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Abstract
The dynamics of ion translocation through membrane transporters is visualized from a 
comprehensive point of view by a Gibbs energy landscape approach. The ΔG calculations 
have been performed with the Kirkwood–Tanford–Warshel (KTW) electrostatic theory that 
properly takes into account the self-energies of the ions. The Gibbs energy landscapes for 
translocation of a single charge and an ion pair are calculated, compared, and contrasted 
as a function of the order parameter, and the characteristics of the frustrated system with 
bistability for the ion pair are described and quantified in considerable detail. These calcu-
lations have been compared with experimental data on the ΔG of ion pairs in proteins. It 
is shown that, under suitable conditions, the adverse Gibbs energy barrier can be almost 
completely compensated by the sum of the electrostatic energy of the charge–charge inter-
actions and the solvation energy of the ion pair. The maxima in ΔG

KTW
 with interionic 

distance in the bound H+ − A
− charge pair on the enzyme is interpreted in thermodynamic 

and molecular mechanistic terms, and biological implications for molecular mechanisms of 
ATP synthesis are discussed. The timescale at which the order parameter moves between 
two stable states has been estimated by solving the dynamical equations of motion, and a 
wealth of novel insights into energy transduction during ATP synthesis by the membrane-
bound FOF1-ATP synthase transporter is offered. In summary, a unifying analytical frame-
work that integrates physics, chemistry, and biology has been developed for ion transloca-
tion by membrane transporters for the first time by means of a Gibbs energy landscape 
approach.
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Symbols
A−	� Anion
a	� Hydrated ion radius (m)
d	� Distance between c-rotor and a-stator in FO portion of ATP synthase (m)
E	� Local electrical field (Vm−1)
E	� Enzyme
E	� Young’s modulus (kg m−1 s−2)
ΔG	� Gibbs energy change (kJ mol−1)
ΔGsol	� Solvation Gibbs energy change (kJ mol−1)
ΔGdesolvation	� Desolvation Gibbs energy change (kJ mol−1)
H+	� Proton
H+ − A−	� Proton–anion charge pair
I	� Moment of inertia (kg m2)
k	� Boltzmann constant (= 1.38 × 10−23 J K−1)
k	� Torsional spring constant of γ-subunit in F1 (kg m2 s−2)
k"	� Torsional spring constant of c-subunit α-helix in FO (kg m2 s−2)
L	� Characteristic length (m)
L	� Length of α-helix (m)
l	� Membrane thickness (m)
l	� Distance within the c-ring of FO (m)
m	� Mass (kg)
n	� Number of c-subunits in the c-ring of FO
Pn	� Legendre polynomial of degree n
Δp	� "Protonmotive force" (kJ mol−1)
q	� Charge (C)
R	� Inter-ionic distance within H+ − A− charge pair (m)
R	� Radius of α-helix (m)
r	� Radial position (m)
r	� Radial distance of a single charged species from the center (m)
T	� Temperature (K)
t	� Time (s)
U	� Stored elastic energy (kJ mol−1)
z	� Distance along membrane access channel (m)

Greek letters
γ	� γ-Subunit of FOF1-ATP synthase
γ	� εW/εm
εm	� Dielectric constant of membrane
εw	� Dielectric constant of water
ζ	� Frictional coefficient (kg m2 s−1)
θ	� Angle subtended by the rotating c-subunit with the center of the c-ring in FO 

(°)
θ	� Angle swept by the imaginary line joining the trailing c-rotor residue and the 

upper a-stator residue in FO with respect to the equilibrium position (°)
�′′  	� Angle of rotation about the axis of the c-subunit (°)
λ	� Inter-ionic length scale (m)
λD	� Debye length scale (m)
ρ	� Charge density (C m−3)
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σ	� Poisson’s ratio
�

′′ 	� Driving electrostatic motor torque in FO (kg m2 s−2)
�
m,r

 	� Resisting electrostatic motor torque in FO (kg m2 s−2)
∼ 10 	� Net electrostatic motor torque in FO (kg m2 s−2)
Φ	� Electrical potential (V)
φ	� Delocalized electrical potential (V)
ψ	� Local electrical potential (V)

Subscript
c	� Charges in water
D	� Debye
Eq	� Equivalent
m	� Membrane
max	� Maximum
s	� Solution
w	� Water

Superscript
*	� High-energy or transition state of intermediate

Abbreviation
Arg	� Arginine
Asp	� Aspartic acid
ATP	� Adenosine triphosphate
Glu	� Glutamic acid
His	� Histidine
DASS	� Divalent anion sodium symporter
K	� Kirkwood
KTW	� Kirkwood–Tanford–Warshel

1  Introduction

Genetic mechanisms that govern the perpetuation of living organisms and the dynamics 
of evolution have received considerable attention in the biological physics literature, espe-
cially from a biological perspective of “fitness” landscapes. This is primarily because bio-
logical entities, be they molecules, cell organelles, whole organisms, or ecological enti-
ties have complex interactions with their surroundings. Landscape theory is one way of 
describing, visualizing, characterizing, analyzing, and quantifying the dynamics of biologi-
cal systems moving and evolving in space and time. The approach has been applied to evo-
lution and natural selection [1], accelerated evolution dynamics [2], directed evolution [3], 
antibiotic resistance [4], and protein dynamics [5, 6].

However, the concept of energy landscapes is quite general and is not limited to being 
applicable only to evolutionary problems. It has been applied to diverse systems and multi-
scale processes in many fields, such as spin glasses, biological macromolecules, and pro-
tein folding [7–10]. It has also been generalized for arbitrary finite-range potentials using a 
geometrical approach [11].
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The dynamic regulation of the transport of ions and polar metabolites through lipid bar-
riers represents a vital attribute of enormous significance to living systems. Such trans- 
port is carried out by specialized enzymes and transporters embedded in biological mem-
branes. To the best of our knowledge, a fundamental analysis that develops an analytical 
framework using Gibbs energy landscape approaches for membrane transporters in bio-
logical membranes has not been done, although some computational studies using all-atom 
molecular dynamics simulations and recent experimental studies using fluorescence reso-
nance energy transfer on a few systems are available, often only in preprint form [12–16]. 
An analytical study on membrane filtration and flow through porous media treating Darcy’s 
permeability law by the landscapes approach has recently been published [17]. However, 
we could not find any study that specifically treats the biomembrane-bound FOF1-ATP syn-
thase transporter. The present article attempts to fill this gap.

The unfavorable energetics of placing a charge in a non-polar medium is a well-known 
effect [18–25], giving rise to an energy barrier that hinders or even prohibits charge transfer 
across the membrane. There exists a high desolvation Gibbs energy penalty for transferring 
ions from water into the membrane phase owing to this high self-energy of the charges.

