  Sub-figure a represents the RGR over time from the simulated data from Extended Gompertz 
growth model for b = 1, c = 0.5, � = 0.001, � = 0.5,N0 = 0.1, a = 0.5 . Sub-figure b depicts the empirical 
RRRGR over time for the same data using general estimator of RRRGR 

(a) (b)

Fig. 15  Sub-figure a represents the RGR over time from the simulated data from Von Bertalanffy for 
r = 1;� = 0.0001;� = 0.5;N0 = 0.1 . Sub-figure b depicts the empirical RRRGR over time for the same data 
using a general estimator of RRRGR. The plot of RRRGR shows how the estimated RRRGR is close to the 
theoretical RRRGR 
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Here we consider r = 1;� = 0.0001;� = 0.5;N0 = 0.1 to generate the size data for 20 time 
points. The RGR profile in Fig. 15a demonstrates the decreasing character. Figure 15b also 
shows that the RRRGR profile captures a decreasing trend. However, the simulation exper-
iment in Fig.  15b shows that in the case of the Von-Bertalanffy model, the roles of the 
theoretical and general estimator are at par in capturing the trait of the RRRGR function, 
which is not for the case of the extended Gompertz law.

Remark 7 We already mention that both the growth measures, i.e., IMR and RRRGR pos-
sess similar characteristics for specific growth laws. So, it will be difficult for any experi-
menter to choose the proper growth metric to identify the true growth status of any species. 
So, we perform a simulation experiment to compare the statistical significance between the 
IMR and RRRGR. In this connection, we consider the extended Gompertz model (hence-
forth, EGM) to pursue the whole experiment as the fitness profile of the EGM follows the 
non-monotonic trait. Since the RGR metric cannot provide precise growth information, we 
seek another growth measure between IMR and RRRGR to portray the underlying growth 
regulation. We presented the whole simulation work through Fig. 16a, b, and c. The dia-
gram reflects that both the RRRGR and IMR can capture the trend of the simulated data. 
However, it is worth noting that the growth measure RRRGR becomes statistically more 
significant than the IMR when we compare both by any standard model selection criteria, 

(30)�t =

[
1 −

(
1 − N

1

3

0

)
e
−

rt

3

]
.

Fig. 16  Simulation results compare three growth measures, viz. RGR, RRRGR, and IMR, by the figures 
(a), (b), (c) respectively. Here the observed data are presented through dots, and the solid (red) lines are the 
estimated curves
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viz. AIC. The magnitude of AIC stands to be lower for the RRRGR metric than the IMR 
on the regression design, which can infer that in terms of identifying the true growth status, 
the efficacy of RRRGR is significantly better than the IMR.

Remark 8 Hence, it is worthy in mentioning that IMR and RRRGR are equally significant 
in predicting the precise growth status of the species. But, there remains a certain distinc-
tion between the measures, which are listed below: 

1. When the population size is small, there is no shortage of resources, and the species 
can enjoy sufficient support of food, shelter, and habitat in nature. Then, the fitness of 
the species is high. But, when the population reaches carrying capacity, the resource 
becomes exhausted. Consequently, the species fitness reduces, so the population 
becomes more sensitive under small perturbations. The reduction of fitness leads the 
population to either be in an extinction state or a chaotic regime, and the species shows 
unstable dynamics. Under these circumstances, the population may not return to its 
original size. Hence, return rate (RR) is a formidable tool for measuring the deflection 
rate from the species stable equilibrium density. Note that the population is not only 
exposed to low fitness at a specific density. Resource scarcity may occur accidentally 
at any intermediate population size between the minimum and maximum abundance. 
So, the concept and the definition of return rate can be extended to any intermediate 
size. Under the proposed flexible definition, we are interested in knowing the return 
rate’s behavior for all intermediate sizes. Note that the return rate can be alternatively 
interpreted as the relative changes of the relative growth rate. Moreover, as this growth 
rate talks about the story of returning to its original size, the direction is important. The 
direction is incorporated through a negative sign, and hence the proposed growth rate 
is finally interpreted as the reverse of the relative of relative growth rate. Note that the 
instantaneous maturity rate (IMR) reflects the precise growth status of the species in 
comparison with the relative growth rate (RGR). However, IMR cannot speak about the 
returning guideline in the presence of uncertainties while predicting the true status of 
the species.

2. IMR is the seminal attempt to predict the precise growth status of the species, so its 
importance is undeniable. But, at the same time, IMR possesses certain limitations 
starting from the analytical expression. By definition, IMR is a function of carrying 
capacity, and hence the empirical estimate of IMR depends on the model parameter. So, 
IMR provides imprecise estimates if the selection of the underline model is wrong. On 
the contrary, the proposed measure RRRGR is independent of the model parameters.

