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Abstract
In the present investigation, the effect of multi-slip condition on peristaltic flow through 
asymmetric channel with Joule heating effect is considered. We also considered the incom-
pressible non-Newtonian Casson nanofluid model for blood, which is electrically conduct-
ing. Second law of thermodynamics is used to examine the entropy generation. Multi-slip 
condition is used at the boundary of the wall and the analysis is also restricted under the low 
Reynolds number and long wavelength assumption. The governing equations were trans-
formed into a non-dimensional form by using suitable terms. The reduced non-dimensional  
highly nonlinear partial differential equations are solved by using the Homotopy Perturba-
tion Sumudu transformation method (HPSTM). The influence of different physical parame-
ters on dimensionless velocity, pressure gradient, temperature, concentration and nanoparti-
cle is graphically presented. From the results, one can understand that the Joule heating effect  
controls the heat transfer in the system and as the magnetic parameter is increased, there will be  
decay in the velocity of fluid. The outcomes of the present investigation can be applicable in  
examining the chyme motion in the gastrointestinal tract and controlling the blood flow dur-
ing surgery. Present study shows an excellent agreement with the previously available stud-
ies in the limiting case. 

Keywords Entropy generation · Casson nanofluid · Peristaltic blood flow · Joule heating · 
Multi-slip condition

1 Introduction

A continuous wave of contraction or expansion flowing through the channel or tube 
causes peristalsis. Pumping mechanism of peristalsis is involved in several biological 
organs in physiology and the mechanism of peristaltic transport has been exploited for 
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industrial applications also. The phenomenon of peristaltic pumping was first initiated by  
Latham [1] in 1966. Shapiro et al. [2] and Jaffrin et al. [3] continued the research work 
on peristaltic flow. Makinde et al. [4] studied the effect of MHD peristaltic slip flow of 
Casson fluid and heat transfer in channel filled with a porous medium. Hayat et al. [5] 
examined simultaneous effects of slip and heat transfer on peristaltic flow. The effect of 
magnetic field in peristaltic transport of blood flow for couple stress and Eyring-Powell 
fluid model in a non-uniform channel using homotopy analysis method is studied by 
Asha et al. [6–8].

The entropy analysis is a method of determining the thermodynamic irreversibility of 
a flow stream. The quality of energy declines when entropy formation occurs. As a result, 
lowering the entropy generation can increase the systems performance. Entropy generation 
concept was first presented by Bejan [9]. Much energy-related equipment, such as mod-
ern refrigerating machines, electrical power generating machines from geothermal energy 
and surface heat, are subject to entropy formation. Irreversibility in system through differ-
ent geometries is examined by many researchers. Rashidi et  al. [10] studied the entropy 
generation analysis on the Magnetohydrodynamic blood flow in peristaltic wave motion. 
Furthermore, the work is extended by Asha et  al. [11]. They investigated the effects of 
entropy analysis with nonlinear thermal radiation for magneto-micropolar fluid in a tapered 
channel. Whenever strong magnetic field is applied, Joule heating effect cannot be avoided. 
In most of the medical therapies, Joule heating controls the blood flow and reduces the 
body pain. Asha et  al. [12] studied the effect of Joule heating with MHD in peristaltic 
blood flow. Study of entropy generation and Joule heating effects were helpful to design 
the thermofluidic micropumps for the purpose of diagnosis that was investigated by Ranjit 
et al. [13].

All the above investigations are carried out in the no-slip boundary conditions. In most 
of the situations, no-slip boundary conditions are inadequate. Specifically, non-Newtonian 
nanofluids show wall slip due to velocity and contraction. Fluids with slip boundary con-
ditions find application in polymer technology such as internal cavities and polishing of 
heart valves. Navier [14] was the first to discuss the slip boundary condition, where at the 
boundary, the velocity is proportional to the shear stress. Investigation of slip effects on 
peristalsis was studied by Hayat et  al. [15], Srinivas et  al. [16] and Akbar et  al. [17]. A 
pumping mechanism of peristalsis with multi-slip boundary constraints is so important that 
the authors were encouraged to look into the effect of multi-slip and Joule heating on the 
peristalsis mechanism of Casson nanofluid in an asymmetric channel. In the past few years, 
it is observed that the interest of using and developing the numerical and analytical tech-
niques are increased. Such methods can help to overcome the non-linearity and complex-
ity that appear in the non-Newtonian fluids. Mathematical model on peristaltic flow with 
non-Newtonian fluid requires highly non-linear partial differential equations. To obtain 
the exact solutions for such problems is difficult. In the present paper, we have used the 
Homotopy perturbation Sumudu transformation method (HPSTM) which is a combination 
of Homotopy perturbation method and Sumudu transformation method (STM). Weerakoon 
[18] investigated the application of Sumudu transform method by solving the linear partial 
differential equations, whereas Belagacem [19] and his team solved the integral equations 
using STM. Furthermore, investigator [20, 21] used STM for solving differential equations 
and they compare the obtained results with existing results. From previous investigation, it 
is observed that no work has been done using the HPSTM for solving non-linear PDE with 
boundary conditions. Thus, the present article shows the application of HPSTM for solving 
the PDE and compare the obtained results with existing results. Embedded parameters on 
velocity, pressure gradient, energy and nanoparticle concentration are shown graphically.
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2  Mathematical analysis

