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Abstract
Photosensitive neurons can capture and convert external optical signals, and then realize 
the encoding signal. It is confirmed that a variety of firing modes could be induced under 
optical stimuli. As a result, it is interesting to explore the mode transitions of collective 
dynamics in the photosensitive neuron network under external stimuli. In this work, the 
collective dynamics of photosensitive neurons in a small-world network with non-synap-
tic coupling will be discussed with spatial diversity of noise and uniform noise applied 
on, respectively. The results prove that a variety of different collective electrical activities 
could be induced under different conditions. Under spatial diversity of noise applied on, a 
chimera state could be observed in the evolution, and steady cluster synchronization could 
be detected in the end; even the nodes in each cluster depend on the degree of each node. 
Under uniform noise applied on, the complete synchronization window could be observed 
alternately in the transient process, and steady complete synchronization could be detected 
finally. The potential mechanism is that continuous energy is pumped in the phototubes, 
and energy exchange and balance between neurons to form the resonance synchronization 
in the network with different noise applied on. Furthermore, it is confirmed that the evolu-
tion of collective dynamical behaviors in the network depends on the external stimuli on 
each node. Moreover, the bifurcation analysis for the single neuron model is calculated, 
and the results confirm that the electrical activities of single neuron are sensitive to differ-
ent kinds of noise.

Keywords  Photosensitive neurons · Non-synaptic coupling · Cluster synchronization · 
Complete synchronization · Resonance

1  Introduction

The nervous system plays a leading role in regulating the physiological activities in the 
body and consists of a large number of functional units [1–3]. In the conducted studies, 
neuron models are used to reproduce the main dynamical characteristics of biological neu-
rons [4–7]. A variety of firing modes (chaotic, quiescent, spiking, and bursting states) have 
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been confirmed to be induced while the neuron models have different parameters selected 
or are exposed to different external stimuli [8–13]. For example, the work of Ref. [10] 
stated that different kinds of electrical activities could be better exhibited in a fractional-
order Izhikevich neuron model than in the classical-order model.

The study of the collective dynamical behaviors of coupled neurons has been the 
focus of much research. In general, the coupled neurons are connected by different kinds 
of types, such as the chain, small-world, regular network. Then, the collective dynamics 
between coupled neurons under different conditions are discussed, for example, the feed-
back control [14], forcing currents, noise [15–18], time delay [19], electromagnetic radia-
tion, electric fields [20], as well as optical and audio signals. It has been proven that the 
external stimuli could change the membrane potential of neurons, inducing different firing 
patterns and dynamical behaviors. So far, many excellent works on resonance [21–24], pat-
tern selection [25–28], synchronization and energy estimation [29, 30], chimera states [31, 
32], and others have been carried out to explore the potential mechanism behind disease 
propagation and information encoding. For example, Ref. [19] stated that the dynamical 
behaviors of asynchrony resonance could be observed under different time delay forms. 
Wang et al. [20] investigated the effect of the AC electric field on the dynamical activities 
of the neuron network. Zhang et al. [23] discussed the synchronization between memristive 
oscillators without direct variable coupling, and declared the mechanism that the resonance 
could be induced between oscillators due to the energy injection. Hussain et al. [32] stud-
ied the collective behavior in a thermosensitive neuron network with non-local coupling; 
the results confirmed that chimera state could be induced under proper coupling intensity.

With the rise of artificial neural networks (ANNs), the study of intelligent neuron pro-
cessors is attracting more and more attention, and some neuron models (networks) are 
modulated and built, since different electrical activities of the neurons could be reproduced 
by many nonlinear oscillators or circuits with different selected parameters or under peri-
odical stimuli in the dynamical system [33–41]. For example, Ref. [33] reported that the 
capacitor, memristor, inductor, and resistor could be designed to connect the neurons rep-
resenting artificial synapses and discussed the collective dynamics. Ref. [35] discussed the 
learning properties of an online learning system by presenting a differential memristive 
synapse. Pham et al. [36] studied the dynamics of memristive neural networks and the cir-
cuit implementation. Liu and colleagues [37, 38] discussed the synchronization dynamics 
of the neural circuit connected by a capacitor synapse and a hybrid synapse realized by a 
resistor and an induction coil, respectively.