3. It is hard to find the analytic expression of IMR in many growth models (for example, 
BBEGM [1] , Co-operation model [25]) and hence intractable for identifying the true 
growth rate of species. However, it is not the case with RRRGR.

4. The RRRGR has better power in characterizing growth curves than the RGR and IMR. 
So, we should give more preference to the measure RRRGR as a model selection tool 
compared to the other growth rates. This issue is depicted in Fig. 16, where we can 
observe that RRRGR is a better representative for identifying the underline model 
BBEGM.
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7  RRRGR modeling: a case study through deterministic  
and stochastic approach

In the recent study by Bhowmick and Bhattacharya [1] and Chakraborty et al. [6], it is shown 
that the non-monotonic fitness function could be used to model the fish growth, which was 
subjected to the change in the environmental condition. Bhowmick and Bhattacharya [1] 
considered the adaptability effect due to transferring the fish community from one environ-
ment to another. Nevertheless, Chakraborty et al. [6] use the stress properties of any fish to 
model their fitness profile. This would initially lead the RGR of any species to gradually 
increase over time, then decrease as time gradually increases, leading to a bell-shaped fit-
ness profile. Such a non-monotonic bell-shaped structure generates the same RGR values at 
two distinct time points. Thus, for a given value of RGR, it is difficult for the experimenter 
to identify the true time points due to the many to one functional relationship of fitness. So, 
there is a need to seek another measure to overcome this problem of functional relationships.

Recently, Chakraborty et al. [2] proposed a new growth metric IMR to seek the spe-
cies maturity. Now, we will initially use the measure IMR to provide the growth status 
of the species. In this connection, we consider the growth curve “BBEGM” as a test bed 
model [1] to demonstrate the aforementioned ecological situation. The analytical form 
of the growth curve is presented in Eq. 2. Now, the mathematical form of IMR for the 
model 2 can be obtained by the following relationship

However, the closed form expression of the relation 31 is intractable for all non-integer val-
ues of c, which fails to provide a general expression of IMR for Eq. 2. The plausible reason 
behind this event is the non-existence of the analytical solution of the model 2. Note that 
Bhowmick and Bhattacharya [1] used two values of the adaptability parameter, i.e., c = 1 
and c = 2 for demonstrating the characteristics of the growth model 2. So, we consider 
c = 1 to obtain the expression of IMR. The mathematical demonstration is given in the 
following,

The expression 32 shows that asymptotically IMR converges to the decay parameter (a) of 
the function 2. The numerical experiment in Fig. 17a also illustrates that for the large time 
point, the species maturity status can be well explained by the decay parameter (a). We 
can perform a similar kind of experiment for all integer values of adaptability parameter c. 
Furthermore, we believe that to explain the species growth status precisely, it is required 
to obtain a general formula of any metric for a specified law. Nevertheless, the manifesta-
tion of the mathematical structure for the IMR cannot be developed for the growth curve 
2 due to the non-existence of a closed form solution. So, it is better to use an alternative 
measure that will overcome this aspect. Hence, we look to our proposed growth function 
“RRRGR” to provide complete growth information for the species following the BBEGM 
law. The analytical expression of RRRGR for the BBEGM law is presented in the first row  
of Table  2 in the supplementary file. The functional form suggests that asymptotically 

(31)m(t) =
be−attc

∫ ∞

t
be−auucdu

.

(32)

m(t) =
bte−at

∫ ∞

t
bue−audu

⟹ m(t) =
a2t

at + 1
=

a2

a +
1

t
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RRRGR converges to the decay rate parameter (a) of the model 2 (see Fig. 17b). So, we 
propose the following theorems to support the analytical properties of the BBEGM law to 
the three growth measures RGR, IMR, and RRRGR, respectively.

Theorem 2 If R(t1) = R(t2) holds for two time points t1 and t2 , then there exists one time 
point c

a
 such that t1 <

c

a
< t2 , here R(t) is maximized at a point t = c

a

Proof Proof is given in the supplementary material.

Theorem  3 If m(t) is the IMR at time t, and two time points t1 and t2 are such that 
t1 <

c

a
< t2 and R(t1) = R(t2) , the following relation holds for m(t): m

(
t1
)
< m

(
c

a

)
< m

(
t2
)

Proof Proof is given in the supplementary material.