Classically, the technique of voltammetry has been used to study ion-transfer reactions 
and transport processes at the water-organic interface and in membranes [20, 21]. Such 
interface reactions were found to be inconsistent with the assumption of simple, unassisted, 
single-step transfer processes and were proposed to involve the “formation of a transient 
ion pair at the interface” [21]. In a detailed analysis of previous works on the transport pro-
cess, it was stated that, “the role of the hydrophilic ions in aqueous phases which must be 
distributed into the bilayer membrane together with the hydrophobic ion as the counterion 
to hold the electroneutrality in the membrane and aqueous phases has not been taken into 
account. Hence it seems difficult to understand the different features of the ion transport 
based on the concepts so far proposed” [20].

Several models of proton translocation through the membrane-bound FO portion of ATP 
synthase have been proposed reviewed in refs. [19, 26–37]. However, none of these models 
has considered the large desolvation Gibbs energy penalty incurred in transferring a pro-
tonic charge from the aqueous phase into the hydrophobic membrane phase in transporters 
[18–25]. There exists no obvious source of energy to translocate the proton over the high 
desolvation Gibbs energy barrier arising from the self-energy of the charge.

It ought to be stressed that most Gibbs energy simulations in physics have focused on 
ion channels [38–42]. However, all membrane transporters including the FOF1-ATP syn-
thase have very different characteristics from ion channels. Thus, transporters are alter-
nating access, unlike channels, and translocate ions at a rate that is ~104 times smaller 
than for channels. Every known membrane transporter family is either a cotransporter or 
an exchanger that is engaged in coupled co-transport/exchange of at least two species of 
ions or charged metabolites, unlike channels that selectively transport a single ion species. 
Hence, the analysis made on ion channels cannot be extrapolated to transporters, which 
show unique properties and conformational changes.

A novel way to solve the conundrum is offered by Nath’s two-ion theory of energy coupling 
and ATP synthesis [30–37, 43–51], formulated during a 30-year long research program on the 
mechanism and thermodynamics of biological molecular machines. The theory postulates the 
involvement of a proton and a membrane-permeable anion that approach and bind to their 
respective binding sites with a separation distance of ~0.5-1 nm in the access half-channels 
of membrane transporters and subsequently unbind to form a neutral species and exit [37, 49, 
50]. This catalytic act leads to the generation of H+-A- charge pair on the enzyme as the “high-
energy intermediate” and results in coupling with addition and joint utilization of energy of 
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both ionic species, leading to rotation by ion-protein interactions [30, 34, 37, 48–50]. Nath’s 
two-ion theory of energy coupling and Nath’s torsional mechanism of energy transduction and 
ATP synthesis [30, 34, 37, 49, 52–55, 66] thus used the transient, local electric field arising  
from an ordered, sequential nature of the coupled ion transport steps for mechanical rotation,  
yet also satisfied the constraint of overall electroneutrality of the membrane and aqueous 
phases [for a review, see ref. 34, 54].

We have therefore calculated the Gibbs energy landscape/barrier for ion translocation 
through membrane transporters and examined to what extent the stabilizing interactions due 
to the coupled movement of two species of ions, e.g., anions and protons, facilitate transport 
and contribute to lowering of the adverse desolvation Gibbs energy barrier due to the individ-
ual ions. The ΔG calculations have been performed by using the Kirkwood–Tanford–Warshel 
(KTW) electrostatic theory that properly takes into account the self-energies of the ions. These 
calculations have been compared with experimental data on the ΔG of ion pairs in several 
proteins. It is shown that, under suitable conditions, the adverse ΔGdesolvation can be compen-
sated by the sum of the electrostatic Gibbs energy of the charge–charge interactions and the 
solvation energy of the ion pair. Hence, the system is shown to become frustrated at this point 
via a first order phase transition involving bistability. The maxima occurring in ΔGKTW as a 
function of the interionic distance R in the bound H+ − A− charge pair on the enzyme is inter-
preted in general thermodynamic and molecular terms, and several implications for molecular 
mechanisms of ATP synthesis have been discussed. Finally, the timescale at which the order 
parameter moves between the two stable states has been estimated by solving the dynamical 
equations of motion, and a wealth of novel insights into energy transduction during ATP syn-
thesis by FOF1-ATP synthase have been provided.

The article is organized as follows. In the Methods, Sect.  2.1 derives the leading n = 0 
and n = 1 order terms of the original Kirkwood electrostatic theory that was developed for a 
spherical geometry. In Sect. 2.2, the Kirkwood theory is extended to the case of a membrane 
with planar geometry.

In the Results and Discussion, Sect. 3.1, Poisson’s equation is integrated twice to obtain 
the local field and local potential profiles in the double lattice of a membrane containing local-
ized positive and negative space charge regions. The profile of the Gibbs energy desolvation 
barrier for transport of a single charged species through a membrane is quantified in Sect. 3.2. 
The Gibbs energy landscape for translocation of a single charge and an ion pair is calculated 
as a function of the order parameter in Sects. 3.3, and 3.4 respectively, and the characteristics 
of the frustrated system with bistability for the ion pair are described in detail in Sect. 3.4. 
The theoretically calculated Gibbs energy landscape is compared with experimental data from 
NMR spectroscopy on a number of globular proteins in Sect. 3.5.

A general thermodynamic interpretation of analysis using continuum electrostatic Gibbs 
energy theories is carried out in Sect.  3.6. A molecular-level interpretation of the Gibbs 
energy landscape along with biological implications for ATP mechanism are spelled out in 
Sect. 3.7. The dynamics of movement of the system between two states is quantified by solv-
ing the equations of motion for torque production in ATP synthase, and a large number of 
novel insights into the energy transduction mechanism in ATP synthesis are given in Sect. 3.8. 
Finally, Sect. 3.9 briefly discusses how work on Gibbs energy landscapes in membrane trans-
porters provides a meeting ground for physics, chemistry, and biology. The main conclusions 
of the study are summarized in Sect. 4.
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2 � Methods

The pioneering theory of Kirkwood [56] is employed in this work for evaluation of the 
Gibbs energy of charged particles. The theory was further explicated and developed by 
Tanford and Kirkwood [57], and modified later by Warshel [19, 38], as briefly described in 
Sect. 2.1. The Kirkwood theory was originally developed for a spherical membrane phase 
[56]. In Sect. 2.2, we derive an extension of the Kirkwood electrostatic theory to a planar 
membrane geometry, which provides a more accurate model of ion translocation through 
membrane transporters.

2.1 � Kirkwood theory for calculation of electrostatic Gibbs energy

As mentioned above, in the original work [56], Kirkwood obtained the Gibbs energy of 
an arbitrary charge distribution placed inside a spherical cavity. The spherical cavity had 
a dielectric constant �m and radius L and was surrounded by an electrolyte solution of die-
lectric constant �w (Fig. 1). He solved the Laplace equation ∇2Φ = 0 in polar coordinates 
(r, �,�) for the potential due to n charges q1, q2,… , qn at radial positions r, r,… , rn and 
for the reaction potential due to interaction of the charges with the surrounding solution. 
The work employed a combination of Dirichlet and Neumann boundary conditions which 
ensured that the potential and the field were continuous across the boundary of the sphere 
at r = L . The coefficients of the distance terms containing rn in his general solution for Φ 
were chosen to ensure that the potential is 0 at infinity [56]. Kirkwood’s final equation for 
the total energy of the system, including the energy of the charge–charge interactions and 
the interaction between the charges and the reaction potential, can be written as

where � =
�w

�m
 and Pn(cos�kl) represents the Legendre polynomial.

