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Abstract
Glioma is a human brain tumor that is very difficult to treat at an advanced stage. Studies 
of glioma biomarkers have shown that some markers are released into the bloodstream, 
so data from these markers indicate a decrease in the concentration of blood glucose and 
serum glucose in patients with glioma; these suggest an association between glucose and 
glioma. This decrease mechanism in glucose concentration can be described by the coupled 
ordinary differential equations of the early-stage glioma growth and interactions between 
glioma cells, immune cells, and glucose concentration. In this paper, we propose develop-
ing a new mathematical model to explain how glioma cells evolve and survive combination 
therapy between chemotherapy and oncolytic virotherapy, as an alternative to glioma treat-
ment. In this study, three therapies were applied for analysis, that is, (1) chemotherapy, (2) 
virotherapy, and (3) a combination of chemotherapy and virotherapy. Virotherapy uses spe-
cialist viruses that only attack tumor cells. Based on the simulation results of the therapy 
carried out, we conclude that combination therapy can reduce the glioma cells significantly 
compared to the other two therapies. The simulation results of this combination therapy 
can be an alternative to glioma therapy.

Keywords Chemotherapy · Glioma · Nonlinear · Ordinary differential equations · 
Virotherapy

1 Introduction

Simulation of biological dynamics has a long history over the last few decades, one of which 
is a quantitative approach to tumor therapy. Many mathematical models, physical computa-
tional, and engineering computational have been applied to various aspects of tumor therapy, 
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that the main goal of understanding tumor response to clinical intervention. Simulations of 
the dynamics model of tumor therapy are known as in silico trials which aim to predict a 
patient’s specific response to various treatments or treatment combinations. The simulation of 
tumor therapy becomes an invaluable tool for optimizing patient care. Therefore, this study 
aims to describe the simulation of the biological dynamics of tumor cell growth and the inter-
action between tumor cells with combination treatment.

Mathematical models are powerful tools for testing hypotheses and confirming experi-
ments using simulations of complex system dynamics. Through these models, we can also 
understand the basic mechanisms of complex biological dynamic systems in a relatively 
fast time without sacrificing large laboratory experiment time. Variations of the biological 
system dynamics model can be adapted to the experiment to be reviewed. In tumor therapy 
simulations, the model can be validated using data from clinical experiments, but if clinical 
experimental data are not available, then the simulation results can be used as a hypothesis 
of the tumor growth in the presence of therapy in a patient. Quantitative models have been 
developed as an experimental approach to tumor therapy. In the last 2 decades, many mod-
els have been developed in the form of ordinary differential equations based on the rate of 
division of individual cells; thus, this will pave the way for research in the field of quantita-
tive tumor modeling. Since this study can develop a tumor therapy model that model can 
be used to simulate tumor growth in response to treatment.

One of the tumors in the brain is glioma, while glioblastoma is the most aggressive type 
of cancer in the brain. It is one of the most feared cancers because more than two-thirds of 
adults who have been diagnosed with this cancer will die within 2 years after being diag-
nosed. Treatment of this cancer is a challenge for doctors and researchers because of the 
biological nature of this cancer. First, this cancer can infiltrate the brain which is one of the 
most important organs of the body, so skilled neurosurgeons often have difficulty reaching 
it. Second, this cancer is located behind the blood–brain barrier; it is a transport protein 
junction system that protects delicate nerve tissue from exposure factors, so it will also 
inhibit exposure to chemotherapy therapy. Third, the genetic and epigenetic development 
of this cancer is in the unique microenvironment of the brain, so it often makes cancer 
resistant to conventional treatment [1]. Patients with glioblastoma have an estimated 5-year 
survival of only about 5% after the diagnosis time. Patients with gliomas that have spread 
within the brain typically do not survive more than 5 years; this is due to this cancer pro-
gressing to higher stages [2].

Glioblastoma is rare cancer because every year, only 6 patients are diagnosed out of 
every 100,000 people. This cancer is in the central nervous system (CNS) originating from 
(precursor) glial cells. Most of this cancer arise characterized by infiltrative growth by dif-
fusion into the surrounding CNS parenchyma of the brain [3]. Most glioblastomas are 
thought to originate from glial cells or their precursors, and 30–40% comprise all intrac-
ranial neoplasms. Many studies have developed an understanding of the mechanisms trig-
gering and regulating glioblastoma invasion [4]. The results of the model developed in this 
study are expected to obtain a more effective and better therapeutic strategy and can reduce 
clinical toxicity.

Sturrock and co-workers [5] have developed mathematical models based on the facts of 
post-diagnostic glioma cell evolution. The main difference between their model and those 
of previous researchers is that diagnosed glioma cells have an association between glioma 
growth and changes in the concentration of blood glucose and serum glucose in the brain. 
In addition, based on the diagnosis, the cause of the slow growth of tumors in some cases 
is made possible by the action of the immune system affecting the tumor growth. In the 
early stages of tumor growth, post-diagnosis has also been shown that tumor-associated 
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antigens can be found on tumor cells. These cells have diffused deep into the interior of the 
tumor cells so that these cells will accumulate in the tumor tissue. These immune cells will 
be active; this is caused by the growth of tumor tissue. Ayala-Hernández and co-workers 
[6] have also developed these mathematical models to be used to analyze glioma behavior 
and the concentration of blood glucose and serum glucose in the brain with the parameters 
involved being randomly assigned. The determination of these parameters was based on the 
analysis of the greatest effect on glioma growth and the decrease in the concentration of 
blood glucose and serum glucose in the brain. Their model is a system of coupled nonlin-
ear ordinary differential equations that can be analyzed for stability.