Theorem  4 If �(t) is the RRRGR at time t, and two time points t1 and t2 are such that 
t1 <

c

a
< t2 and R(t1) = R(t2) , the following relation holds for �(t) : 𝜔

(
t1
)
< 𝜔

(
c

a

)
< 𝜔

(
t2
)

Proof Proof is given in the supplementary material.

7.1  Deterministic analog of RRRGR equation

In order to study the inherent dynamics of any natural system, it is essential to express the 
system through the rate equation as it can measure the change of the variable per unit of 
time. Consequently, one will get a complete picture of the system’s dynamics by analyzing 
those rate equations. So, to get the complete growth profile of any species in ecology, it 
will be better to nurture the rate equation than the size modeling. Here, we also construct a 
modeling framework through the rate of change of RRRGR instead of the negative of rela-
tive fitness equation. In this connection, we consider the BBEGM growth Eq. [1] as a test 

(a) (b)

Fig. 17  The diagram captures the trait of the a IMR and b RRRGR profile for the BBEGM [1]. Here we 
consider b = 0.01, a = 0.1, c = 1 for generating the figures
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bed model to provide precise growth information when species are subjected to the adapt-
ability phase. The RRRGR equation for the BBEGM model is given by

Now, differentiating both sides of the above with respect to t, we have,

Hence, from (2) and (34), we conclude that

Remark 9 This relation (36) clearly shows that rate of change of the negative of relative fit-
ness of the species is inversely proportional to an allometry of time i.e. when any species is 
the at the verge of maturity then, the adaptability power to cope up with a new environment 
decreases due to their low maturity.

Remark 10 Here the constant c not only acts as an adaptability coefficient; instead, it plays 
the role of proportionality constant too. Note that this function is also a monotonically 
increasing function of time. However, the relationship 36 establishes a connection between 
the adaptability coefficient and the rate of change of RRRGR function of the species.

Remark 11 The limiting form of the relation (2) leads us to the following result

where dR(t)
dt

= v(t) = velocity of the RGR at time point t along with d
2R(t)

dt2
= ac(t) = accel-

eration of the RGR at any time point t. Bhowmick and Bhattacharya [1] proposed that the 
species incremental effect should be captured through the positive value of c. Considering 
the fact, we can write that

The relation (38) refers that due to the adaptability to a new environment species fitness 
profile may change, but the hereditary tendency does not change too much. It gives a syn-
ergistic view of the relation between the centripetal acceleration and the particle’s velocity 

(33)�(t) = −
1

R(t)

dR(t)

dt

(34)
d�(t)

dt
=

1

R2(t)

(
dR(t)

dt

)2

−
1

R(t)

d2R(t)

dt2

(35)�(t) = a −
c

t

(36)
d�(t)

dt
=

c

t2

(37)
−
c

t2
= −

1

R(t)

[
v2(t)

R(t)
− ac(t)

]

⟹ c =
t2

R(t)

[
v2(t)

R(t)
− ac(t)

]

(38)

v2(t)

R(t)
> ac(t)

⟹ ac(t) <
v2(t)

R(t)
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in a non-uniform circular motion. Hence, the species which are subjected to any new habi-
tat must have to maintain the relation (38) for their sustainability in that new environment. 
This implies that species always try to reach their carrying capacity for their survival pros-
pect irrespective of the situation.

7.2  Stochastic model formulation

The inherent property of any species is to adapt to its new territory when they are trans-
ferred from one hoop net to another. This adaptability effect varies from one population 
to another as two factors govern it, one is internal, and another is the external regulator. (i) 
The internal responses occurred due to their hormonal oscillations, blood pressure varia-
tions, metabolic rate, enzymatic processes, cellular metabolism, or individual character-
istics like body mass index and genes [6]. This will affect their cellular levels. (ii) But in 
comparison, the external sources of variation occur due to minor differences in the experi-
mental procedure, dissolved oxygen, temperature, sun-light penetration, phytoplankton 
density, availability of food, etc. [32, 33]. Thus in the modeling framework, it is essential 
to incorporate the unanticipated changes in growth due to environmental fluctuations. So, 
we extend the proposed deterministic model 36 to its stochastic analog by introducing the 
concept of the stochastic differential equation (SDE), as it is known that the SDE is a natu-
ral choice to model a dynamical system that is subject to random environmental influences 
[34, 35]. We will compare the performance of the proposed model under this adaptability 
effect with the stochastic version of the other standard models. The stochastic analog of 
(33) can be represented by