(1)

ΔGK =
1

2

n∑

k

n∑

l≠k

qkql

�mrkl
+

1

2�m

∞∑

n=0

(n + 1)(1 − �)

(n + 1)� + n

(
1

L2n+1

) n∑

k

n∑

l

qkqlr
n
k
rn
l
Pn(cos�kl)

Fig. 1   Ion pair in a membrane 
phase in the original Kirkwood–
Tanford–Warshel (KTW) electro-
static theory [19, 38, 56, 57, 61]. 
The membrane has a charac-
teristic length L and dielectric 
�
m

 . The inter-ionic distance 
between the charges measures 
R . The dimension a represents 
the finite radius of the charges. 
The apolar phase is surrounded 
by a continuum aqueous phase 
approximated by the dielectric 
constant of water �w

+

R

La a
ε  m

ε  w

–
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The leading 1∕L term ( n = 0 in Eq. (1)) gives the difference in Born energy [58] when 
the dielectric around a charged sphere of radius L is altered from �m to �w . The r2∕L3 term 
( n = 1 in Kirkwood’s expression) represents the energy of a dipole of length r in a sphere 
of radius L , where r is the distance of the charge from the center of the protein. Writing the 
leading n = 0 and n = 1 terms in Kirkwood’s formula (Eq.  (1)) for 𝜀m ≪ 𝜀w leads to the 
expression (in kJ mol−1)

Warshel later noticed that Kirkwood’s expression in Eqs. (1) and (2) did not incorporate 
the self-energy of the charges or the finite size of the charges [19, 38]. He therefore added 
the electrostatic Gibbs energy of transferring a charge of radius a from the reference state 
(water) with � = �w into a membranous medium with � = �m to Eq. (2) so as to properly 
calculate the reference energy. Thus, the final equation of the Kirkwood–Tanford–Warshel 
(KTW) theory in kilojoules per mole for a single charge after including the self-energy of 
the charge works out to be

Strictly speaking, Kirkwood’s expression is not applicable for contact of charges with 
the surrounding aqueous solution. However, the electrostatic Gibbs energy profile is con-
tinuous, and the Gibbs energy of charges in water beyond the boundary approaches 0.

Now consider the configuration shown in Fig. 1 of a positive–negative charge pair of 
two ions of size a separated by a finite distance R embedded in a sphere of radius L of low 
dielectric constant, �m , and surrounded by a solvent of high dielectric constant, �w . For 
𝜀m ≪ 𝜀w , and R and L in 

◦

A , we have (in kJ mol−1)

Adding to Eq.  (4) the Warshel self-energies of taking the two ions from water to the 
membrane protein, we obtain in kilojoules per mole

2.2 � Extension of Kirkwood theory to a planar membrane

Figure  2 shows a double lattice containing localized regions of positive and negative 
charges due to an ion pair that is separated by an abrupt junction. It is shown in this section 
that ΔG(R)KTW can also be derived analytically for the case of a planar membrane.

In order to evaluate the net ΔG modeled by ΔG(R)KTW , we first consider the Gibbs 
energy ΔGm of two opposite charges interacting with each other and separated by a dis-
tance R inside an infinite membrane of dielectric �m (Fig.  2). To ΔGm , we need to add 
the stabilizing Gibbs energy ΔGw of replacing the dielectric �m by the dielectric �w at dis-
tances r > |L| (Fig. 2) and subtract ΔGc , the Gibbs energy of the charges in water at infinite 
separation.

(2)ΔGK = −694

[
1

�m
−

1

�w

](
1

L
+

r2

L3

)

(3)ΔGKTW = ΔGK +
694

a

(
1

�m
−

1

�w

)

(4)ΔG(R)K = −
1388

�mR
− 694

[
1

�m
−

1

�w

](
R2

L3

)

(5)ΔG(R)KTW = ΔG(R)K +
1388
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(
1

�m
−

1

�w

)
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ΔGm in kilojoules per mole works out to be

where the first term on the right-hand side is for the positive charge, the second term is 
for the negative charge, and the third term on the right is a measure of the charge–charge 
interaction. Thus,

Equation (7) represents the electrostatic Gibbs energy of the charges at infinite separa-
tion and the work of bringing them to approach each other to a separation distance, R.

ΔGw is the stabilization of a dipole inside the membrane of dielectric �m by the aque-
ous solution (dielectric �w ) with respect to its stabilization if the medium surrounding the 
membrane phase also possessed a dielectric �m . This is the Onsager energy of dipole solva-
tion [59] shown to measure, for 𝜀m ≪ 𝜀w as

(6)ΔGm = −
694

a

(
1 −

1

�m

)
−

694

a

(
1 −

1

�m

)
−

1388

�mR

(7)ΔGm = −
1388

a

(
1 −

1

�m

)
−

1388

�mR

(8)ΔGw = −
694

�m

R2

L3

Fig. 2   Extension of the KTW 
theory to a planar membrane. 
The extremities of the model 
lattice are taken to lie at −L and 
+L . Distance r is taken to be 0 at 
the center of the double lattice, 
and the electrostatic potential 
due to the ions is fixed as 0 at 
r = 0 . The distance between the 
positive and negative charges is 
taken as R . The profiles of the 
parabolic electrostatic potential 
( � ) and the linear electrical field 
(E) about an abrupt junction/
interface at r = 0 are sketched. 
The exact equations for � and 
E are obtained by solving the 
Poisson equation directly with 
the appropriate boundary condi-
tions; for the equations, please 
consult the text (Sect. 3.1). The 
physically interesting case in 
which electrical double layers of 
the positive and negative charges 
interact in highly localized space 
charge regions, e.g., for R < 𝜆

D
 , 

or if the transporter half-aqueous 
access channels are characterized 
by the inequality 2L < 𝜆

D
 , where 

�
D
 is the Debye length is also 

treated in detail in the text

–L +L

E

+ –

R
Ψ+

Ψ–

408 S. Nath



1 3

Hence,

i.e.,

which is the same as Eq. (5) for 𝜀m ≪ 𝜀w . Hence, we have shown by analytical derivation  
that the KTW theory is applicable to both spherical and planar membrane phases.

Variation of the electrostatic Gibbs energy of the system is given by Eqs. (2) and (3) and 
Eqs. (4) and (5) (or by Eq. (10) for 𝜀m ≪ 𝜀w ) for a single ion or ion pair respectively as a 
function of R or by R∕L in dimensionless terms (Figs. 1 and 2). This is important because, 
generally, change of Gibbs energy is reported by biochemical experimentalists as a func-
tion of R or R∕L . In other words, the latter function is a kind of “order parameter” that is 
well known in the phase transition literature to physicists.