Traditional cancer therapies, such as surgery, chemotherapy, and radiation, are still 
considered to have low efficacy and high toxicity for patients. Currently, researchers are 
intensively discovering new cancer treatments developed based on advances in genetic 
engineering, that is, virotherapy. This therapy uses genetically modified viruses that can 
specifically infect, replicate, and destroy cancer cells without causing damage to healthy 
cells. Currently, virotherapy is a promising cancer treatment, but this therapy has chal-
lenges because the virus can be destroyed by immune cells before infecting cancer cells. 
Wodarz [7, 8] has formulated a basic model of tumor growth affected by virotherapy treat-
ment. The basic model describes the interaction between three variables uninfected tumor 
cells by the virus, infected tumor cells by the virus, and free virus. Based on this basic 
model, several mathematical models have been developed to explain the interaction mecha-
nism between tumor cells and oncolytic viruses to gain a more detailed understanding of 
the dynamics of virotherapy. The development of mathematical models in this study will 
use the virotherapy process based on the model equations that have been introduced by 
Wodarz [7, 8].

Friedman and co-workers [9] have formulated and analyzed a mathematical model 
of a spherical glioma injected with the oncolytic virus hrR3 (mutant of herpes simplex 
virus (HSV)) in its center. Their model described both uninfected and infected tumor cells, 
necrotic cells, free virus cells, and innate immune cells. Their parameter estimates were 
in agreement with experimental results for gliomas, and some of these parameters were 
also based on the much more aggressive glioma. Vasiliu and Tian [10] have also focused 
on developing the interaction dynamics of these five cell populations. They studied peri-
odic solutions and Hopf bifurcations of important biological parameters of viral burst size. 
Their version of the model is composed of ordinary differential equations to analyze the 
Hopf bifurcation and periodic solutions.

Iarosz and co-workers [11] have introduced a system of coupled ordinary differential 
equations to model chemotherapy-treated glioma that considers interactions between glial 
cells, gliomas, neurons, and chemotherapeutic agents. Their model can analyze the process 
of inhibiting glioma growth and identify the parameter values of the glioma growth inhi-
bition that can be obtained from the model, and it can minimize the loss of healthy cells. 
Researchers have also shown that chemotherapy treatment has the potential to be combined 
with an antitumor, namely, an oncolytic virus, to be more efficacious. An overview of 
the combination treatment strategy of chemotherapy and viral induction used to optimize 
tumor destruction was also carried out by Nguyen and co-workers [12]. They focus on dis-
cussing the therapeutic context of the synergistic combination effect and its implications 
for clinical use in the future.

De Pillis and co-workers have developed and analyzed a mathematical model of the 
ordinary differential equations that regulate tumor growth at the cell population level with 
a combination of treatments using immune cells and chemotherapy. This model helps to 
guide the development of combination therapy. The numerical simulation results of the 
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combination therapy illustrate some situations where neither chemotherapy nor immuno-
therapy alone is sufficient to control tumor growth, but combination therapy can eliminate 
the entire tumor. Therefore, this study will use the chemotherapy model equation that has 
been applied in the research of De Pillis and co-workers [13].

Urenda-Cázares and co-workers [14] have introduced a mathematical model of the 
treatment combination of chemotherapy and oncolytic virotherapy as an alternative 
treatment against glioma. They built a model of the dynamics system based on the inter-
action between glial cells, glioma cells, chemotherapeutic agents, and virotherapy that 
injects a specific virus and only attacks tumor cells. They have used three different types 
of viruses. The process of virotherapy against tumor cells is divided into healthy cells 
and infected cells; it is assumed that the infected cells cannot multiply. Their results 
show that the proposed treatment can reduce the number of chemotherapy sessions and 
also that virotherapy is recommended to select the type of virus according to the type of 
cancer. The conclusions of their model reinforce and claim that the use of combination 
chemotherapy and virotherapy treatments is more efficacious against tumors.

Therefore, a treatment combination of chemotherapy and virotherapy has been used 
widely as clinical treatment and has shown synergistic properties and the potential to 
kill tumors. So, in this study, we will develop a mathematical model of chemotherapy 
that has been widely applied for tumor destruction and combined with virotherapy to 
optimize the treatment process and then analyze its implications. These model develop-
ment results are expected to provide an overview of glioma or glioblastoma treatment in 
the future.

This study will present the development of mathematical models describing the inter-
action between glioma cells, blood glucose, and immune cells that was combined with 
chemotherapy and virotherapy as an alternative treatment for glioma. Section 2 presents 
the development of mathematical models in detail, and the value of the parameters of 
this model is also presented in detail. Section 3 presents the results and analysis of the 
simulations that have been carried out. Finally, conclusions are presented in Sect. 4.

2  Formulation of mathematical models of combination therapy

2.1  Mathematical model of glioma growth based on blood glucose levels

This study begins with the model development from the equations proposed by Sturrock 
and co-workers [5]. The equations have also been used by Ayala-Hernández and co-
workers [6] to demonstrate the dynamics of small glioma growing in the brain that elicit 
a response from the host immune system in a simplified form. Their model assumes that 
both the host’s immune system and gliomas need energy to maintain their function, and 
the energy source is glucose, which can be in the brain or blood. Their mathematical 
model consisted of four variables: (1) the symbol T  defines the glioma concentration; 
(2) the symbol �brain represents the glucose concentration in the brain; (3) the symbol I 
defines the concentration of the immune system; and (4) the symbol �serum represents the 
serum glucose concentration. Their model is expressed in the system of ordinary differ-
ential equations as follows:
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where

All of the Eqs. (1)–(4) above are time-dependent t > 0 . Equation  (1) defines the time 
evolution of glioma growth, Eq.  (2) represents the rate of glucose concentration in the 
brain, Eq. (3) defines the rate of immune system activity in the brain, and Eq. (4) represents 
the rate of glucose concentration in serum. Table 1 shows the set of parameter values from 
Eqs. (1)–(4).