where {Wt, t ≥ 0} is standard Brownian motion, f (�(t), t) is called the drift coefficient, 
and �(�(t), t) is the diffusion coefficient [34–36]. When any species are transferred into 
the new environment, individual variation between them is imminent. So the adaptability 
power to cope with the new environmental situation is expected to vary from one indi-
vidual to the other. As a consequence, there must be significant variation in their maturity. 
Different individuals are exposed to the significant variation in maturity rate d�(t) in such 
a case. As a result, the variance of the maturity of an individual should be a decreasing 
function of age because while individuals are reaching close to their maturity, they have 
a small amount of variation compared to the earlier stage of growth. So var(d�(t)) is pro-
portional to either e−mt for m > 0 or with 1

tp
 depending on the specific design of the experi-

ment. But without any loss of generality, here we consider the term e−mt proportional with 
var(d�(t)) . Note that 𝜎(𝜔(t), t)(> 0) is the intensity of environmental fluctuation. There 
exist many ways to consider SDE like Ito’s sense [35, 36] and Stratonovich sense, but in 
this manuscript, we enumerate our result with the help of Ito’s calculus. We take the drift 
coefficient from Eq. 36, then the SDE takes the following form

Integrating, we get,

(39)d�(t) = f (�(t), t)dt + �(�(t), t)dW(t),

(40)d�(t) =
c

t2
+ �e−mtdW(t).
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Now taking expectation on both sides of 41, we have,

Here �t0
(= �0 ) is a random variable with mean mt0

 . Now, the variance of �(t) governed by 
Eq. 41 is given by

Using Ito’s isometry, we obtain the variance as

Therefore, considering the relation (43), the conditional distribution for BBEGM [1], i.e., 
�(t(k))|�(t(k − 1)) follows N(m1, �1) distribution with m1 = �(k − 1) + c

(
1

tk− 1

−
1

tk

)
 , 

�1 =
�2

2m

(
e−2mtk− 1 − e−2mtk

)
.

Similarly, the expression for the conditional distribution of the PEGM [6], i.e., 
�(t(k))|�(t(k − 1)) follows N(m2, �2) distribution with m2 = �(k − 1) +

(
r
(
t
c− 1

k
− t

c− 1

k− 1

)
−(1 − c)

(
1

t
k− 1

−
1

t
k

))
 , �2 =

�2

2m

(
e−2mtk− 1 − e−2mtk

)
.

Remark 12 The conditional distribution for BBEGM [1] with the diffusion coefficient 1∕tp 
is �(t(k))|�(t(k − 1)) and follows N(m3, �3) distribution with m3 = �(k − 1) + c

(
1

tk−1
−

1

tk

)
 , 

�3 =
�2

1− 2p

((
tk
)1− 2p

−
(
tk−1

)1− 2p
)
.

Remark 13 The expression for the conditional distribution of the PEGM [6] with the diffu-
sion coefficient 1∕tp is  �(t(k))|�(t(k − 1))  and follows N(m4, �4) distribution with 
m4 = �(k − 1) +

(
r
(
tc− 1
k

− tc− 1
k− 1

)
− (1 − c)

(
1

tk− 1

−
1

tk

))
 , 

�4 =
�2

1− 2p

((
tk
)1− 2p

−
(
tk− 1

)1− 2p
)
.

7.3  Model validation

7.3.1  Deterministic set up

Several authors [1, 5, 6] described that the fitting of the growth curve model to any data 
set follows two possible ways. In one way, absolute growth of any species is considered a 
response variable, and in the other RGR is treated as the response variable. Most of the 
literature [1, 5, 6, 11, 12, 37] survey reports that RGR modeling is superior to the abso-
lute growth rate modeling due to the variability of the shape of RGR profile for different 

(41)�(t) = �(t0) + c

(
1

t0
−

1

t

)
+ � ∫

t

t0

e−mtdW(t)

E(�(t)) = mt0
+ c

(
1

t0
−

1

t

)

(42)var(�(t)) = �2var

(
∫

t

t0

e−mtdW(t)

)

(43)
var(�(t)) = �2var

(
∫

t

t0

e−2mtdt

)

⟹ var(�(t)) =
�2

2m

[
e−2mt0 − e−2mt

]
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growth laws. The inherent mechanism of any species growth is reflected through its fitness. 
Motivating from this fact and based on the advantage of our proposed growth measure, we 
treat RRRGR as a response variable to analyze our data set to the several existing time co-
variate models. Since the RGR profile of our data set follows a non-monotonic, i.e., a kind 
of bell-shaped structure, in order to analyze the underlying model, we consider the PEGM 
[6], BBEGM [1] for the illustration purpose.