The propagation of peristaltic waves on the walls of a two-dimensional asymmetric 
channel of width d1 + d2 have been considered and shown in Scheme 1. The variation in 
channel width as well as the amplitude and phase of the waves causes asymmetry in the 
channel. Casson nanofluid is placed into the channel. Due to propagation of the peristal-
tic, waves flow is generated. Peristaltic walls are given in mathematical form [4]:

In the above expression, â1, b̂1, d̂1, d̂2 and �̂� satisfies the condition.

The rheology of a Casson fluid is expressed as follows:
�ij =

�
�� +

�y√
2Π

�
2eij when Π ≻ ΠC,

�ij =
�
�� +

�y√
2ΠC

�
2eij when Π ≺ ΠC,where �ij is the stress tensor of the fluid with 

(i, j)th components, Π = eij eij, eij is formation rate of (i, j)th component, �y is the yield 
stress of the fluid, �� is the dynamic plastic viscosity of the viscous fluid and ΠC is the 
critical value of the product based on viscous fluid.

Vector form of the velocity field V  is given as follows:

 where Û
(
�̂ , ŷ, t̂

)
 and V̂

(
�̂ , ŷ, t̂

)
 are the velocity components.

The basic governing equations are defined as follows [10]:

(1)H1 = d̂1 + â1cos
[
2�

�
(�̂ − ĉt)

]
,

(2)H2 = −d̂2 + b̂1cos
[
2�

�
(�̂ − ĉt) + �̂

]
.

(3)â1
2 + b̂1

2 + 2â1b̂1cos �̂ ≤ (
d̂1 + d̂2

)2

.

V =

(
Û
(
�̂ , ŷ, t̂

)
, V̂

(
�̂ , ŷ, t̂

))

Scheme 1  Schematic diagram of 
the channel
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where U′ and V ′ are the velocity components along the 𝜁 - and ŷ - direction respectively, �f  
is the fluid density, g is the gravitational acceleration, � is the electrical conductivity of 
the fluid, B0 is the applied magnetic field, kT is the volume expansion coefficient, Φ is the 
constant heat addition/absorption, �T is the volumetric thermal expansion coefficient, �cp is 
the density of the particles, T  is the temperature of the fluid, f̂  is the nanoparticle concen-
tration, DB is the Brownian diffusion coefficient, DT is the thermophoretic diffusion coef-
ficient and Tm is the fluid mean temperature.

We introduce the transformation between the wave frame 
(
𝜁 , ŷ

)
 and laboratory frame 

(� , y) in order to facilitate the analytical solutions u and v that are the velocity compo-
nents in the wave frame 

(
𝜁 , ŷ

)
.

In order to make analytical solutions easier, introducing transformation between the 
wave frame and the laboratory frame. 

Introducing non-dimensional variables,

(4)
�û

��̂
+

�v̂

�ŷ
= 0,

(5)
�f

(
�û

�̂t
+ û

�û

��̂
+ v̂

�û

�ŷ

)
= −

�p̂

��̂
+ �

(
1 +

1

��

)(
�2û

��̂2
+

�2û

�ŷ2

)
+ �f g�T (T̂ − T̂0)