Many mathematical models have been developed to describe and understand the dynam-
ics of combination therapy of chemotherapy and virotherapy, so it is of interest to us to build 

(1)
dT

dt
= �T�brainT

(
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T + Ti
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)
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,

F(t) = max
{

�min, �0sin(6�t)
}

Table 1  Description and values of the estimated parameters of Eqs. (1)–(4) from the literature [5] and [6]

Parameter Description Value [5, 6]

αT Glioma growth rate 1.575  (ml2  g−1  day−1)
KT Glioma carrying capacity 2 (g/ml)
dTI Decreased rate of glioma due to immune response 0.072  (day−1)
αTI The recruitment rate of immune systems cells due to glioma 0.0003  (day−1)
dT Glioma natural decay rate 0.0001  (day−1)
dI The natural decay rate of immune system cells 0.01  (day−1)
αs Immune system cell recruitment rate 0.7  (day−1)
ν Baseline immune system cell production rate 0.7  (day−1)
dTσ Glucose consumption rate by glioma 1  (day−1)
ασ Transfer rate of glucose from serum to brain 20  (day−1)
σmin Minimum glucose intake rate to serum 0.0008 (g/ml)
σ0 Maximum variation in the rate of glucose intake 0.0016 (g/ml)
dσ1 Consumption of glucose in the brain by healthy cells 0.01  (day−1)
dσ2 Consumption of metabolic glucose in serum 0.00625  (day−1)
dTT The rate of glioma cells killing immune cells 0.072  (day−1)
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and analyze coupled nonlinear ordinary differential equations to describe and understand the  
dynamics model of glioma therapy, when chemotherapy, virotherapy, and the two combina-
tions of these therapies are performed. Our proposed model is a dynamic model of small glio-
mas growing in the brain, and the tumor’s growth will cause a response from the immune 
system. This model also assumes that the immune system and brain tumors need energy, 
and the energy source is glucose, to maintain their function in the brain. Then, this above 
model will be combined with the process of chemotherapy and the virus injection so that 
tumor cells exposed to chemotherapy and tumor cells that are uninfected and infected with 
the virus can be described and also analyzed. The development of this model is expected to 
demonstrate the effect of chemotherapy and virotherapy which is determined by the important 
variables, such as the level of immune cells, blood glucose, and glucose in the brain, dur-
ing the therapy process. The simulation results are also expected to show which treatment is  
more efficacious for reducing tumor cells in the brain, monotherapy, or a combination of the 
two therapies.

2.2  Mathematical model of chemotherapy

De Pillis and co-workers [15] have introduced a mathematical model of the tumor-immune 
interaction with chemotherapy to obtain an optimal treatment strategy. Their numerical results 
of the dynamics model are used to analyze and control drug therapy to get optimal results. 
Their model also makes it possible to test and compare various control strategies in linear and 
nonlinear cases. In the linear control case, the tumor cells were completely killed, but in the 
nonlinear control case, the tumor cells would rapidly move to a small value, then gradually 
decrease; this corresponds to the amount of drug delivered to the patient. A nonlinear control 
has the added benefit of keeping the tumor under control when the tumor becomes small so 
that the most vigorous tumor treatment is not required. A nonlinear controller allows for mini-
mizing harmful side effects while allowing the system to maintain a small tumor size.

De Pillis and co-workers [13] have also presented a chemo-immunotherapy model that 
detects three compartments, that is, immune cells, tumor cells, and chemotherapy drugs in the 
bloodstream. The tumor cells in the blood concentration are assumed to be constant through-
out the bloodstream. The chemotherapy drug prescribed is doxorubicin, because the param-
eters allow it to be determined more precisely. The chemotherapy model includes the chemo-
therapeutic drug-killing term in each cell population. Because chemotherapy drugs, such as 
doxorubicin, are only effective during certain phases of the cell cycle, pharmacokinetics will 
show limited efficacy in chemotherapy. Equation 1 − e−kQ to represent fractional cell killing of 
chemotherapy. The mathematical model used to reflect the curve leading to tumor cell death 
induced by dose–response induction of chemotherapy is defined by the equation:

where the parameters KT and δT define the rate of tumor death due to chemotherapy and the 
drug efficacy coefficient, while the variable Q defines the chemotherapeutic agent. While 
the mathematical model that will be used to reflect the curve of immune cell death due to 
drug poisoning when chemotherapy is defined by the equation:

where a parameter KI defines the killing rate of chemotherapeutic agents to immune cells.