In general with respect to our proposed growth measure, any growth law can be expressed as

Our regression framework is carried out by following the above relation (44). Here ∈ (t) meas-
ures the error of the process, i.e., the identically independently distributed (iid) normal random 
variables with zero mean and finite variance �2 . f (t,N(t),Θ) represents the underlying deter-
ministic trend of RRRGR for the different growth laws. However, f (t,N(t),Θ) can be explicit 
function of N(t) or time t depending on the several growth laws with a parameter space Θ.

It is to be noted that both the RGR and RRRGR cannot be observed directly from any 
data set. So we always have to enumerate it from the given data set. Considering N(t1) and 
N(t2) as the size of any species at two different time points t1 and t2 respectively, several 
authors [2, 12, 15, 25] used the following relation as an estimate of the RGR 

Motivating from the above (45), we also used the following as an estimate of RRRGR ( �(t))

where R(t1) , R(t2) represents the species fitness at two different time points t1 and t2 respec-
tively. The whole estimation process is carried out through the non-linear regression set 
up. Here we use the Gauss-Newton type algorithm to minimize the residual sum of square, 
implemented in the “nls” routine of the R software [38]. The convergence of this method is 
highly sensitive to the initial value of the model parameters. Moreover, when data sets are 
short or too noisy, then non-linear least square (NLS) may sometimes fail to estimate the 
model parameters [25]. However, due to the small sample size and without proper assump-
tion on the distribution of error, the estimated variances of the parameters may not be relia-
ble (may be because of non-linearity in the model). To get the uncertainty in the parameter 
estimates, we follow a non-parametric type bootstrap estimation procedure for our data set. 
This method provides the distribution of Θ . In order to follow the bootstrap technique, we 
first generate a B number of bootstrap samples where duplicate samples are also allowed. 
Now, we compute the parameter estimates using non-linear regression for each generated 
sample. Based on the bootstrap distribution we then compute the bootstrap mean of Θ̂ , 
var(Θ̂) and enlist them in Tables 2, 3, and 4 as the estimate of Θ̂.

7.3.2  Stochastic set up

We know that behind any natural phenomenon environment plays a key role. So it is 
essential to discuss the role of the environment in any experiment. In order to validate the 
proposed growth measure concerning our fish data in the presence of any environmental 

(44)−
1

R(t)

dR(t)

dt
= �(t) = f (t,N(t),Θ) + ∈ (t).

(45)R̂(t) =
ln(N(t2)) − ln(N(t1))

t2 − t1

(46)�̂(t) =
ln(R̂(t2)) − ln(R̂(t1))

t2 − t1
,
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effect, we should analyze the stochastic form of the several growth laws. Here we take 
BBEGM [1] as the test bed model (as discussed previously) to perform this work. Keeping 
this thing in mind, we already derive the distribution for the BBEGM model in Sect. 7.2. 
Now, the conditional log likelihood for this distribution is given by

Note that A =
m

�2
Σn
k= 1

(
�(k)−�(k−1)−c

(
1

tk− 1
−

1

tk

))2

e−2mtk− 1 − e−2mtk
.

Here n is the number of time points. It is to be noted that the above log-likelihood function 
is expressed for a single individual. The log-likelihood function for s individual is given by

where L�i
(p) denotes the conditional log-likelihood function for the i-th individual. 

Now, the estimate of the model parameters can be found to maximize the relation (47). 
Since the explicit solution of the relation (47) is not available, so we use some standard 
numerical techniques like Nelder and Mead [39], quasi Newton [40], and conjugate gradi-
ent [41]. The numerical processes are carried out through the routine “mle2” under the 
package“bbmle” routine as implemented in the R software [38].

7.3.3  Model selection criteria

Model selection is a procedure for identifying a model that has the best agreement with the 
data (called the “best model”) among a set of models. In growth curve literature, the selec-
tion of the growth model is based on some information criterion like Akaike information 
criterion (AIC) [42] and Bayesian information criterion (BIC). We choose the AIC as the 
yardstick to serve our purpose. The analytical expression for the AIC is given by

where L is the maximized likelihood value, and k is the number of independent adjusted 
model parameters.

L�(c, �,m) = −
n

2
ln(2�) −

n

2
ln

(
�2

2�

)
−

1

2
Σn

k= 1

(
e
−2mt

k− 1 − e
−2mt

k

)
− A.