In fact, it is necessary and meaningful to consider the physical effect when building the 
neural network, such that the electromagnetic induction could be induced in the cell due 
to the change in the concentration of charged ions. It has been shown that different kinds 
of transitions could be induced under electromagnetic radiation [42–48]. Based on these 
results, some other neuron models were proposed to describe the dynamical behaviors 
while applying different external stimuli. In the work of Ref. [49], a kind of photosensitive 
neuron model is proposed to show the effect of light stimulus on the firing modes of the 
neuron system. In this neuron model, a phototube is introduced to convert the light stimuli 
into electric signals, and it is proven that the quiescent, spiking, bursting, and even chaotic 
behaviors could be activated by the photocell, which is consistent with the main character-
istics of biological neurons.

It should be emphasized that most studies about the synchronization between neurons 
are coupled by direct variable. In Ref. [23], the resonance synchronization is discussed 
while the memristive chaotic oscillators is coupled without variable coupling. It is because 
the energy could be pumped and exchanged between coupling channels, and then the 
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energy flow between the nonlinear oscillators could be balanced. In fact, the photosensitive 
neuron model is similar to the memristive chaotic oscillators. As a result, it is very inter-
esting to explore the synchronization and firing patterns between coupled photosensitive 
neuron models without direct variable coupling.

In this paper, the collective behaviors of coupled photosensitive neuron models distrib-
uted in the small-world network with non-synaptic coupling are discussed. Due to the sen-
sitivity of photosensitive neuron to external stimuli, the work is carried out by two ways:(1) 
the spatial diversity of noise applied on; (2) the uniform noise applied on. Furthermore, 
bifurcation  analyses for single neuron and two statistical synchronization parameters are 
calculated to show the evolution of the synchronization degree.

2 � Model and schemes

The revised Fitzhugh-Nagumo (FHN) neuron model is called a photosensitive neuron 
model [49], since a phototube is designed into the neuron model as a voltage source. The 
neuron model is described as

where x is the fast variable representing the membrane potential, y is the recovery variable, 
and a, b, c, and ζ are parameters.

where us is a time-varying voltage source, which is converted from light by the phototube, 
A denotes the amplitude, and ω is the frequency of the excitation signal.

It is confirmed in Ref. [49] that a variety of dynamical behaviors of neurons could be 
induced with different parameters selected. As a result, it is interesting to explore the evo-
lution of collective dynamical behaviors of coupled neurons distributed in a small-world 
network just external stimuli are imposed on. In this work, a kind of non-synaptic coupling 
between neurons is applied while the photosensitive neurons are exposed to spatial diver-
sity of noise and uniform noise, respectively.

The dynamical equations for photosensitive neuron models are distributed in a small-
world network with non-synaptic coupling under spatial diversity of noise applied on, which 
are shown as:

where N denotes the number of nodes and i and j represent the node position in the net-
work. The symbol �(t) indicates the Gaussian white noise; its statistical properties are 
described as ⟨�(t)⟩ = 0, ⟨�(t)�(s)⟩ = 2k�(t − s) and k is the noise intensity [50]. Aij repre-
sents the adjacency matrix and Aij = 1 indicates that the two nodes are connected, otherwise 
Aij = 0.
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As shown in Eq. (3), the non-synaptic coupling between neurons with spatial diversity 
of noise is actually described by the degree of each node in the network (i.e., the network 
structure). As a result, it is interesting to explore the collective dynamics between photo-
sensitive neurons with non-synaptic coupling while the uniform noise is applied on; the 
corresponding dynamical equations are as follows:

where d(i) is the degree of the node i in the network and g denotes the noise strength. Fur-
thermore, the statistical parameter is calculated to show the synchronization degree of the 
collective dynamical behaviors in the network [51]; the formula is as follows:

where xi represents a variable of node j and N denotes the total number of nodes in the 
network. A value of R ≈ 1 indicates a perfect synchronization, while R ≈ 0 shows that the 
detected synchronization is not perfect.