(5)F(T , Q) = −KT

(

1 − e−�TQ
)

T

(6)F(I, Q) = −KI

(

1 − e−�TQ
)

I
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2.3  Mathematical model of virotherapy

The characteristics of the virus to combat tumor cells are carried out selectively. The 
virus will infect tumor cells using viral replication and viral cytotoxicity and induce a 
specific viral and tumor response, so this will benefit the patient. Although the immune 
response can slow the rate of viral replication, this must be avoided, so that the virus 
does not integrate into the human genome. The interaction equations between the tumor 
growth, the population of replicating viruses, and the antiviral immune response are 
presented in the form of coupled nonlinear ordinary differential equations. Wodarz [7] 
has introduced a mathematical model to describe the interactions between tumor cells, 
viruses, and the immune system. This model has been used to show the characteris-
tics of viruses used to reduce tumor cells; this is to evaluate the efficacy of anticancer 
therapy carried out by viruses. The therapeutic efficacy was assessed by examining the 
interaction between the tumor cells and the specific viral response; then, this model was 
extended to include not only specific viruses but also specific tumors.

Wodarz [7] has presented the model composed of three variables, namely, (1) unin-
fected tumor cells (T), (2) virus-infected tumor cells (Ti), and (3) viruses with specific 
cytotoxic T lymphocytes (CTL) (V), so the coupled ordinary differential equations are 
given as follows:

where parameter r defines the growth rate of tumor cells logistically, parameter d defines 
the death rate of tumor cells, and parameter k defines the carrying capacity which is the 
maximum size or space that can be occupied by tumor cells. Whereas the parameter β 
defines the spread rate of the virus to tumor cells (this parameter can also be seen as the 
rate of viral replication), the parameter a defines the rate of infected tumor cells and then 
killed by the virus, and the parameter s defines the growth rate of infected tumor cells 
logistically. This assumes that the infected division of tumor cells produces two daugh-
ter cells that carry the virus. This would certainly be the case with viruses that integrate 
into the tumor cell genome, but with viruses that do not integrate, the probability of trans-
mission upon cell division must be high enough to justify this assumption. Parameter cv 
defines the virus-specific CTL that develops in response to the antigen, parameter b defines 
the viral laxative, and parameter pv defines the CTL for killing infected tumor cells.

The dynamics model of predator–prey is an inspiration for CTL response after exposure 
to antigen, so CTL proliferates and kills tumor cells. The amount of antigen (Ti) and CTL 
(V) is directly proportional to the proliferation of CTL, representing a relatively strong and 
efficient response. The model assumes that infected tumor cells can only infect their closest 
neighbors. Therefore, the simulation results of the model yield are qualitatively very simi-
lar to those obtained from the model of the simple mass conservation. This model is the 
first valid model to investigate the basic dynamics of viruses infecting tumor cells.

(7)
dT

dt
= rT

(

1 −
T + Ti

k

)

− dT − �TTi

(8)
dTi

dt
= �TTi + sTi

(

1 −
T + Ti

k

)

− aTi − pvTiV

(9)
dV

dt
= cvTiV − bV
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2.4  Mathematical model of combination therapy

The new dynamic model of the combination therapy system that will be applied for glioma 
therapy is based on the dynamics model of glioma tumor growth that has been proposed 
by Sturrock and co-workers [5] consisting of four main variables, namely, glioma cells (T), 
glucose in the brain (σbrain), immune cells (I), and serum glucose or blood glucose (σserum). 
Their equations are expressed in the form of coupled nonlinear ordinary differential equa-
tions. In this study, the equations describe blood glucose intake that takes into account 
homeostatic glucose absorption using the equation that has been proposed by Quiroz and 
Femat [16]. The model development resulted in 7 variables consisting of the following: (1) 
T defines healthy glioma cells, (2) Ti defines virus-infected glioma cells, (3) σserum defines 
blood glucose, (4) σbrain defines glucose in the brain, (5) I defines immune cells, (6) Q 
defines chemotherapeutic agent, and (7) V defines virus. Each variable is expressed in units 
of g/ml, but chemotherapeutic agents are expressed in units of mg.

where [16]

(10)

dT

dt
= �T�brainT

(

1 −
T + Ti

KT

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Production

− dTT
⏟⏟⏟
Apoptosis

− dTITI
⏟⏟⏟

Immune response

− KT

(

1 − e−kQ
)

T
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Chemotherapy response

− �TV
⏟⏟⏟

Virotherapy response

(11)
dTi

dt
= �TV

⏟⏟⏟
Infected glioma

− dTiTi
⏟⏟⏟

Infected glioma death

− dTiITiI
⏟⏟⏟

Glioma death by immune

(12)
d�brain

dt
= ��

(

�serum − �brain
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Glucose exchange

− dT�T�brain
⏟⏞⏞⏟⏞⏞⏟

Glioma consumption

−
(

d�1 + �s(v + I)
)

�brain
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Natural consumption

(13)

dI

dt
= �s(v + I)�brain+�TITI
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Production

+ sTiI
⏟⏟⏟
Stimulation

− dII
⏟⏟⏟

Naturaldecay

− dTTTI
⏟⏟⏟

Gliomaresponse

− dITiI
⏟⏟⏟

Immunedeath

−KI

(

1 − e−kQ
)

I
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
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(14)
d�serum

dt
= ��

(

�brain − �serum
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Glucose exchange

+
r(I,G)

PBF
⏟⏟⏟

Glucose intake

− d�2�serum
⏟⏞⏟⏞⏟
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r(G, I) = MI(I)MG(G)rB

MI(I) = 7.03 + 6.52 tanh
(

0.333IN − 1.9672
)

MG(G) = GN

(15)
dQ

dt
= P(t)