+�f g�C (̂f − f0),

(6)�f

(
�v̂

�̂t
+ û

�v̂

��̂
+ v̂

�v̂

�ŷ

)
= −

�p̂

��̂
+ �

(
1 +

1

�

)
�2v̂

�ŷ2
,

(7)
(�c)f

(
�T̂

�̂t
+ û

�T̂

��̂
+ v̂

�T̂

�ŷ

)
= kT

(
�2T̂

��̂2
+

�2T̂

�ŷ2

)
+ (�c)pDB

(
�f̂

��̂

�T̂

��̂
+

�f̂

�ŷ

�T̂

�ŷ

)

+ (�c)p
DT

Tm

[(
�T̂

��̂

)2

+

((
�T̂

�ŷ

)2
)]

+ Φ + �B2

0
û2,

(8)
�f̂

�̂t
+ û

�f̂

��̂
+ v̂

�f̂

�ŷ
= DB

(
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��̂2
+
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�ŷ2
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+

DT
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.

(9)û = u − c, ŷ = ŷ, v̂ = v, �̂ = �̂ − ĉt.

(10)

� =
�̂

�
, y =

ŷ

d̂1
, t =

ĉt

�
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c
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�
, p =

p̂d̂1
2

�c�
, u =

û
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where � is the dimensionless wave number and the stream function is taken 
as v̂ = −�

��

��
, û =

��

�y
.

The non-dimensional governing equations are as follows:

where Gr is Grashoff number, local nanoparticle Grashoff number Qr , Hartman number M, 
� Casson fluid parameter, volume flow rate Q0 , Brinkman number Br, Nt the thermophore-
sis parameter, Nb is Brownian motion parameter, and Pr is the Prandtl number.

The corresponding dimensionless boundary conditions is as follows:

Here, �1 , � and �1 represent the velocity slip parameter, thermal slip parameter and con-
centration slip parameter, respectively. The respective dimensionless time mean flows Θ 
and F in the laboratory and wave frames are related through the following expression

(11)0 =
�p

��
+

(
1 +

1

�

)
�2u

�y2
+ Gr� + QrC,

(12)
�p

�y
= 0,

(13)
(
1 +

1

�

)
�3u

�y3
+ Gr

��

�y
+ Qr

�C

�y
= 0,

(14)�2�

�y2
+ NbPr

��

�y

�C

�y
+ NtPr

(
��

�y

)2

+ Q0Pr + BrM2u2 = 0,

(15)
�2C

�y2
+

Nt

Nb

�2�

�y2
= 0

(16)� =
F

2
,
��

�y
= −�1

(
1 +

1

�

)
�2�

�y2
− 1 at h1 = 1 + a cos(2�� ),

(17)� = −
F

2
,
��

�y
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(
1 +

1

�

)
�2�

�y2
− 1 at h2 = −d − b cos(2�� + �),

(18)� − �
��

�y
= 1, at y = h1,

(19)C − �1
�C

�y
= 1, at y = h1,

(20)� + �
��

�y
= 0, at y = h2,

(21)C + �1
�C

�y
= 0 at y = h2.
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3  Method of solution

The partial differential Eqs. (7) to (8) are solved by Homotopy Perturbation Sumudu trans-
formation method (HPSTM), which is an analytical technique. It is used to calculate non-
linear problem which comprises large and small physical parameters (convergent series is 
obtained after solving).

We get an approximate analytical solution by applying the HPSTM to the governing 
equations [22]. We get the following equation after applying the Sumudu transformation, 
inverse Sumudu transformation to the governing equations on both sides:

Applying HPM and using He’s polynomial [23], we compare the coefficients of like 
powers of p to get the required series solution.

The volume flow rate is given by the following:

Integrating Eq. (20) and after manipulating, we get pressure gradient. The coefficient of 
heat transfer is given by [20], as follows:

4  Entropy generation

In the presence of the joule heating effect, the rate of entropy formation is given as follows:

F = Θ − 1 − d.

(22)

u(y) =

−�

2
+ b� + 2�1(� + 1)b

� + �1(� + 1)

+

−�

2
− b� − 2�1(� + 1)b

�1(� + 1) − �
y + b

y2

2

− s−1
[(

�

� + 1

)
v3
{
s

[
Gr

��

�y
+ Qr

�C

�y

]}]
,

(23)
�(y) = −

�a

(1 − �)
+ by + Q0 Pr

y2

2

− s−1
[
v2s

[
Nb Pr

��

�y

�C

�y
+ Nt Pr

�2�

�y2
+ BrM2u2

]]
,

(24)C(y) =
�1a(

1 − �1
) + by − s−1

[
u2
{
s

[
Nt

Nb

�2�

�y2

]}]
.