In order to intuitively depict the synchronization degree, another statistical parameter of 
the synchronization error is defined and calculated as follows:

where T is the transient time and the symbol│*│represents the absolute value. A value of 
E ≈ 0 indicates that a complete synchronization is detected; otherwise, an incomplete syn-
chronization is detected.

3 � Results and discussion

In the simulation, we used the fourth-order Runge–Kutta algorithm for the calculation and 
time step h = 0.01. It has been confirmed that the photosensitive neuron model could show 
different kinds of firing modes (spiking, bursting, and even chaotic states) by activating the 
photocell [49].

3.1 � Bifurcation analysis for the single neuron model

In order to discuss the collective dynamical behaviors in the network, the dynamic charac-
teristic for a single neuron model exposed to the noise is discussed at first.
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In fact, the physiological activities in the body could show different electrical activi-
ties while the body is exposed to different external stimuli, for example, cold environment, 
hot environment, and so on. As a result, it is meaning to study the evolution of dynamical 
behaviors while the single neuron is exposed to different external environment. As reported 
in Ref. [50], the noise could be generated as negative or positive values randomly. Here, 
the generated different noise represents different kinds of external environment.

As a result, the bifurcation data for the single neuron exposed to different noise are cal-
culated, and the results are shown in Fig. 1.

The results in Fig. 1 show the bifurcation analysis for a single neuron model with the 
increase of noise strength k while different noise is induced. It is confirmed that a variety of 
dynamical behaviors could be observed while the neuron is exposed to different noise. It is 
found in Fig. 1(a, b) ((c, d)) that the larger value of generated noise could promote the evo-
lution of dynamical behavior. Moreover, compared with the results in Fig. 1(a, c) ((b, d)), it 
is proven that the negative noise benefits to promote the evolution of dynamical behaviors 
of electrical activities. In a word, these results state that the electrical activities of neuron 
are sensitive to different kinds of noise.

Furthermore, the corresponding time series of membrane potential x of single neuron 
are plotted to give the results, which are tracked in Fig. 2.

The results in Fig. 2(a–d) show the time series of membrane potential x of single neuron 
under different conditions. It is proven that different kinds of electrical activities could be 

Fig. 1   Bifurcation diagram for single neuron with different noise strength k while the neuron is exposed to different 
kinds of noise. The generated noise (a) ξ(t) = −0.05587; (b) ξ(t) = −0.35701; (c) ξ(t) = 0.00449; (d) ξ(t) = 0.15701. It 
is proven that different evolution of dynamical behaviors of single neuron could be induced under different external 
stimulus
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induced under different external stimuli. In a word, the results in Figs. 1 and 2 state that 
the photosensitive neuron is sensitive to different kinds of external stimuli. As a result, it 
is interesting to explore the collective dynamical behaviors in the network while the media 
exposed to external stimuli.

In the network, the state of the single photosensitive neuron model is set in chaotic state, 
and the parameters are selected as a = 0.7, b = 0.8, c = 0.1, ζ = 0.175, A = 0.9, and ω = 1.004. 
The corresponding phase diagram of the single neuron in a chaotic state is shown in Fig. 3.

Fig. 2   Time series of membrane potential x of the neuron model under different condition; the generated 
noise and noise strength are (a)  ξ(t) = −0.05587, k = 2.0; (b)  ξ(t) = −0.35701, k = 5.0; (c)  ξ(t) = 0.00449, 
k = 5.0; (d) ξ(t) = 0.15701, k = 5.0. These results confirm the result in Fig. 1

Fig. 3   The phase diagram of 
the single photosensitive neuron 
model with the parameters 
a = 0.7, b = 0.8, c = 0.1, ζ = 0.175, 
A = 0.9, and ω = 1.004. The sin-
gle neuron model is chaotic state
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The results in Fig.  3 indicate that the chaotic state of each node in the network is 
detected with the selected parameters. Based on these results, the collective dynamics in 
the small-world network will be discussed, while the neurons connected with non-synap-
tic coupling (no direct variable coupling). The work will be carried by two ways: (1) neu-
rons with non-synaptic coupling under spatial diversity of noise applied on; (2) neurons 
with non-synaptic coupling under uniform noise applied on.