⏟⏟⏟
Injection of chemotherapy agent

− dQQ
⏟⏟⏟

Degradation of chemotherapeutic agent
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Equation  (10) defines the concentration dynamics of healthy glioma cells describing 
the production of healthy glioma cells, the natural death of healthy glioma cells (apopto-
sis), the response of immune cells to glioma cells, and the response to chemotherapy and 
virotherapy. Equation (11) defines the concentration dynamics of infected glioma cells due 
to virotherapy describing an increase of infected glioma cells, natural death of infected 
glioma cells, and death of infected glioma cells caused by the immune response. Equa-
tion  (12) defines the concentration dynamics of glucose in the brain that describes the 
exchange of glucose between the blood and the brain, the consumption of glucose in the 
brain by glioma cells, and the consumption of glucose by the brain normally. Equation (13) 
defines the concentration dynamics of immune cells describing the production of immune 
cells, stimulation of immune cells due to the presence of infected glioma cells, natural 
immune cell death, immune cell response due to the presence of glioma cells, and death of 
immune cells responsible for the infection and the response of immune cells to chemother-
apy. Equation (14) describes the concentration dynamics of glucose in the blood describing 
glucose exchange, glucose intake, and natural glucose consumption. Equation (15) defines 
the dynamics of a chemotherapeutic agent describing the injection of a chemotherapeu-
tic agent and the degradation of a chemotherapeutic agent. Equation (16) defines the viral 
concentration by describing the dose of virus injection, the increase of virus due to rupture 
of infected glioma cells, the possibility of virus loss during the infection process, and the 
natural death of the virus. The parameter values that will be used in numerically simulated 
can be seen in Tables 1 and 2.

This study shows a glucose exchange between blood glucose and glucose in the brain. 
Glucose in the brain will be a supplier of nutrients for immune cells and glioma cells so 
that glioma cells and immune cells will suppress each other. The chemotherapy process 
will suppress immune cells and glioma cells; this refers to the nature of chemotherapy 
agents that cannot distinguish cell types. Viruses from the virotherapy process will infect 
glioma cells and turn glioma cells into infected glioma cells. Infected glioma cells will 
stimulate or trigger immune cells, while immune cells will inhibit or kill glioma cells. In 
this infected process, there is a possibility of the virus missing caused by immune cells.

In this study, numerical simulations were carried out using the numerical method of the 
Runge Kutta order 45. Numerical simulations were carried out using initial values refer-
ring to studies [5, 6], especially for healthy glioma cells (T), glucose in the brain (σbrain), 
immune cells (I), and serum glucose or blood glucose (σserum). The initial values of chemo-
therapeutic agents and viruses in virotherapy are zero, so the initial values for each of these 
variables are as follows:

In this study, the scenario of the numerical simulation consists of three scenarios 
based on the therapy to be carried out. In the first scenario, chemotherapy is given 
30 days after the patient is diagnosed with glioma. A chemotherapy dose of 560 mg was 
injected every day for 5 days, or a total dose of 2800 mg was injected with a chemo-
therapy agent in the form of cyclophosphamide, which can be seen in Fig. 1. The dose 
was taken according to the regulations of The United States Food and Drug Administra-
tion [https:// www. acces sdata. fda. gov/ drugs atfda_ docs/ label/ 2013/] which recommends 

(16)
dV

dt
= U(t)

⏟⏟⏟
Injection of virus

+ bdTiTi
⏟⏟⏟

Increase of virus

− � TV
⏟⏟⏟
Lostvirus

− bV
⏟⏟⏟

Death of the virus

(Ts; �brain; I; �serum; Q;V) ≈ (0.14; 3.92 × 10
−4
; 2.84 × 10

−4
; 4.39 × 10

−4
;0;0)
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that cyclophosphamide be applied at a dose of 50 mg/kg body weight and the patient’s 
body weight is assumed to be around 70 kg. In the first scenario, all variables related 
to virotherapy, such as U(t), V, and Ti, were deactivated. In the second scenario, the 
virotherapy process was applied 30 days after the patient was diagnosed with glioma. 
The injected virus concentration was 5 ×  10−7 g/ml. The given viral injection concentra-
tions were referred to in the literature [33]. During this virotherapy process, all varia-
bles related to chemotherapy, such as P(t) and Q, were deactivated. In the third scenario, 
the combination therapy process, virotherapy was applied 30 days after the patient was 
diagnosed with glioma. An injection dose of a chemotherapy agent of 560 mg every day 
for 5 days then continued with the application of the virotherapy process by injecting 

Table 2  Parameter, description, value (unit), and references

Parameter Description Value (unit) Reference

�T Glioma growth rate 1.575  (ml2  g−1  day−1) [39, 40]
KT Glioma carrying capacity 2 (g  ml−1) [41]
dTI The degradation rate of glioma due to immune response 0.072  (day−1) [5]
�TI The recruitment rate of the immune cell due to glioma 0.0003  (day−1) [5]
dT The natural degradation rate of glioma 0.0001(day−1) [42]
dI The natural degradation rate of immune cell 0.01  (day−1) [5]
�s The recruitment rate of immune cell 0.7  (day−1) [5]
v Production rate of glioma 0.7  (day−1) [5]
dT� Glucose consumption rate by glioma 1  (day−1) [5]
�� The glucose transfer rate from serum to brain 20  (day−1) [5]
d�1 Glucose consumption of healthy cell 0.01 (g  ml−1) [43]
d�2 Glucose consumption metabolism 0.00625 (g  ml−1) [43]
dTT Killing rate of glioma to immune cell 0.072 (g  ml−1) [43]
KT Killing rate of a chemotherapy agent for glioma 0.01  (day−1) [44]
k Rate of drug resistance 4.04 ×  103  (mg−1) [45]
� Rate of virus infections 2 ×  104 (ml  g−1  day−1) [46]
s Rate of Immune cells stimulated by virus 0.15 (ml  g−1  day−1) [46]
KI Killing rate of a chemotherapy agent to immune cells 0.6  (day−1) [13]
dITi The natural death rate of immune cells responsible for 

the infection
0.1  (day−1) [41]

dTiI The natural death rate of immune cell response to infec-
tion

4.8 ×  10−2(ml  g−1  day−1) [42]