(25)Q =

h1

∫
h2

(u + 1)dy.

(26)Z =
(
h1
)
x
�y.
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Total entropy generation NS is given by as per Bejan [9], as follows:

where Λ is the temperature difference parameter, Ω is the concentration difference param-
eter, Γ is the ratio of temperature to concentration parameters and � is defined as follows:

5  Discussion

We solved the nonlinear partial differential equations employing Homotopy Perturbation 
Sumudu transformation method (HPSTM). In this study, we utilised the symbolic software 
Mathematica. For velocity, pressure gradient, temperature, nanoparticle concentration is 
solved using Mathematica and plotted with Origin. The obtained results are compared with 
perturbation technique solved by Srinivas and Kothandapani [24] in the absence of Brown-
ian motion and thermophoresis effects as shown in Table 1. It is found that there is greater 
improvement in the results obtained by the present method.

(27)SG =
kf

T2

0

(
�T

�

�y�

)2

+
DB

C0

(
�F

�

�y�

)2

+
DB

T0

(
�T

�

�y�

)(
�C

�

�y�

)
+

�B2

0
u

�2

T0
.

(28)NS =

(
��

�y

)2

+ �
(
Λ

Ω

)2
(
�C

�y

)2

+ Γ

(
�C

�y

)(
��

�y

)
+

J

Ω
u.

(29)Λ =
f̂1 − f̂0

f̂0

,

(30)Ω =
T̂1 − T̂0

T̂0

,

(31)Γ =
DBT0

�

(̂f1 − f̂0)

kf (T̂1 − T̂0)
,

(32)� =
DBf̂0

kf
.

Table 1  Comparison of the numerical values of the heat transfer coefficient at the upper wall Z =

(
h1
)
x
�y 

between the work of Srinivas and Kothandapani [24] and special case of present study when We = 0 , 
a = 0.5 , b = 0.6,� =

�

4
 , d = 1.5 , � = 0.5 , Pr = 1.0 , E = 3.0 and � = 0.0 in absence of Brownian motion and 

thermophoresis effects

X Srinivas and Kothandapani [24] Present work

0.1 1.8449 1.82289
0.2 1.8352 1.83566
0.3 1.9738 1.97343
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5.1  Velocity distribution

Figures 1, 2, 3, 4 show the influence of various parameters on velocity. We can observe the 
effects of local nanoparticle Grashoff number Qr , Hartman number M, slip parameter �1 
and Casson fluid parameter � , respectively, on the velocity profile. As local nanoparticle 
Grashoff number Qr increases, the velocity profile also increases. It is due to the fact that 
nanoparticle collision increases, as we increase Qr in the system which leads to rise in 
velocity, which is shown in Fig. 1. Figure 2 shows the effect of the magnetic field param-
eter M on velocity u . It is observed that velocity profile decreases as we enhance the values 
of M . When M is applied in a transverse direction, it behaves as a hindering force on the 
fluid flow, causing velocity u to decrease. Figure 3 shows the effect of slip parameter �1 on 
velocity profile u . We can observe that velocity increases as slip parameter �1 increases. 
This effect is helpful to determine the actual energy transfer between the channel and the 
fluid. Therefore, an increase in �1 causes non-uniform velocity distribution inside the chan-
nel and resistance is reduced due to slip; hence, velocity increases. In Fig. 4, as the Casson 
fluid parameter � increases, velocity profile increases.

5.2  Pressure gradient

The effects of physical parameters such as Casson fluid parameter � , volume flow rate Q , 
Hartman number M , Brinkman number Br and slip condition �1 on pressure gradient for 
upper and lower wall are shown in Figs. 5, 6, 7, 8, 9. Similar effects can be observed for the 
physical parameter �, Q and M that is pressure gradient decreases for these parameters. This 

Fig. 1  Variation of u on Qr when Nb = 0.1, Pr = 1, Nt = 0.1, β = 0.5, Br = 0.1, β1= 1, Gr = 1, Q0= 2, M = 
0.1
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Fig. 2  Variation of u on M when Nb = 0.1, Pr = 1, Nt =0.1, β = 0.5, Br = 0.1, β1 = 1, Gr = 1, Q0= 2, Qr = 1