The network has the following parameters: the number of nodes N = 100, rewiring prob-
ability p = 0.1, and average degree d = 2. The schematic diagram for the network is shown 
in Fig. 4. Interestingly, the degree distribution of all the nodes could be from the structure 
of the small-world network, which is shown in Fig. 5. It could be observed that there are 
four cluster nodes: d = 1, d = 2, d = 3, and d = 4. The nodes with d = 2 form the biggest clus-
ter, and there is a single node with d = 4.

Fig. 4   The schematic diagram 
for the small-world network with 
N = 100, p = 0.1, and average 
degree d = 2

Fig. 5   The degree distribution 
of the nodes in the network, with 
N = 100, p = 0.1, and average 
degree d = 2. Four cluster nodes 
are formed in the network
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3.2 � Non‑synaptic coupling with spatial diversity of noise

In this section, the discussion about the collective response of light-sensitive neurons 
without synaptic coupling is carried out, while the external noise with distributed dis-
tribution is considered. The time series of the membrane potential and attractor for the 
sampled nodes are calculated, and two statistical parameters are calculated to depict the 
evolution of collective dynamics while selecting different noise strength k values. The 
corresponding results are shown in Figs. 6, 7, 8, 9, 10, 11, 12 and 13.

First, the synchronization parameter R and synchronization error E are separately cal-
culated with different selected values of noise strength k.

A large simulation data confirm that there are five different evolution stages that could 
be found in the evolution of R and E in Fig. 6, which are S0 (k ≤ 0.1), S1 (0.1 < k < 1.8), 
S2 (1.8 ≤ k < 2.75), S3 (2.75 ≤ k ≤ 3.3), and S4 (k > 3.3). Interestingly, it is confirmed that R 
cannot increase to 1, and E cannot decrease to 0, which means that the complete synchro-
nization cannot be detected in the network. As a result, it is interesting to explore what 
transitions are formed at the different stages. We respectively calculated the time series 
and attractor for the sampled nodes with different noise strength k values to show the mode 
transitions of the collective dynamical behaviors in these five stages.

At first, a variety of calculation confirmed that all the nodes are in chaotic states 
while selecting the noise strength k in the S0 area. In the following, the time series and 
attractor for some sampled nodes are calculated to show the transitions of the collective 
dynamics while selecting the noise strength k in S1, S2, S2, and S4.

Given a selection of k values in the S1 area, the phase diagrams for different sampled 
nodes with different degrees in the network are calculated. The results are plotted in 
Fig. 7.

Figure 7 shows that in some clusters, the nodes show a periodic state (d = 2, 3, and 
4, respectively). However, the nodes with d = 1 are in a chaotic state. As a result, the 
periodic and chaotic states could coexist in the network under a proper noise strength 
k. Furthermore, it is interesting to find that partial synchronization could be observed 
in the clusters in which the nodes are in a periodic state. The time series of the sampled 
nodes are tracked in Fig. 8, which shows that partial synchronization could be detected 
in the clusters in which the nodes show periodic electrical activities.

Fig. 6   The evolution of the synchronization parameter R and synchronization error E with the increase of 
the noise strength k. This confirms that different evolution stages could be observed
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Moreover, it is interesting to find that there are a variety of dynamical behaviors that 
could be observed with a stronger noise strength selected in the S1 area. The corre-
sponding results are shown in Fig. 9.