In Sect. 3.1, the order parameter used in chemistry and biology is related to the variation 
as a function of distance in the double lattice of the local field, E (Fig. 2), a variable used 
in physics.

3 � Results and discussion

Figure 2 shows a lattice containing localized positive charge separated by a definite dis-
tance from a lattice with negative charge. Since the aspect ratio, i.e., the length/diameter 
ratio of membrane transporter access channels is large, and typically measures ~5–10, a 
one-dimensional configuration space is a good approximation and presents a useful sim-
plification. The electrical potential and electrical field profiles can therefore be obtained 
by direct solution of the one-dimensional Poisson equation. In essence, our approach rep-
resents a generalization of the Shockley analysis in semiconductor physics that uses “elec-
trons and holes” [60] to classical particles in ionic systems containing localized fixed nega-
tive and positive charges and mobile ions.

3.1 � Profile of local electrical field and potential in a biological membrane 
containing localized space‑charge regions of positive and negative charge          

For both geometries shown in Figs. 1 and 2, we can write Poisson’s equation as

On one side of the midpoint/center at r = 0 , since the intrinsic field is the negative gra-
dient of the local electrical potential, i.e., E = −

d�

dr
 , we can write, for a single molecule 

with unit charge density

(9)

ΔG = ΔGm + ΔGw − ΔGc = −
1388

a
+

1388

�ma
−

1388

�mR
−

694

�m

R2

L3
−

(
−
694

a
−

694

a

)

(10)ΔG =
1388

�ma
−

1388

�mR
−

694

�m

R2

L3

(11)
d2�

dr2
= −

4��

�
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which upon integration gives

Noting the boundary condition that

Similarly in the region on the other side of r = 0 , we obtain

Integrating again to obtain the potential, with the boundary condition that

we finally have, on one side of the center,

and on the other side of the center/midpoint,

The linear local field profile and the parabolic profile of the local electrical potential about 
r = 0 is sketched in Fig. 2. Hence, the order parameter given by R or by R∕L can also be 
related to the local field, E , given its linear profile. Experimental chemists and biologists who 
work with NMR spectroscopy or X-ray diffraction conventionally show their results as a func-
tion of R or R∕L , probably because of the difficulty of measurement of the local field within 
the coupling membrane, so we shall continue to follow this convention. This is all the more 
reasonable given the fact that we shall compare Gibbs energy landscape predictions for mem-
brane transport with experimental data on ion pairs in various proteins subsequently (Sect. 3.5; 
Fig. 7).

3.2 � Calculation of the desolvation Gibbs energy barrier for ion transport 
through membranes

The desolvation Gibbs energy (kJ mol−1) arising from the self-energy of a single charge can 
be calculated by the Born-type formula [19, 24, 38, 61]

(12)dE

dr
=

4�q

�

(13)E =
4�q

�
r + C

(14)E = 0 at r = −L

(15)E =
4�q

�
(r + L)

(16)E = −
4�q

�
(r − L)

(17)� = 0 at r = 0

(18)� = −
2�q

�

[
(r + L)2 − L2

]

(19)� =
2�q

�

[
(r − L)2 − L2

]

(20)ΔGdesolvation =
694q2

a

(
1

�m
−

1

�w

)
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where q = +1 for H+, a is the hydrated radius of the ion in angstroms (on the order of 
1Å), and �m and �w are the membrane and water dielectrics, respectively. For �m of 20, this  
approximately yields a maximum value of ΔGdesolvation energy of ~ 34 kJ mol−1 (Fig. 3). The 
Gibbs energy profile at an arbitrary point z within a membrane of thickness l (in Å) is given  
in kilojoules per mole by [61]

which is plotted in Fig. 3 for l = 50
◦

A with the constraints that ΔG tends to 0 beyond the 
membrane edges, i.e., at z = −a and z = l + a . Several workers use �m = 4 − 8 and esti-
mate considerably higher values for the desolvation Gibbs energy barrier in the range of 
70–135 kJ mol−1 [24, 25]. Here we have taken a higher value of the dielectric in order to 
estimate the minimum value of the Gibbs energy barrier/landscape for unassisted proton 
translocation through biological membranes (Fig. 3). An estimate of the effect of surface 
charges at the membrane boundaries at z = 0 and z = l is also shown in Fig. 3.

Current models of ion transport through membranes do not explain how this large des-
olvation Gibbs energy penalty is paid for by proton-translocating enzyme systems, such as 
the FOF1-ATP synthase. There exists no obvious source of energy to translocate the pro-
ton over the high desolvation Gibbs energy barrier. It should be noted that the delocalized  
potential, φ or the delocalized “protonmotive force” of the chemiosmotic theory, Δp of ∼
200 meV (~20 kJ mol−1), is far smaller than the estimated desolvation Gibbs energy and 
cannot flatten the barrier (Fig. 3). Moreover, if Δp is used for reducing the height of the 
barrier, then no energy is available for ATP synthesis as per the chemiosmotic theory, 

(21)ΔG(z)desolvation =
694q2

�m

[
1

a
−

(
1

4z
+

1

4(l − z)

)]
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Fig. 3   Desolvation Gibbs energy barrier for unassisted translocation of a single ion species (e.g., H+ ) 
through a biological membrane. The profile is calculated as a function of distance, z , for transfer of a unit 
H

+ charge from water into a membrane of thickness l = 50 Å with an effective dielectric constant �
m
= 20 

(bold blue curve). A “protonmotive force” (Δp) of 200 mV (~ 20 kJ  mol−1) is shown by the dotted black 
line. The Gibbs energy barrier after superposition of the Δp is also illustrated (dashed orange curve), still 
revealing a substantial barrier to non-facilitated ion transport. Estimations of the effect of surface charges 
on the membrane at the edges z = 0, l are also shown
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because the driving force for ATP synthesis, Δp , has already been consumed to reduce the 
desolvation Gibbs energy penalty arising from the ion self-energy.

Increasing �m to 15 or 20 decreases the equilibrium desolvation Gibbs energy barrier; 
however, it also increases the proton transfer reorganization energy, and hence, the activa-
tion barrier for proton translocation remains almost the same. Hence, the basic contradic-
tion of the problem of too high a Gibbs energy barrier for charge transfer across the mem-
brane is not resolved.

Nath’s two-ion theory of energy coupling and ATP synthesis [30, 34, 37, 47–50] offers 
a way out of the above impasse. Since, according to the theory, the H+ approaches the  
A− very closely (r ~ 0.5 – 1nm) in access half-channels in the membrane, and the H+ binds 
within the electrostatic field of the bound A−, this anionic electrical field should help lower 
the desolvation Gibbs energy barrier considerably. The anionic field will decrease the equi-
librium value of the H+ energy but will not increase the medium reorganization energy. It 
may even be possible to decrease the desolvation Gibbs energy penalty and barrier to 0 
under special conditions.