Fig. 3  Variation of u on �1 when Nb = 0.1, Pr = 1, Nt = 0.1, β = 0.5, Br = 0.1, Qr = 1, Gr = 1, Q0= 2, M = 0.1
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Fig. 4  Variation of u on � when Nb = 0.1, Pr = 1, Nt = 0.1, Qr = 0.1, Br = 0.1, β1 = 0.5, Gr = 1, Q0 = 2, M 
= 0.1

Fig. 5  Variation of �p
��

 on � when Nb = 0.1, Pr = 1, Nt = 0.1, Q = 0.1, γ = 0.1, γ1 = 0.1, Br = 0.1, β1 = 1, Gr 
= 0.1, Q0 = 0.1, M = 0.1, d = 0.1, � = 1.5, Qr = 0.5
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Fig. 6  Variation of �p
��

 on Q when Nb = 0.1, Pr = 1, Nt = 0.1, β = 0.5, γ = 0.1, γ1 = 0.1, Br = 0.1, β1 = 1, Gr 
= 0.1, Q0 = 0.1, M = 0.1, d = 0.1, � = 1.5, Qr = 0.5

Fig. 7  Variation of �p
��

 on M when Nb = 0.1, Pr = 1, Nt = 0.1, β = 0.5, Q = 0.1, γ = 0.1, γ1 = 0.1, Br = 
0.1, β1 = 1, Gr = 0.1, Q0 = 0.1, d = 0.1, � = 1.5, Qr = 0.5
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fact is due to the inverse relation with viscosity of the fluid, which increases the motion of 
the fluid particles and velocity of the fluid increases, which reduces the pressure gradient 
in system. Pressure gradient increases as Brinkman number Br and slip condition �1 rise, 
which can be observed in Figs. 8, 9. 

5.3  Temperature profile

Through Figs. 10, 11, 12, 13, 14, we can observe the effect of Casson fluid parameter � , 
Prandtl number Pr, Hartman number M , thermal slip parameter � and Brinkman number 
Br , respectively, on � . Figure 10 represents that as Casson fluid parameter � increases, tem-
perature profile decreases. Physically, rising values of � develop the viscous forces. These 
viscous forces have propensity to reduce the thermal boundary layers. Figure 11 shows the 
effect of Prandtl number Pr  on temperature profile � . The prandtl number is inversely pro-
portional to the thermal conductivity of the system, and higher Prandtl number has lesser 
thermal diffusivity; hence, weaker thermal conductivity reduced the temperature profile at 
the wall. Figure 12 shows the effect of Hartman number M on temperature profile � . By 
enhancing magnetic parameter M , the temperature profile � decreases. This is due to the 
fact that Lorentz force opposes the flow of fluid which produces more heat and there is 
an increase in temperature. From Fig. 13, we can observe that � rises when thermal slip 
parameter � increases. The contact between wall and fluid increases, which enhances the 
heat transfer rate, and as a result, temperature raises consequently. Figure 14 indicates that 
the temperature � rises as Brinkman number Br increases. Brinkman number is actually 

Fig. 8  Variation of �p
��

 on Br when Nb = 0.1, Pr = 1, Nt = 0.1, β = 0.5, Q = 0.1, γ = 0.1, γ1 = 0.1, β1 = 1,  
Gr = 0.1, Q0 = 0.1, M = 0.1, d = 0.1, � = 1.5, Qr = 0.5
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Fig. 9  Variation of �p
��

 on �1 when Nb = 0.1, Pr = 1, Nt = 0.1, β = 0.5, Q = 0.1, γ = 0.1, γ1 = 0.1, Br = 
0.1, Gr = 0.1, Q0 = 0.1, M = 0.1, d = 0.1, � = 1.5, Qr = 0.5

Fig. 10  Variation of θ on � when Nb = 0.1, Pr = 1, Nt = 1, γ = 0.1, Br = 0.1, β1 = 1, Q0 = 0.7, M = 0.1
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Fig. 11  Variation of θ on Pr when Nb = 0.1, β = 0.5, γ = 0.1, Br = 0.1, β1 = 1, Q0 = 0.7, M = 0.1 

Fig. 12  Variation of � on M when Nb = 0.1, Pr = 1, Nt = 1, β = 0.1, γ = 0.1, Br = 0.1, β1 = 0.1, Q0 = 0.7
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Fig. 13  Variation of � on � when Nb = 0.1, Pr = 1, Nt = 1, β = 0.1, Br = 0.1, β1 = 0.1, Q0 = 0.7, M = 0.1

Fig. 14  Variation of θ on Br when Nb = 0.1, Pr = 1, Nt = 1, β = 0.1, γ = 0.1, β1 = 0.1, Q0 = 0.7, M = 0.1
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caused by viscous dissipation which corresponds to the higher temperature diffusivity. It 
is reasonable to say that rise in temperature is produced by the stress-reversal process that 
develops with increasing Br.