(47)L�1�2…�s
(c, �,m) = Σs

i= 1
L�i

(p),

AIC = − 2 lnL + 2k,

Table 2  Estimation of model parameters for various growth curve models on the cattle growth data. Note 
that the bold magnitude indicates the lowest AIC levels to identify the best models among the followings

Model â p-value r̂ p-value ĉ p-value AIC

BBEGM 1.279 0.005 - - 2.754 0.006 16.11
BBEGM ( c = 1) 0.686 0.03 - - - - 20.16
BBEGM ( c = 2) 1.03 0.001 - - - - 15.63
PEGM - - 0.04 0.05 2.34 0.000 9.46

Table 3  Estimated parameter values for various growth curve models in the location A. Note that the bold 
magnitude indicates the lowest AIC levels to identify the best models among the followings
Model â p-value r̂ p-value ĉ p-value AIC

BBEGM 0.2449 0.4195 - - 0.4210 0.5820 21.9571
BBEGM ( c = 1) 0.414 0.055 - - - - 20.778
BBEGM ( c = 2) 0.7072 0.0129 - - - - 24.6802
PEGM - - 0.1314 0.2817 1.3624 0.0163 21.6986
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7.4  Illustration with the real data

We consider the growth data of two species from different domains, viz. epidemiology and ecol-
ogy. for the illustration purpose. The following subsections demonstrate the individual cases.

7.4.1  Case‑I

We consider the weight data (in kg) of the calves as the first case study. The raw data set 
is available in the literature of Kenward [43]. However, Karim et  al. [29] also used the 
data set for their own research. The weight of the individual species at eleven time points 
over a 133-day period is recorded in the growth data. However, the animals are subjected 
to two treatments, i.e., treatment A and treatment B for the intestinal parasites. Here we 
demonstrate our analysis by considering the data of thirty (30) individuals with treatment 
A. The RGR profile of these individuals follows a bell-shaped structure as depicted in 
Fig. 18a. Moreover, the RRRGR profile is mentioned in Fig. 18b, which shows the increas-
ing character. Since the RGR structure of the calves follows the bell-shaped structure, so, 
the underlying growth equation should be confined in between BBEGM [1] and PEGM 
laws [6]. In this connection, we compare these growth laws to find the best association with 
the corresponding growth data.

(a) (b)

Fig. 18  The profiles a and b represent the time-series diagram of the RGR and RRRGR function for the 
cattle growth data respectively. Here, both the solid and dashed lines in figure b are used to mention the 
predicted curves of the corresponding models. The name of the specified model is given in the legend of  
the figure

Table 4  Estimated parameter values for various growth curve models in the location B. Note that the bold 
magnitude indicates the lowest AIC levels to identify the best models among the followings

Model â p-value r̂ p-value ĉ p-value AIC

BBEGM 0.48 0.10 - - 0.99 0.17 19.55
BBEGM ( c = 1) 0.482 0.017 - - - - 17.61
BBEGM ( c = 2) 0.774 0.002 - - - - 20.34
PEGM - - 0.15 0.17 1.56 0.003 19.52
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The estimated magnitudes of the model parameters are listed in Table 2. Since the mag-
nitude of AIC for the growth model PEGM [6] stands lower among others, so it depicts 
that PEGM [6] has the best association with the observed data set.

7.4.2  Case‑II

The motivating data sets are obtained from the real-life experiment performed in the Indian 
Statistical Institute (ISI) pond, Kolkata. The experiment was performed to analyze the 
effect of water quality parameters (dissolved oxygen, temperature, etc.) on the length or 
size of the fish Cirrhinus mrigala at the different locations of the ponds. The full data sets 
of this experiment are presented in the thesis of [5]. Several authors [1, 2, 17, 44] also ana-
lyzed these data sets to explore their research work. Since the full experiential protocol is  
presented of IMR. Moreover, the simulation experiment in in the thesis of Bhattacharya 
[5], we provide a short glimpse of this experiment.

There were four different locations in that experimental pond, i.e., location A, location 
B, location C, and location D. Here we consider only first two sites, i.e., location A and 
location B for the illustration purpose. The length or size of the fish is recorded for twelve 
consecutive time points with a constant interval of times, i.e., once in a week (four times 
in a month). The data set consists of the “natural tip length” (the length of the fish from 
the lower jaw to the tip of the fork) observations of the 12 consecutive time points. At each 
time point, measurements of 12 randomly selected fish were recorded. Therefore, we have 
a longitudinal measurement of 12-time points. The parameter estimation of the determin-
istic models is carried out through the non-linear regression process. That stochastic set 
up is through the maximum likelihood technique which are elaborately discussed in Sub-
sects. 7.3.1 and 7.3.2 respectively.