Hence, in subsequent sections, we shall explore the electrostatic properties of ion pairs 
in a medium of low dielectric (membrane) surrounded by a medium of high dielectric (e.g., 
water).

3.3 � Calculation of Gibbs energy landscapes for a single‑charged species 
in a membrane transporter

The electrostatic Gibbs energy landscape for unassisted translocation of a single ion (e.g., 
H+) in a membrane transporter is calculated based on Eq. (3) of the KTW continuum elec-
trostatic theory. The dependence of the Gibbs energy as a function of distance of the charge 
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Fig. 4   Electrostatic Gibbs energy for a single type of ion/charged group of diameter a placed inside a 
membrane phase of characteristic length L and dielectric �
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= 20 surrounded by water of dielectric �
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)
 . Calculations of the Gibbs energy profiles are shown as a function of the order parameter r∕L 

for various parameter values of L∕a (from top to bottom) of 5.0 (gray), 3.5 (orange), and 2.5 (blue). The 
ΔG value is very sensitive to the position of placement of the charge. Note also that the electrostatic Gibbs 
energy asymptotes at r

L
= 0 to the value tabulated in Table 1; therefore, the energy barrier cannot be low-

ered to 0 in such a charge configuration
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from the center is shown in Fig. 4 for �m = 20 and various parameter values of L∕a . An 
important feature that emerges from Fig. 4 is that the Gibbs energy asymptotes at r

L
= 0 to 

the destabilizing value tabulated in Table 1; therefore, the energy barrier cannot be low-
ered to 0 for such a charge configuration involving only a single type of ion. Furthermore, 
no maxima in the Gibbs energy landscape as a function of the dimensionless distance or 
order parameter is found. These results are robust with respect to the choice of parameters. 
This arises primarily from an absence of coupling, a lack of synergistic action, and the 
inability of formation, in the absence of the anion, of the low Gibbs energy HA species, and 
the diffusion of this neutral species thereafter (i.e., after the elementary event of molecu-
lar energy transduction is completed) from the membrane phase to the outside aqueous 
medium. Further interpretation from the point of view of molecular mechanism is given in 
Sect. 3.7. The results (Fig. 4; Table 1) are quite in contrast to those obtained for an ion pair 
(Sect. 3.4).

3.4 � Calculation of Gibbs energy landscapes for an ion pair in a membrane 
transporter

In this and subsequent sections, we have attempted to determine the extent to which sta-
bilizing interactions due to the coupled movement of two species of ions, e.g., anions and 
protons, facilitate transport, and contribute to lowering of the adverse desolvation Gibbs 
energy barrier due to the individual ions. The ΔG calculations have been performed by 
using the Kirkwood–Tanford–Warshel (KTW) electrostatic theory that properly takes into 
account the self-energies of the ions. These calculations have been compared with experi-
mental data on the ΔG of ion pairs in a subsequent Section (Sect. 3.5). It is shown that, 
under suitable conditions, the adverse ΔGdesolvation can be almost completely compensated 
by the sum of the electrostatic Gibbs energy of the charge–charge interactions and the sol-
vation energy of the ion pair. The maxima occurring in ΔGKTW as a function of the inte-
rionic distance R in the H+ − A− charge pair (Table  1) is interpreted in thermodynamic 
and molecular terms (Sects. 3.6 and 3.7, respectively) and various biological implications 
for molecular mechanisms of energy transduction and ATP synthesis that arise have been 
highlighted (Sect. 3.7). The results provide an illustration of frustrated systems with inter-
esting bistable behavior in the physics of first-order phase transitions. The timescale at 
which the system moves between the two states has also been quantified for membrane 
transporters for the first time (Sect. 3.8).

As derived in Sect. 2 for both spherical and planar membranes (see Eqs. (5) and (10)), 
the basic equation of the KTW theory for the Gibbs energy of an ion pair separated by a 
finite distance R , which includes the Gibbs energy of taking the ions from water into the 
membrane, ΔGKTW(R) , can be recast as follows:

The Gibbs energy balance associated with charge separation in membrane transporters 
is depicted schematically in Fig. 5. The dependence of the various components of ΔGKTW 
(Eq. (22)) on the ion pair interionic distance, R , with respect to the reference Gibbs energy 
of the ions at infinite separation in water is quantified. The specific calculations shown are 
for �m = 20 , a = 2

◦

A , and a spherical size (or separation 2L in the planar geometry) of 1 
nm, but the same trends are obtained for any reasonable set of parameters. ΔGdesolvation energy 

(22)ΔGKTW(R) = −
1388

�mR
− 694

R2

L3

[
1

�m
−

1

�w

]
+

1388

a

[
1

�m
−

1

�w

]
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due to the self-energy of the charges shows up as a large positive destabilizing value that is 
independent of R . On the other hand, ΔGcharge−charge is negative (stabilizing), scales as 
−(1∕R) , and goes from a negative infinity value as the bonding distance tends to 0, as 
would occur, for example, in the neutral substrate HA , to a value close to 0 for long-range 
ion pairs (Fig. 5). ΔGdipole solvation , the stabilizing Onsager energy, follows a parabolic −

(
R2

)
 

relationship that goes from 0 at a bonding distance between the ion pair to a large negative 
value for long-range ion pairs (Fig. 5). From the various contributions shown in Fig. 5, it 
can be readily inferred that an apparently small value of ΔGKTW(R) can result at small  
(R < 4Å), for a neutral substrate HA , and for long-range ion pairs  (R ∼ 8 − 10

◦

A) due to 
compensation of the destabilizing self-energy term and the sum of stabilizing Gibbs energy 
contributions of ΔGKTW(R) (Fig. 5). Furthermore, a maxima in ΔGKTW(R) is expected to 
be found at an intermediate value of the interionic distance, R, corresponding to a H+ − A− 
“high-energy charge-pair intermediate”.

Figure 6 calculates the Gibbs energy of an ion pair with inter-ionic separation R placed 
inside a membrane phase (�m = 20) surrounded by water of dielectric �w 

(
𝜀m ≪ 𝜀w

)
 . Cal-

culations of the Gibbs energy landscapes are shown as a function of the order param-
eter R∕L for various parameter values of L∕a . Recombination of the two charges of the 
ion pair (R → 0) after ion unbinding from their respective binding sites in the membrane 
transporter leads to a lowering of the Gibbs energy barrier to 0 in such a paired charge 
configuration.