IN Normalized insulin concentrations 7.2 [43]
GN Normalized glucose concentrations 1.7647 [43]
rB The basal rate of glucose uptake 0.35 (g  min−1) [43]
PBF Peripheral blood flow 900 (ml  min−1) [44]
P(t) Injected chemotherapy agent 40–50 (mg  kg−1) [45]
U(t) Injected virus 5 ×  10−7 (g  ml−1) [46]
dQ The degradation rate of the chemotherapy agent 2.5  (day−1) [45]
b Burst size 150 ×  10−6 [46]
dTi The natural death rate of infected glioma 0.2  (day−1) [46]
� The loss rate of the virus during infection 4 ×  10−2 (ml  g−1  day−1) [46]
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the virus on the 16th day after injection of recent chemotherapy. The therapeutic time 
for combination therapy was referred to in the literature [14].

Cyclophosphamide is a bifunctional alkylating agent as well as a prodrug that requires 
metabolic transformation to produce mustard phosphoramide, the active alkylating species. 
This is because, in the experimental system, cyclophosphamide has shown a steep log-
linear relationship between dose and cytotoxicity. Based on clinical studies, cyclophospha-
mide has also shown activity against various tumors. Based on clinical trials, cyclophos-
phamide has been combined with oncolytic viruses as a therapy for cancer. Clinical trials 
have shown that brain tumors treated with oncolytic viruses, which are derived from live 
herpes simplex virus (HSV), can reduce cancer cells significantly when cyclophosphamide 
is applied before the oncolytic virus application process [47].

Oncolytic virotherapy is a unique antitumor, in which the virus selectively kills tumor 
cells, then replicates and spreads through the tumor while inducing an antitumor immune 
response. Talimogen laherparepvec (T-Vec) is a genetically engineered oncolytic virus 
based on the herpes simplex virus-1 (HSV) which is the most prominent virus and the 
only oncolytic virus approved by the Food and Drug Administration (FDA) used to treat 

Fig. 1  The process of giving chemotherapy doses of 560 mg was injected every day for 5 days, and a total 
dose of 2800 mg was injected with chemotherapeutic agents
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gliomas. In June 2021, the oncolytic virus received conditional and time-limited approval 
for the treatment of malignant gliomas in Japan. Therefore, oncolytic viruses can selec-
tively infect and kill tumor cells while activating the immune system. The general mecha-
nism of virotherapy can be described as follows [48–50]:

1. Tumor cells can be selectively infected by oncolytic viruses. This will also cause the 
virus to induce tumor lysis directly due to the inhibition of the antiviral innate immune 
pathway in most tumor cells.

2. Due to viral infection, tumor cell lysis can lead to the release of tumor-associated anti-
gens. This is a pattern of cell-derived damage-related molecules. Viruses can recruit 
dendritic cells and innate lymphoid cells (e.g., NK cells) to clear virus-infected cells 
early.

3. The release of tumor-associated antigens, pro-inflammatory cytokines, and chemokines 
by tumor cells, lysis, and innate immune cells can enhance antigen presentation and 
antigen-specific adaptive immune response.

4. The immune response will also kill infected tumor cells.
5. The oncolytic virus can promote the recruitment of tumor-infiltrating lymphocytes to 

the tumor site so that it will make it immunosuppressive in the microenvironment. This 
process is following immunotherapy.

3  Results and discussion

3.1  Simulation results of chemotherapy

The simulation results of Eqs. (9)–(15) using only the chemotherapy process are given 
in four graphs that describe the glioma concentration, glucose concentration in the brain, 
immune concentration, and blood glucose concentration. The red line represents the simu-
lation result without therapy, while the green line represents the simulation result using 
chemotherapy. All the graphs of the simulation results can be seen in Fig. 2.

In Fig. 2, the simulation results show that the chemotherapy process for glioma has no 
significant effect. This can be seen from the concentration decrease of the glioma at the 
time of application of chemotherapy which is not so large for 0 to 9 years; the glioma con-
centration still increased to about 0.56 g/ml. In a without therapy case, the glioma concen-
tration could reach a concentration of about 0.91 g/ml. This is consistent with the fact that 
gliomas are relatively resistant to chemotherapy and gliomas are self-repairing [17]. Most 
cancer cells (malignant tumors) have stem cell properties, namely, the ability or very high 
potential to develop into many different cell types, the ability to resist drugs, and the ability 
to remain inactive for a long time if there is still a treatment process [18, 19]. The chemo-
therapy process is still less effective in reducing glioma cells; this is possible because most 
chemotherapeutic agents utilize apoptosis induction to kill cancer cells, while apoptosis 
induction is less effective against cancers that have similar properties to stem cells [20, 21].

In Fig. 2, the chemotherapy process also has an impact on the concentration of immune 
cells. The concentration of immune cells will decrease during the application of chemo-
therapy; this is because chemotherapy cannot differentiate cell types [22]. In addition, 
chemotherapy agents are often used to suppress immune cells (immunosuppressants) [23]. 
However, after the chemotherapy process was applied, immune cells had the same pattern 
as without therapy. The concentration of immune cells will be higher. This is due to the 
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suppression of glioma cell growth during the chemotherapy process. Therefore, during this 
process, the suppression of glioma cells against immune cells also becomes less than when 
without chemotherapy. The suppression process of immune cells by glioma cells occurs in 
most cancer microenvironments that are immunosuppressive [24–26].