Compared with the results in Fig.  7, the results in Fig.  9 show that some different 
dynamical behaviors could be found in some clusters. Specifically, it is found that the 
states of some nodes have some interesting changes, from chaotic to periodic in the 
nodes with d = 1, and from periodic to chaotic in the nodes with d = 3, with a noise 

Fig. 7   The attractors of the sampled nodes selected in different clusters in the network, with the noise 
strength k = 0.5 being selected in the area S1. The coexistence of chaotic and periodic states is observed in 
the network

Fig. 8   The time series of the nodes selected in different clusters in the network with a d = 3, b d = 2, and 
k = 0.5 selected in the area S1. Partial synchronization could be detected in the cluster
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strength k = 1.0. That is to say the injected energy in each neuron is unstable under this 
noise.

In addition, it is interesting to find that cluster synchronization could be realized in 
the cluster nodes. The time series for the sampled nodes are plotted in Fig.  10, which 
shows that the periodic and chaotic states could also coexist in the network with differ-
ent noise strength values selected in the S1 area. However, the nodes in the cluster (plotted 
in Fig.  10(d), with degree = 2) realize the complete synchronization. As a result, cluster 
synchronization could be realized in a cluster with a proper noise strength, and the noise 
coupling could promote the synchronization. It means that the synchronization state and 
non-synchronization state coexist in the network. That is to say the chimera state could 
be induced in the network under spatial diversity of noise applied on with proper noise 
intensity.

A significant part of the simulation results proves that chaotic and periodic states coexist 
in the network, and the states of nodes in any cluster could change while selecting different 
k values, even state of the network could become from asynchrony to chimera state when 
the increase of noise strength selected in the S1 area.

As we continue to increase the noise strength by selecting k in the S2 area, different 
results could be detected. The time series and attractor for the sampled nodes are plotted 
in Fig. 11. It is confirmed in Fig. 11(a) that all the nodes in different clusters realize the 
cluster synchronization, which means that the nodes in each cluster with the same degrees 
achieve complete synchronization. Furthermore, Fig. 11(b) shows that all the nodes are in 

Fig. 9   The attractor for the sampled nodes selected in different clusters in the network, while selecting a 
noise strength k = 1.0 in the area S1. The coexistence of chaotic and periodic states is observed in the net-
work and the states of nodes show instability, which could be from chaotic to periodic (d = 1) or from peri-
odic to chaotic (d = 3) compared with the results in Fig. 6
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periodic states. A large part of the simulation results states that the cluster synchronization 
could be detected in the S2 area.

Based on the above-mentioned results, we continue to have a selection of k in the 
S3 area, and different results could still be found. The corresponding time series for 
the nodes with different degrees are calculated and shown in Fig. 12, which shows that 
the nodes with degree = 1 lose synchronization compared with the results in Fig.  11. 

Fig. 10   The time series for the nodes in different clusters in the network with a  d = 4, b  d = 3, c  d = 1, 
d d = 2, and k = 1.0 selected in the area S1. Chaotic and periodic states coexist, and cluster synchronization 
could be detected in the cluster nodes in the network. Chimera state is induced in the network under proper 
noise strength and noise promotes the realization of synchronization

Fig. 11   a The time series of the nodes in the network and b the attractor for the sampled node, with i = 1 
and k = 2.0 in the area S2. All the clusters realize the cluster synchronization, and all the nodes are in peri-
odic states
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Furthermore, it is found that these nodes change from periodic to chaotic states, but the 
nodes in other clusters keep the cluster synchronization and stay in periodic states. It 
means that the chimera state could be induced in the S3 area again.

A significant part of the simulation results confirms that only the nodes with 
degree = 1 lose the synchronization and keep chaotic states in the S3 stage. The reason 
is that continuous energy is pumped in the phototubes in the network, and then energy 
exchange and balance between neurons due to the resonance in the network. The chi-
mera state is induced under the external stimuli because the energy between neurons is 
unstable.

We continue to increase the noise strength k and make a selection in the S4 stage, which 
shows that all the clusters realize the cluster synchronization again. The correspond-
ing time series are plotted in Fig. 13, which shows that cluster synchronization could be 
detected in the network, and the nodes in different clusters have different amplitudes, which 
are related to the degree of each node. Further calculation results prove that the steady 
cluster synchronization could be observed even when a stronger noise strength is selected. 
It means that the energy pumping and exchange between neurons in the network are in sta-
ble state under the resonance.