The electrostatic Gibbs energy involving an ion pair (Fig.  6) can be regarded as an 
interesting example in physics of a frustrated system with bistability that shows a max-
ima at intermediate values of R∕L . The system reveals two values of the order parameter, 
R∕L , with the same minimum value of Gibbs energy (Fig. 6). Thus, the net ΔGKTW tends 
to a value of ∼ 0 at a finite separation distance of H+ and A− owing to almost complete 
Gibbs energy compensation. A second stable state with a minimum in total Gibbs energy 

-15

0
∆

G
R

∆G, charge desolvation ▼

→
∆G, charge-charge 

~ −(1/R) ~  −(R2)
►

∆G, dipole
solvation◄

Fig. 5   Energy balance associated with Gibbs energy landscapes for ion pair translocation through mem-
brane transporters. The variation of the components of ΔG on the ion pair interionic distance, R , is plotted. 
The large destabilizing desolvation Gibbs energy penalty due to the self-energy of the charges is shown 
(blue). The stabilizing Gibbs energy of the charge–charge interaction scales as –(1/R) (black), while the 
stabilizing Onsager energy for dipole solvation (red) follows a −

(
R2

)
 relationship. Calculations are based on 

Eq. (22) for �
m
= 20 , a = 2

◦

A and a protein characteristic size of 1 nm. Similar trends are obtained for other 
sets of parameter values. The reference Gibbs energy of the ions at infinite separation in water is taken as 0
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is obtained for formation of a chemical bond (i.e., for R → 0 ) to yield the charge neutral 
substrate HA . In between these two stable states, there exists a barrier in the Gibbs energy 
landscapes (Fig.  6) with a high Gibbs energy state of H− − A− at a definite distance of 
separation. The maxima in ΔGKTW for the ion pair system occurs at

or, for 𝜀m ≪ 𝜀w at Rmax ≈ L . For 𝜀m ≪ 𝜀w , this yields the maximum Gibbs energy change 
(in kJ mol−1)

These values are tabulated in Table 1. The difference between the maximum value of the 
Gibbs energy barrier and the ground state Gibbs energy (Table 1; Figs. 6 and 7) is avail-
able to perform useful mechanical work in a membrane transporter such as the FOF1-ATP 
synthase. This works out over a 120° catalytic cycle of ATP synthesis to a stored energy in 
a nonequilibrium state of an enzyme subunit — or in a local region/mechanical degree of 
freedom of the system — corresponding to ~60 kJ mol−1, a quantum of energy that is suf-
ficient to synthesize one mole of ATP [47, 50, 54, 62].

The results shown in Fig. 6 constitute a classic example of a first-order phase transition 
in physics with a free energy barrier separating two values of the order parameter with the 
same minimum value of Gibbs energy. The timescale at which the order parameter moves 
abruptly between the two values has proved difficult to define for many physical systems. 

(23)
Rmax =

L
(
�m

[
1

�m
−

1

�w

]) 1

3

(24)ΔGKTW, max =
694

�m
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Fig. 6   Electrostatic Gibbs energy of an ion pair with inter-ionic separation R placed inside a membrane 
phase (�

m
= 20) surrounded by water of dielectric �

w
 
(
𝜀
m
≪ 𝜀

w

)
 . Calculations of the Gibbs energy land-

scapes are shown as a function of the order parameter R∕L for various parameter values of L∕a (from top to 
bottom) of 3.5 (gray), 3.0 (orange), and 2.5 (blue). Note that the electrostatic Gibbs energy shows a maxima 
at intermediate values of R∕L , as tabulated in Table 1. Recombination of the two charges of the ion pair 
(R → 0) after ion unbinding from their respective binding sites in the membrane transporter leads to a low-
ering of the Gibbs energy barrier to 0 in such a paired charge configuration. In this mode of ion transloca-
tion, the two ions move in a coupled way and bind specifically in correlated states at a finite distance of 
separation, R , before their unbinding from their sites occurs
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However, for membrane transporters, the timescale at which the order parameter transi-
tions in a discrete step between the two stable states has been calculated for the first time 
by solving the dynamical equations of the system (see Sect. 3.8).

3.5 � Comparison of theoretically predicted landscape with experimental data 
on proteins

A major goal of this work is to calculate of the Gibbs energy landscape upon moving an 
ion pair from water to the low dielectric medium of a membrane transporter and compare 
them with experimental ensemble NMR data. The ΔG of the various contributions for such 
a transfer and the total ΔG have been calculated from KTW theory based on Eq. (22) and 
plotted in Fig. 7. The effective radius of H3O

+ is estimated using the Born formula [58] for 
𝜀m ≪ 𝜀w as a = −694∕ΔGsol , where ΔGsol is the solvation Gibbs energy of H3O

+ in water, 
which is taken as −418 kJ mol−1. Calculations are shown as a function of R for �m = 20 , 
a = 2

◦

A , and 1 nm effective size of an individual c-subunit [28, 30] that constitutes the 
c-ring in the membrane-bound FO portion of ATP synthase (Fig. 7). The reference Gibbs 
energy of the ions far apart in water is taken as 0. Experimental estimates of the total Gibbs 
energy change for interactions in various proteins and water are shown, and mean and SD 
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Fig. 7   Comparison with experimental data of the calculated Gibbs energy landscapes for ion pairs upon 
their transfer from water into the membrane transporter. The ΔG of the various components and the total 
ΔG are calculated by the KTW electrostatic theory. The sum of the desolvation Gibbs energy of the two 
species of ions (horizontal blue line), the Gibbs energy change of charge-charge interactions between posi-
tive and negative ions (black curve), the Gibbs energy change of dipole solvation (orange curve), and the 
net ΔG change (thick ocher curve) are plotted. Calculations are shown as a function of R for �

m
= 20 and 

a = 2 Å for a 1-nm diameter of an individual c-subunit constituting the c-oligomer in the membrane-bound 
FO portion of a single molecule of the FOF1-ATP synthase. The reference Gibbs energy of the ions far apart 
in water is taken as the boundary condition, which asymptotes to 0 beyond the right edge of the figure. 
Experimental measurements of the total Gibbs energy change for interactions in proteins and in water are 
plotted, and mean and SD values are shown. Estimates are based on NMR ensemble data for long-range 
ion pairs (open square) [77]; heme groups and surface charges in cytochrome c (open circle) [78]; ion pairs 
in hemoglobin, lysozyme, and cytochrome c (filled circle) [79–81]; and dicarboxylic acids in water (filled 
triangle) [38]
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are also given. The calculated values can thereby be readily compared with experimen-
tal data on ion pairs, and reasonably good agreement between theory and experiment is 
obtained (Fig. 7).

3.6 � Thermodynamic interpretation of continuum electrostatic Gibbs energy 
theories

A thermodynamic interpretation can also be provided for the Gibbs energy calculations in 
Sects. 3.4 and 3.5 and the results shown in Figs. 5–7. It can also help elucidate if pairing 
of ions of opposite charge can assist ion permeation and translocation in membrane trans-
porters. Let the two ions be labeled H+ and A− and let the aqueous and apolar membrane 
phases be given the symbols w and m , respectively.