In Fig. 2, changes in the concentration of glioma cells and immune cells are also accom-
panied by changes in the concentration of blood glucose and glucose in the brain. This is 
because glucose is a source of food or nutrition for the growth of glioma cells. During the 
chemotherapy process, the concentration of blood glucose and glucose in the brain had a 
higher concentration than without chemotherapy. When chemotherapy is applied, the con-
centration of blood glucose and glucose in the brain increases; this is due to the suppres-
sion of glioma cells and immune cells which results in reduced glucose intake in the brain. 
After the application of chemotherapy, the pattern of decreasing concentrations of blood 
glucose and glucose in the brain corresponded to the pattern of decreasing concentrations 
of blood glucose and glucose in the brain without chemotherapy, but the concentrations of 

Fig. 2  The red and green lines indicate without and with chemotherapy. Blue and black dotted lines repre-
sent the highest and lowest basal blood glucose levels
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blood glucose and glucose in the brain had a larger value. This pattern of decline occurs 
due to the reactivation of glioma cells for growth and also the reactivation of immune cells 
triggered by glioma growth.

3.2  Simulation results of virotherapy

The simulation results of the virotherapy process are shown in Fig.  3. The simulation 
results show that virotherapy can reduce the growth of glioma cells for a long time even 
though the concentration of glioma cells fluctuates, while the simulation results of glioma 
concentrations without therapy still increase the concentration to around 0.9  g/ml (red 
line). This is very different from the simulation results of virotherapy (green line); the 
maximum concentration of glioma cells was 0.2 g/ml even though the concentration fluc-
tuated. Virotherapy can inhibit glioma growth consistently; this is consistent with the fact 
that virotherapy can kill cancer stem cells (CSC) in brain cancer [27]. Even virotherapy can 

Fig. 3  The red and green lines indicate without and with virotherapy. The blue and black dotted lines repre-
sent the highest and lowest basal blood glucose levels
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diminish the ability to repair CSC [28, 29]. The mechanism of virotherapy inhibiting the 
growth of cancer cells (malignant tumors) involves two things, namely, directly destroying 
cancer cells and stimulating immune cells to inhibit the growth of cancer cells.

In Fig. 3, the simulation results of the concentration of immune cells during the viro-
therapy process showed that the concentration of immune cells fluctuated, but the values 
tended to be more stable ranging from 2.4 ×  10−3 to 2.9 ×  10−3 g/ml. This is different from 
the simulation results of the concentration of immune cells without therapy. If without 
therapy, the concentration of immune cells will be stimulated by the concentration of gli-
oma cells. Immune cells will decrease due to the growth of glioma cells because it will 
inhibit the increase in immune cells. When the concentration of immune cells increases, 
the concentration of glioma cells decreases; this indicates that there is a viral infection of 
glioma cells caused by the virotherapy process. This also causes the process of suppression 
of the growth of glioma cells. The virotherapy process can also increase immune cells, 
such as white blood cells and neutrophils [30, 31].

In Fig. 3, the changing concentrations of glioma cells and immune cells were fluctuat-
ing which was followed by the concentrations of blood glucose and glucose in the brain. 
During the virotherapy process is applied, there is an increase in the concentrations of 
blood glucose and glucose in the brain even though both concentrations fluctuate. Fluc-
tuations in the concentrations of blood glucose and glucose in the brain are associated 
with glucose uptake by immune cells and glioma cells. This occurs when glioma cells 
decrease while immune cells increase so that glucose intake for glioma cells decreases 
and glucose intake for immune cells increases. Conversely, when glioma cells increase, 
immune cells decrease, so glucose intake for glioma cells increases, and intake for immune 
cells decreases. Glioma cells prefer to consume glucose compared to normal cells; this 
is because cancer cells undergo metabolic changes that cause an increase in the need for 
glucose intake [32]. In the virotherapy process, simulation results of blood glucose con-
centration showed that blood glucose was still in the normal range even though the values 
fluctuated. This was different from the simulation results of blood glucose concentrations 
without therapy which tended to decrease.

The simulation results of the virotherapy process show fluctuating results. This fluctua-
tion is made possible by several things. First, it is related to infection rate parameters and 
virus burst size. The infection rate and burst size of each virus were different based on the 
study results of two parameters referring to the literature [33]. This literature decided to 
take the infection rate and virus burst size due to consideration of several references which 
stated that the occurrence of infection speed and virus burst size was still unable to fight 
the growth rate of glioma cells, but the virus was still able to keep up with it. The effec-
tiveness of virotherapy is influenced by the infectiousness and spread of the virus [34]. 
Second, it is a possibility of re-infection from the virus; this can be seen in Fig. 4 which 
illustrates the simulation results of virus injection, virus concentration, and the concentra-
tion of infected glioma cells.