Fig. 12   The time series for the sampled nodes with different degrees and k = 2.75 in the area S3. A coexist-
ence of chaotic and periodic states could be detected in the network, and more clusters realize the complete 
synchronization compared with the results in the area S1. Chimera state is induced in the S3 area again

Fig. 13   The time series of x and y for all the nodes with different degrees and k = 5.0. It is confirmed that all 
the nodes in the different clusters in the network achieve cluster synchronization
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In summary, we proved that a variety of mode transitions of the dynamical behaviors 
could be detected, and four cluster nodes realize the cluster synchronization, in the end, 
while the coupling between neurons is realized by non-synaptic coupling with spatial 
diversity of noise applied. Notably, the distribution of the nodes in each cluster is related to 
the degree of each node. Furthermore, we proved that a variety of mode transitions could 
be detected, which are from asynchrony to chimera to cluster synchronization to chimera to 
stable cluster synchronization in the end with the increase of noise strength k. The mecha-
nism is that continuous energy could be pumped in the phototubes, and energy exchange 
and balance between neurons to form the resonance in the network with different noise 
strength values. That is to say the different kinds of mode transitions induced in the net-
work due to the different degree of energy resonance exchange between neurons in the 
transient process. In fact, these results confirmed that the collective dynamical behaviors in 
the network are dependent on the network connection under the spatial diversity of noise 
applied on.

3.3 � Non‑synaptic coupling with uniform noise

In this section, we will discuss what mode transitions of collective dynamics could be 
detected, while the neurons connected by non-synaptic coupling with uniform noise 
applied on. The corresponding dynamical equation is shown in Eq. (4).

First, the synchronization parameter R and synchronization error E are calculated while 
selecting different noise strength g values. The results are shown in Fig. 14.

It is interesting to see there are some different results observed in Fig.  14 compared 
with the results in Fig. 6. The parameter R could reach 1 and the E could decrease to 0, 
which means that complete synchronization could be detected in the network (R ≈ 1, E 
≈ 0). Furthermore, it is found that the evolution of the collective dynamical behaviors 
could be divided into six stages: S0 (g ≤ 0.3), S1 (0.4 ≤ g ≤ 1.91), S2 (1.92 ≤ g ≤ 2.28), S3 
(2.29 ≤ g ≤ 3.39), S4 (3.4 ≤ g ≤ 3.46), S5 (3.47 ≤ g ≤ 3.68), and S6 (g ≥ 3.69).

From the results plotted in Fig.  14, it is found that several complete synchronization 
windows could be observed in the evolution process. As a result, it is interesting to explore 
what mode transitions of collective dynamics are shown in the whole evolution. The time 
series and attractor for the sampled nodes in the network are calculated, and the results are 
plotted in Figs. 15, 16 and 17.

Fig. 14   Evolution of the order parameter R and synchronization error E with different noise strength g values
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First, the time series and attractor for the sampled nodes are calculated with a small g 
in the S0 area, and the results are shown in Fig. 15.

The results in Fig. 15 prove that there is no synchronization, and all the nodes are in 
chaotic states. Next, we increase the coupling strength and select the noise strength g in 
the areas S1, S3, and S5, respectively. The results are shown in Fig. 16.

It is interesting to observe in Fig. 16 that all the nodes in the network are in periodic states 
and form two clusters, which realize cluster synchronization, respectively. Furthermore, it 

Fig. 15   The attractor and time series for the sampled nodes in the network, with i = 1 and k = 0.3. All the 
nodes are in chaotic states and no synchronization could be detected

Fig. 16   The time series for all the nodes in the network with different noise strength g values: (a) g = 0.7, 
(b) g = 2.6, and (c) g = 3.6; (d) the attractor of the sampled node with i = 1 and g = 3.6. The nodes form two 
clusters, which realize cluster synchronization, and all the nodes are in periodic states. The nodes in each 
cluster are random and change with different coupling strength g values
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should be emphasized that the nodes in each cluster are random and change with different 
values of the noise strength g. Besides, the distribution of the nodes between the two clus-
ters is independent of the degree of each node. This explains why there are large fluctuations 
in the evolution of two order parameters with different coupling strength g values.