5.4  Nanoparticle concentration profile

Figures 15, 16, 17 are plotted to show the effects of concentration slip parameter �1 , ther-
mophoresis parameter Nt and Brownian motion parameter Nb on nanoparticle concentra-
tion C . Figure 15 shows the effect of concentration slip parameter �1 , and it is noticed that 
concentration of nanoparticles decay as slip parameter �1 rises. Similar observation can be 
seen in case of thermophoresis parameter Nt . That is, as Nt increases the concentration 
of nanoparticles decreases. The nanoparticles transfer from lower region to higher region 
during the transfer. A remarkable concentration distribution occurs, which results in the 
decrease of nanoparticle concentration in system, which can be observed in Fig. 16. Oppo-
site behaviour can be seen in Brownian motion parameter Nb in Fig. 17. For larger values 
of Brownian motion parameter Nb , collision of the nanoparticles in the system increases, 
which results in the increase of concentration of the nanoparticles.

Fig. 15  Variation of C on �1 when Nb = 0.1, Pr = 1, Nt = 1.5, β = 0.1, γ = 0.1, Br = 0.2, β1 = 0.1, Q0 = 
0.1, M = 0.5
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Fig. 16  Variation of C on Nt when Nb = 0.1, Pr = 1, β = 0.1, γ = 0.1, γ1 = 0.2, Br = 0.2, β1 = 0.1, Q0 = 
0.1, M = 0.5

Fig. 17  Variation of C on Nb when Pr = 1, Nt = 1.5, β = 0.1, γ = 0.2, Br = 0.2, β1 = 0.1, Q0 = 0.1, M = 0.5
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Fig. 18  Variation of NS on J when Nb = 0.1, Pr = 2, Nt = 0.1, Ω = 0.1, Γ = 0.1, γ = 0.1, γ1 = 0.2, Br = 
1, β1 = 0.1, Q0 = 0.1, M = 1, Gr = 1, Qr = 0.1, Λ = 0.3

Fig. 19  Variation of NS on Λ when Nb = 0.1, Pr = 2, Nt = 0.1, J = 0.1, Ω = 0.1, Γ = 0.1, β = 0.1, γ = 
0.1, γ1 = 0.2, Br = 1, β1 = 0.1, Q0 = 0.1, M = 1, Gr = 1, Qr = 0.1
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5.5  Entropy generation

Figures 18, 19, 20 represent the effects of Joule heating parameter J , temperature ratio 
parameter Λ and thermal slip parameter � on entropy generation number Ns . We can 
observe that temperature ratio parameter Λ and Joule heating parameter have the same 
effects on entropy generation number Ns , i.e., increasing the values of Λ and J causes 
more entropy generation, which is shown in Figs. 18, 19. Joule heating effects involve 
the electric field caused by the internal heating in the presence of potential gradient. 
Thus, increment of Joule heating parameter accelerates the entropy generation signif-
icantly. Figure  20 depicts the behaviour of slip parameter on entropy generation. It is 
observed that the rise in slip parameter at the wall diminishes the entropy generation in 
the system.

6  Conclusions

In this article, we studied the effect of multi-slip condition on Peristaltic flow through 
asymmetric channel with Joule heating and entropy generation. The non-dimensional non-
linear equations are solved by the HPSTM. The main observations are summarised below:

• Behaviour of � is similar on velocity, pressure gradient and temperature profiles.

Fig. 20  Variation of NS on � when Nb = 0.1, Pr = 2, Nt = 0.1, J = 0.1, Ω = 0.1, Γ = 0.1, β = 0.1, γ1 = 
0.2, Br = 1, β1 = 0.1, Q0 = 0.1, M = 1, Gr = 1, Qr = 0.1, Λ = 0.3
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• Similar behaviour can be observed on velocity, pressure gradient and temperature pro-
files on varying M.

• Opposite behaviour can be seen in Nb and Nt on nanoparticle concentration profile.
• Entropy generation presents increasing behaviour for Λ and J.
• � decreases the entropy generation.
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