The RGR profile of the data set for the two sites, i.e., location A and B, shows the non-
monotonic trait (see Fig.  20a and c). Consequently, it would be difficult for any experi-
menter to identify the true status of maturity of the species as the magnitudes of RGR are 
identical for any two distinct time points. So, we seek another new growth measure for 
providing a precise growth estimate of any species. The data set used here demonstrates 
the species growth under the adaptative environment when they are transferred from one 
place to another location, which is the prime reason behind the bell-shaped RGR profile. 
Recently, Chakraborty et al. [2] proposed a new growth metric IMR for predicting the spe-
cies maturity status, where the analytical form of the measure needs substantial informa-
tion about the species asymptotic size. However, it would be difficult for any experimenter  
to know the species carrying capacity during an experiment. In this connection, we will use 
the proposed alternative growth measure RRRGR to delineate the true growth status of the 
species. We have already mentioned in Sect. 3 that one can treat the RRRGR as the proxy 
for IMR. Moreover, the simulation experiment in Sect. 6 also depicts that RRRGR stands to  
be more statistically significant than the IMR in predicting the species actual growth status.

Note that for our data set, we empirically derive the RRRGR as the log difference of 
the RGR at two different time points, which is similar to the concept of RGR depicted by 
Fisher [3]. The time-series profile of the RRRGR in Fig. 20b and d displays an increas-
ing character, which indicates that the underlying growth model may be the logistic, 
theta-logistic, extended Gompertz, etc. Since the fitness profiles of our data set follow 
the non-monotonic trend, we can exclude the logistic family as their size-RGR relation-
ship follows the decreasing character. Consequently, we select the growth models of the  
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extended Gompertz family, viz. BBEGM and PEGM for the regression purpose of pre-
dicting the species inherent growth mechanism. Here we carried out the regression work 
on both the deterministic and stochastic situations. The detailed process of the regres-
sion work is presented in Subsects. 7.3.1 and 7.3.2. The output of the regression work 
demonstrates that in both locations A and B, the growth model BBEGM (c = 1) shows 
the best association with the data sets among the considered models. Here we select the 
best model based on the AIC magnitude as mentioned in the Subsect. 7.3.3. The param-
eter estimates, along with the AIC values for both the deterministic and stochastic cases, 
are listed in Tables 3, 4, 5, and 6.

Remark 14 The empirical study of Bhowmick and Bhattacharya [1] reveals that the 
BBEGM(c = 2) gives a better parameter estimation to capture the underlying growth trend 
of the fish for location A in comparison to the other existing growth models to the R2 , 
RMSE, AIC, etc. Bhowmick and Bhattacharya [1] confined their whole discussion between 
the parametric value c = 1 and c = 2 in BBEGM. This would insist them to select the bet-
ter model between these two based on some statistical measure like AIC. It is worthy to 
note that Chakraborty et al. [6] also nurture this data set in order to judge whether PEGM 
gives a better parameter estimation or not. The author shows that among the existing time 
co-variate models, including BBEGM ( c = 1 and c = 2 ), PEGM gives a better estimate of 
AIC. Thus, AIC should play a key role in commenting on the fitness of any model. How-
ever, in our case, we find that the magnitudes of AIC for the four models, i.e., BBEGM, 
BBEGM(c = 1) , BBEGM(c = 2) , PEGM,  are pretty close to each other. In this connec-
tion, we perform the bootstrap analysis to generate the bootstrap distribution of the AIC for 
these four models. Now, we numerically estimate the density by the Kernel density func-
tion “density” as implemented in the R software [38], which is depicted in Fig. 19. Hence, 
it is clear from the figure that the means of this bootstrap distribution for the four models 
do not differ too much. This trait ensures that the response of all the four models toward the 
fish data is pretty similar.

Table 5  The estimated magnitudes of the model parameters for distinct growth functions analogous with 
the stochastic differential equation in the location A. Note that the bold magnitude indicates the lowest AIC 
levels to identify the best models among the followings

Model r̂ p-value ĉ p-value �̂ p-value m̂ p-value AIC

BBEGM - - 0.2 0.000 0.6 0.000 0.33 0.000 42.5
BBEGM ( c = 1) - - - - 1.17 0.0012 0.06 0.02 38.5
BBEGM ( c = 2) - - - - 1.29 0.001 0.07 0.02 39.6
PEGM 18.8 0.000 0.993 0.000 1.09 0.0014 0.59 0.03 41.7

Table 6  The estimated magnitudes of the model parameters for distinct growth functions analogous with 
the stochastic differential equation in the location B. Note that the bold magnitude indicates the lowest AIC 
levels to identify the best models among the followings