Next, we carry out similar simulations, by calculating the time series and attractor while 
having a selection of noise strength g values in the areas S2, S4, and S6. The results are plot-
ted in Fig. 17, which proves that complete synchronization could be observed, and shows 
different dynamical behaviors in different synchronization areas, with all the nodes being 
in periodic states. A number of simulation results confirm that steady complete synchroni-
zation could be observed in the S6 area, which means that complete synchronization could 
still be detected with a stronger noise strength g.

In summary, compared to the results with spatial diversity of noise applied on, some dif-
ference could be observed, which is the steady complete synchronization could be detected 
in the end with uniform noise applied on. Furthermore, it could be confirmed that the areas 
of S2, S4, and S6 are complete synchronization areas, while S1, S3, and S5 are cluster syn-
chronization areas. It means that the cluster synchronization and complete synchronization 
alternate in the process of evolution, before the stable complete synchronization is achieved 
finally. Moreover, in the cluster synchronization area, it is noted that all the nodes form two 
clusters, which realize the cluster synchronization, respectively. It is noted that the nodes in 
each cluster are random and their distribution between the clusters is not related to struc-
ture, and even the number of the nodes in the cluster changes with the noise strength g.

Fig. 17   The time series for all the nodes in the network with different noise strength g values: (a) g = 2.1, 
(b) g = 3.42, and (c) g = 4.0; (d) the attractor of the sampled node with i = 1 and g = 4.0. Complete synchro-
nization is detected in the different synchronization areas and all the nodes are in periodic states
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The potential mechanism is that the continuous pumped energy exchange and bal-
ance between neurons, and then the resonance synchronization is induced in the network 
under proper noise strength values. However, the realization of complete synchronization 
in the end is because the energy uniformity is achieved at each point under the resonance 
due to uniform noise applied on. In the process of synchronization, the pumped energy in 
each node is unstable and changeable under the effect of resonance with different noise 
strength selected. That is why cluster synchronization and complete synchronization appear 
alternately. Furthermore, the results prove that the network connection has not contributed 
to the collective behavior in the network under uniform noise applied on.

4 � Conclusion

In this study, we investigate the mode transitions of collective dynamical behaviors of 
photosensitive neurons distributed in the small-world network with non-synaptic coupling 
under different external stimuli. In the simulation, the results are discussed with spatial 
diversity of noise and uniform noise applied on, respectively. It is proven that a variety of 
interesting dynamics could be detected in the network under different conditions.

Under the spatial diversity of noise, it is confirmed that the chimera state could be 
detected in the evolution, and the steady cluster synchronization could be realized finally. 
Furthermore, it is found that the distribution of the nodes in each cluster is related to the 
degree of each node. The mechanism is that continuous energy could be pumped in the 
phototubes, then energy exchange and balance between neurons to form the resonance syn-
chronization in the network with different noise strength selected. Moreover, the energy of 
each node depends on the spatial diversity of noise (the structure of the network).

Under uniform noise, cluster synchronization and complete synchronization appear 
alternately in the evolution, and steady complete synchronization is detected finally. Fur-
thermore, it is confirmed the nodes in each cluster change are random and do not depend 
on the structure of the network. The potential mechanism is also that the pumped energy 
exchange and balance between neurons to form the resonance synchronization, but each 
node could keep uniform energy in the end due to resonance under uniform noise applied 
on. That is why the steady complete synchronization is detected.

In a word, these results declare that different kinds of collective dynamical behaviors 
could be induced in the photosensitive neuron network with non-synaptic coupling due to 
the resonance. The results could provide some information for neurodynamics and apply-
ing in biology and neural circuits. Furthermore, it is very interesting to have a study on the 
energy estimation of the evolution of collective behaviors in the network.
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