We define ΔGH+, w→m and ΔGA−, w→m as the Gibbs energies of transfer of the 
individual protons and anions from water into the membrane phase. Furthermore, (
ΔGH+A−,m − ΔGH+A−, w

)
= ΔΔGH+A−, w→m is defined as the change in interaction/binding 

Gibbs energy upon transfer of the ion pair from aqueous medium, w , into the membrane 
phase, m . With these definitions, the Gibbs energy change for transfer of the ion pair from 
phase w to phase m , ΔGH+A−, w→m is given by the general thermodynamic equation

Equation  (25) enables interpretation of various continuum electrostatics Gibbs 
energy transfer theories in terms of chemical thermodynamics. Thus, ΔG(R)K in Eq.  (4) 
of Sect. 2.1 that contains the leading n = 0 and n = 1 order terms of Kirkwood’s theory 
(Eq. (1); Sect. 2.1) can now be interpreted as an estimate of the stabilizing change in inter-
action Gibbs energy, ΔΔGH+A−, w→m upon transfer of the ion pair from a polar phase, w , 
into an apolar membrane phase, m . These favorable interactions are interpreted electro-
statically by the Kirkwood theory as a sum of charge–charge and Onsager dipole solva-
tion energies and are quantified in Figs.  5–7. The destabilizing ΔGH+, w→m + ΔGA−, w→m 
terms in Eq. (25) are satisfactorily taken into account by Warshel’s important extension of 
Kirkwood-Tanford theory in order to consider the finite size of the charges along with the 
appropriate inclusion of the charge self-energies. These destabilizing components are given 
by the second term on the RHS of Eq. (5) or the first term on the RHS of Eq. (10) within 
KTW theory.

The above has several thermodynamic consequences. For example, transfer of a single 
ion such as H+ from phase w to phase m entails a desolvation Gibbs energy penalty 
ΔGH+, w→m that is quantified in KTW theory by the charge self-energy 694

a

[
1

�m
−

1

�w

]
 (kJ 

mol−1). Models of energy coupling, such as the chemiosmotic theory, that fail to include 
key self-energy terms and ignore fundamental charge desolvation effects cannot provide an 
adequate description of ion translocation through the FOF1-ATP synthase and other mem-
brane transporters.

Finally, other semi-macroscopic or microscopic electrostatic theories can also be inter-
preted within the general thermodynamic framework given by Eq. (25), as shown here for 
the KTW theory. Thus, with progress, electrostatic Gibbs energy theories can be embel-
lished and further sophisticated to help provide ever-increasing and more detailed insights 
into the contributions and effects of the various stabilizing and destabilizing interactions in 
enzymes, transporters, and other biological molecular machines.

(25)ΔGH+A−,w→m =
(
ΔGH+A−, m − ΔGH+A−, w

)
+ ΔGH+, w→m + ΔGA−, w→m
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3.7 � Molecular interpretation and biological implications

Figure 7 illustrates that the net ΔGKTW tends to a value of ∼ 0 at a finite separation distance  
of H+ and A− (~10Å under the conditions in Fig.  7) owing to complete Gibbs energy  
compensation due to ion-ion coupling by local fields. In principle, this localized coupling 
within membrane transporters arises physically due to interaction between the diffuse elec-
trical layers around the positive and negative space-charge regions (Sect. 3.1). More rigor-
ously, if � is the inter-ionic distance between the bound positive and negative charges, and 
�D is the Debye length in the aqueous electrolyte of the half-access channels of the mem-
brane transporter, we should have, for coupling

For a univalent 10-mM electrolyte at 25  °C, the Debye length, �D measures 3  nm. 
Hence, as seen, for example, from Fig. 7, the inequality given by Eq. (26) is satisfied for 
access channels within membrane transporters. Thus, an analysis of system scale sizes 
helps shed light on molecular mechanism [63].

On the other hand, in the electrolyte solution/interface with the overall membrane, e.g., 
periplasm/cytoplasm, or matrix/inner membrane in mitochondria, an analysis of scaling in 
the mesoscopic system [63] shows that 𝜆 > 𝜆D . Hence, for the membrane as a whole, the 
electrical field in the surrounding aqueous phases does not persist beyond length scale �D , 
and hence, there can be no overlap of electrical layers of the charges in the solution. Thus, 
these aqueous spaces are electrically quasi-neutral.

The principle can be formulated that in order to create conditions for overlap of electri-
cal layers (and thereby local coupling), i.e., 𝜆 < 𝜆D , a localized confined region or space 
within the membrane is necessary, as for example, around an access channel. This differs 
from the conventional capacitance involving the entire membrane leaflet separating two 
electrolyte solutions on either side of it, generally shown as charged. The charges are con-
sidered to be located either in the bulk aqueous media (as in chemiosmosis) [27, 64] or at 
the membrane surface [26, 65].

Moreover, as explained in detail in Sect. 3.4, a second stable state with a minimum in 
total Gibbs energy is obtained for formation of a chemical bond (i.e., for R → 0 ) to yield  
the charge neutral substrate HA . In between these two stable states, there exists a high  
Gibbs energy state of H+ − A− on the enzyme, i.e.,[E−H+A-]*, at a definite distance of sepa- 
ration, R (see Eqs. (23) and (24); Table 1; Figs. 6 and 7).

Thus, at the molecular level, oppositely charged ions translocate from a bulk aqueous 
phase along their concentration gradients sequentially and in a coupled way and bind to 
their respective binding sites in the membrane of a single enzyme/transporter (i.e., cotrans-
porter or exchanger) molecule, and local fields are created in the membrane transporter 
around the ion-binding sites. Charge separation of the ion pair thus occurs and the bound 
H+ − A− charge pair on the enzyme/transporter can be regarded as an “high energy inter-
mediate.” This high-energy state of the enzyme is subsequently discharged and utilized for  
the performance of useful work by ion-protein interactions. During this energy transduc- 
tion process, the Gibbs energy maximum is lowered by the interaction of the bound charges  
with the protein in the membrane (ion-protein interactions), e.g., at the sharp a–c interface/
junction in the membrane-bound FO portion of ATP synthase [30, 34, 49, 53]. This interac-
tion has conformational characteristics and leads to rotation in the membrane-bound FO 
portion of ATP synthase by means of a mechanoelectrochemical process that is transmit-
ted to the extra-membrane F1-portion of ATP synthase, as explained in detail by Nath’s 

(26)𝜆 ∼ R ≈ L < 𝜆D
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torsional mechanism of energy transduction and ATP synthesis [30, 34, 49, 52–55, 66, 67].  
After unbinding from their respective binding sites in the membrane, the H+ and A− recom-
bine to form neutral substrate HA , which is the second state of low ΔGKTW , and thereaf-
ter the HA molecule leaves the enzyme. In summary, the separation and recombination of 
ion pairs constitute the elementary events in biological energy transduction and storage in 
membrane transporters.