Model r̂ p-value ĉ p-value �̂ p-value m̂ p-value AIC

BBEGM ( c = 1) - - - - 0.96 0.0014 0.07 0.03 33.6
BBEGM ( c = 2) - - - - 1.04 0.0012 0.07 0.02 34.4
PEGM 9.63 0.000 1.03 0.000 0.95 0.0015 0.07 0.03 37.4
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Since the RRRGR is treated as the proxy for the IMR, so we can classify the predic-
tion process into two buckets from the perspective of the species maturity. The first 
classification predicts the magnitude of the negative of relative fitness of any species 
at any specific time point by which one can easily draw the inference on the species 
maturity without using the metric IMR (see Fig. 20b, d). For example, in our data sets, 
the species will attain its matured stage when the magnitude of the RRRGR becomes 
identical with the estimated values of the decay parameter, i.e., â both in the stochastic 
and deterministic process. Moreover, we also describe in Sect. 3 that the RGR-RRRGR 
relationship for the bell-shaped fitness profile possesses specific characteristics of hav-
ing two distinct magnitudes of RRRGR for a specific RGR value. Note that these mag-
nitudes of RRRGR represent two distinct states of the species life cycle, i.e., the infant 
and matured stages.

Consequently, it will be easy for an experimenter to draw the inference on the species 
maturity by studying the RGR-RRRGR profile, which is depicted in Fig. 21a, b. Moreo-
ver, the entire regression work also provides an estimate of the species return rate by 
0.414 time−1 and 0.482 time−1 for locations A and B, respectively, which plays a crucial 
role in maintaining stability in the ecosystem. So, in a nutshell, we observe that the pro-
posed measure RRRGR not only addresses the species maturity status but also provides 
prime information on the species return rate.

Fig. 19  The bootstrap distribution of the AIC for BBEGM, BBEGM ( c = 1 ), BBEGM ( c = 2 ), and PEGM 
for location A over 1000 bootstrap samples. The density function is enumerated through the Kernel density 
function “density” as implemented in the R software [38]. It is quite clear from the figure that the means of 
this bootstrap distribution for BBEGM ( c = 1 ), BBEGM ( c = 2 ), and BBEGM do not differ too much. This 
trait ensures that the response of all those three models towards our fish data is almost similar
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(a) (b)

(c) (d)
Fig. 20  The profile (a), (c) and (b), (d) represents the time-series diagram of the RGR and RRRGR for the 
fish data respectively. Here, both the solid and dashed lines are used to mention the predicted curves of the 
corresponding models. The name of the specified model is present in the legend of the figure

(a) (b)
Fig. 21  The profile (a), (b) represents the relation between the RRRGR and RGR of the fish data. Here, 
both the solid and dashed lines are used to mention the predicted curves of the corresponding models. The 
name of the specified model is presented in the legend of the figure
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8  Conclusion

Several studies suggest that the most popular growth metric to capture the species fit-
ness is the relative growth rate (henceforth, RGR) which is superior to the size mode-
ling. Since then, RGR has been predominantly used in the statistical inference of growth 
models. The different growth laws, such as exponential, logistic, Gompertz, power, and 
generalized Gompertz or generalized logistic, can be characterized based on the mono-
tonic behavior of the relative growth rate (RGR) to size or time. Thus, in this case, spe-
cies fitness can be determined indeed through RGR. However, in nature, RGR is often 
non-monotonic and specifically bell-shaped [1, 29]. In this case, species may experi-
ence with the same fitness (RGR) for two different time points. The species precise 
growth and maturity status cannot be determined from this RGR function. The instan-
taneous maturity rate (IMR), as proposed by Chakraborty et al. [2], helps to determine 
the correct maturity status of the species. Nevertheless, IMR is intractable for all non-
integer values of a specific parameter. Moreover, it is a function of the carrying capacity 
parameter unknown to any experimenter. The structural form of the metric IMR lacks 
the concept of species return rate, which is an essential tool in measuring species stabil-
ity. In this connection, we propose the RRRGR as a proxy for the IMR. Although IMR 
and RRRGR possess similar mathematical property, the proposed measure RRRGR is 
free from the model parameters. So, the metric RRRGR will be helpful in predicting 
the accurate growth status of any species in compare with the IMR. Hence, the utility of 
the proposed measure is explained by real life data. We believe that this study would be 
helpful for fishery biologists in regulating the favorable conditions of growth so that the 
species can reach its carrying capacity with optimum effort.
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