Figure 4 shows the iterative process of viral infection and infected glioma cells during the 
simulation. This repeated viral infection of glioma cells can provide the advantage that the 
application of virotherapy can be carried out with only one injection and without repeated 
injections for a long time, but this has not been explained and is still under debate. How-
ever, there are clinical studies conducted by Russell and co-workers [35] and Russel [36] 
which demonstrate this possibility, and this has been shown by a clinical study conducted 
on 49-year-old women with myeloma who were given virotherapy with a single high-dose 
viral injection which can destroy myeloma cells so that for 5 years it does not show signs 
of systemic myeloma cell recurrence. The pattern of infected glioma cells indicates latent 
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infection by the virus. Latent infection is characterized by the absence of viral infection 
among repeated infections [37]. Latent infections can be found in several groups of viruses, 
such as adenovirus and herpes simplex virus, which can be latent for a long time in the 
human body to defend themselves from the immune system [38]. Both groups of viruses are 
candidate viruses for virotherapy against glioma cells.

3.3  Simulation results of the combination of chemotherapy and virotherapy

The results of the combination therapy simulation consisting of the chemotherapy process 
and the virotherapy process can be seen in Fig. 5. The simulation results of this combina-
tion therapy show that the concentration of glioma cells during the application of chemo-
therapy decreased and then fluctuated glioma cells caused by the application of virother-
apy. Simulation results fluctuate more visibly from the application of combined therapy 
than from virotherapy alone. Concentrations of glioma cells from this combination therapy 
ranged from 0.1 to 0.2 g/ml. This combination therapy is also able to inhibit the growth of 
glioma cells for a long time because virotherapy can reduce the concentration of glioma 
cells more markedly than chemotherapy alone.

Fig. 4  Numerical simulation results of the virus injection process, virus concentration, and infected glioma 
cells in the application of virotherapy
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Figure 6 describes viral injection, virus concentration, and concentration of infected gli-
oma cells from the simulation results of combination therapy. Figure 6 also shows a higher 
concentration of infected glioma cells (up to about 0.008 g/ml) than the concentration of 
infected glioma cells from virotherapy alone (about 0.004 g/ml).

Figure  5 also shows the concentration of blood glucose, and glucose in the brain 
increases during the application of chemotherapy; it is because glucose intake is reduced 
for glioma cells and immune cells caused to the suppression of chemotherapy agents. Then, 
the concentration of both fluctuated due to virotherapy. Concentrations of blood glucose 
and glucose in the brain tend to be more stable ranging from 0.7 ×  10−3 to 0.78 ×  10−3 g/
ml. The concentrations of blood glucose and glucose in the brain were still within normal 
concentration intervals and did not show a tendency to decrease in concentration as shown 
in the blood glucose concentration without therapy.

This study not only describes the impact of the therapy on the concentration of glioma 
cells, blood glucose, immune cells, and glucose in the brain, but this study also looks at 
the effectiveness of chemotherapy, virotherapy, and combination therapy against glioma 
growth by comparing the concentration of glioma cells for each year. The effectiveness 
results are shown in Table  3. The concentration range of glioma cells with virotherapy 

Fig. 5  The red and green lines indicate without and with combination chemotherapy and virotherapy. Blue 
and black dotted lines represent the highest and lowest basal blood glucose levels
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ranged from 141.6 ×  10−3 to 191.6 ×  10−3 g/ml, and the concentration range of glioma cells 
with combination therapy ranged from 126.9 ×  10−3 to 208.2 ×  10−3  g/ml. The previous 
therapy had a concentration range that was smaller than the concentration range of glioma 
with chemotherapy alone which was in the range between 147.8 ×  10−3 and 571.6 ×  10−3 g/

Fig. 6  Numerical simulation results of the virus injection process, virus concentration, and infected glioma 
cells in the application of combination chemotherapy and virotherapy

Table 3  Comparison of glioma cell concentrations with and without therapy for several years

Therapy Glioma concentration (×  10−3 g  ml−1) in each year

1 2 3 4 5 6 7 8 9

Without 184.0 242.7 317.7 407.1 506.8 611.6 716.6 818.0 912.9
Chemotherapy 147.8 185.2 231.9 268.5 346.2 407.4 467.0 522.1 571.6
Virotherapy 172.4 150.6 174.9 144.1 179.1 141.6 185.0 144.3 191.7
Combination 152.7 208.2 126.9 176.3 213.7 151.9 207.1 133.8 184.9
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ml. The mean value of the difference in glioma concentrations each year between no 
therapy and each therapy (chemotherapy, virotherapy, and combination therapy) was 
174.4 ×  10−3  g/ml, 359.3 ×  10−3  g/ml, and 351.3 ×  10−3  g/ml. Based on these results in 
Table 3, it can be seen that virotherapy and combination therapy have a higher effective-
ness than chemotherapy alone.

4  Conclusions

Based on the simulation results that have been obtained, this study can conclude that chem-
otherapy alone only inhibits the growth of gliomas when this therapy is applied; after com-
pletion of therapy, glioma cells increased again. In addition, the concentration of immune 
cells decreased during the application of chemotherapy. After the application of chemo-
therapy, the concentrations of blood glucose and glucose in the brain became higher. The 
concentrations of both showed a decrease in the same pattern as the simulation results 
without therapy. Virotherapy and combination therapy were able to inhibit the growth of 
glioma cells in the long term. The concentrations of immune cells, blood glucose, and glu-
cose in the brain were more stable when compared with without therapy. Blood glucose is 
still within the normal range of basal glucose. Parameters in the form of infection rate and 
viral burst size are important parameters in the success of therapy involving virotherapy. 
The effectiveness of virotherapy and the combination therapy (chemotherapy and virother-
apy) has a greater effectiveness value than the effectiveness of chemotherapy alone when 
viewed from the difference in concentrations of glioma cells each year and the average 
value of differences in concentrations of glioma cells with and without therapy.
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