The above has major implications for molecular mechanisms of biological energy 
transduction and points to a central role for interactions between the ions and the enzyme/
transporter system. The bound ions help to generate “an energized state” of the enzyme/
transporter in local membrane domains. The enzyme/transporter facilitates the separation 
of the positive and negative charges of an ion pair to definite distances by lowering the 
Gibbs energy required for this process and enables thereafter their recombination to form 
the uncharged substrate molecule. Since this is a reversible process, the enzyme can also 
catalyze the reverse hydrolysis reaction in other biological processes and act as an hydro-
lase, e.g., as F1-ATPase.

As desired by one of the reviewers, the above molecular explanation offered for 
enzyme-catalyzed reactions is compared to that for an ordinary chemical reaction. In the 
conventional view of catalysis, the reaction progresses from a set of chemical bonds in the 
reactants to another, different sets of bonds in the products, and the role of the catalyst is 
to lower the activation Gibbs energy of the reaction. The activated state may contain sepa-
rated charges; however, their concentrations are considered to be negligible. In our mecha-
nism, the enzyme not only alters reaction rates but it also alters the type of product. For 
example, the mechanism shows that chemical bonds need not be broken to be replaced by a 
different set of bonds, but can also be replaced by stable charge-separated species (or vice 
versa).

The above discussion has clarified that in biological energy transduction, the ability of 
a membrane-bound enzyme/transporter to remove a positive and a negative charge from 
a neutral substrate, stabilize them, for example, by binding to specific binding sites, and 
thereby, separate charges at definite distances are of paramount importance in bioenerget-
ics. The separated charges can interact with each other and with the protein, causing con-
formational changes within the designed protein structure and medium without dissipation 
of energy. These possibilities of a network of interactions of the separated charged pairs 
are not generally available for ordinary chemical reactions.

The above concepts are illustrated by means of a Gibbs energy vs. progress of reaction  
diagram in Fig. 8. Shown therein is the Gibbs energy as a function of the separation of a 
positive and negative charge. The minimum in Gibbs energy at r=0 in the medium corre-
sponds to a chemical bond, while the minimum at a separation rs corresponds to separated 
charges. Ideally, the Gibbs energy minimum of these two stable states should be equal 
(Fig. 8). If the separated charges occur in aqueous solution on one side of the membrane,  
then we can assign a reference value of 0 to the Gibbs energy, as shown by the bold  
curve. If the neutral undissociated species HA  at r=0 in the medium of the transporter dif-
fuses outward and exits to an aqueous medium on the other side of the membrane, it will 
exist as H+A- in the aqueous phase on the other side of the membrane and still possess the 
reference value of 0 Gibbs energy. If, on the right-hand side of the diagram, the charges 
could be separated further, beyond rs, then the electrostatic Gibbs energy of the system 
will increase further (dashed curve in Fig. 8). However, there is no logical reason, once  
the enzyme medium recognizes two separated charges, why it will facilitate further charge 
separation because the Coulombic attraction between the two charges will resist larger sep-
aration. The creation of a transient, finite-time, high-energy charged pair intermediate on 
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the enzyme, [E−H+A-]*, and its destruction is key to the elusive process of energy transduc- 
tion. The difference between the value of the electrostatic Gibbs energy of [E-H+A-]* at 
the maximum of the barrier and the reference Gibbs energy at the minima (Fig. 8) is trans-
duced to useful mechanical work by the system.

It should be stressed that the above model of biological energy transduction is quite 
different from the usual model in which the membrane is essentially considered a solid 
dielectric of packed lipids with a dielectric constant of ~5 that separates electrically 
conducting media/water on either side across which ion translocation occurs. Looking at 
our space charge model in a macroscopic way, energy storage is due not to the dielectric 
between two aqueous media/conductors but to a gradient of immobile charges of oppo-
site sign within a dielectric matrix in which mobile ions are distributed throughout in 
accordance with the Poisson equation. In the double lattice, the junction of bound posi-
tive and bound negative charges gives rise to a transition region which is depleted of 
mobile ions and therefore possesses high space charge density, almost equal to the fixed 
charge concentration. In contrast, regions that are distant from the lattice junction have 
a small space charge density.

As explained above, bound charges uncompensated by mobile counterions lead to 
strong space charge regions. The electrical field in the depletion layer, which has a thick-
ness of 1-2 nm under physiological conditions, is very high. For a fixed charge concentra-
tion of 100 mM , and a dielectric constant between 10 to 20, the (transient) local field for 
an abrupt fixed charge density profile would be on the order of 106 V cm−1 , even when no 
electrical potential is imposed across the membrane. Thus, in the presence of steep transi-
tion regions of bound charges of opposite sign, as in the double lattice (Sect. 3.1) when two 
lattices of opposite sign are juxtaposed, the system displays conservative properties, and 

HA H+A-

[E-H+A-]*

Reaction coordinate or r
rs0

G
Δ

Fig. 8   Gibbs energy as a function of reaction progress/distance of separation of a positive and negative 
charge for an enzyme-catalyzed reaction. r = 0 corresponds to a chemical bond, while the minimum at a 
separation r

s
 corresponds to separated charges in solution. The essential high-energy charged pair inter-

mediate on the enzyme is represented by [E-H+A-]*. The difference between the value of the electrostatic 
Gibbs energy of [E-H+A-]* at the maximum of the barrier and the reference energy at the minima (bold 
curve) is transduced to useful mechanical work by the system. If the charges are separated beyond distance 
rs, then the electrostatic Gibbs energy of the system increases further (dashed curve). However, Coulomb 
attraction between the two charges will resist separation >rs
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electrostatic energy storage can readily occur by perturbation of the space charge. In the 
absence of such localized space charge layers, homogeneous aqueous electrolyte solutions 
would be primarily resistive in nature.

Finally, it ought to be emphasized that Mitchell’s chemiosmotic theory, being a bulk 
phase to bulk phase theory according to which only external aqueous media are assumed  
to be energized, and only the delocalized electrical potentials φ arising from such energiza-
tion are considered [27, 64], cannot offer any meaningful insights into such local molecular 
coupling processes occurring within membrane transporters. On the other hand, Nath’s tor-
sional mechanism of energy transduction and ATP synthesis and Nath’s two-ion theory of 
energy coupling considers events occurring inside the energy-transducing membrane and 
can therefore greatly contribute to understand and quantitatively model realistic intramem-
brane molecular energy transduction processes (Sect. 3.8).

3.8 � Calculation of the timescale of movement between two stable states 
and quantification of the rotary dynamics of FOF1‑ATP synthase

The timescale at which the enzyme/transporter moves between two stable states of a frus-
trated system can be estimated by simulation of the dynamics of torque generation in the 
FOF1-ATP synthase as a model example. In Nath’s two-ion theory of energy coupling, a 
dynamically electrogenic but overall electroneutral ion transport involving membrane per-
meable anions (such as succinate) and protons has been postulated. In order to utilize the 
energy of the anion gradient, the anion flows along its concentration gradient to its con-
served binding site on the a-subunit of the membrane-bound FO portion and creates a local 
Δψ. This local potential is the signal for proton translocation along its concentration gradi-
ent, and the proton binds to its conserved binding site on the c-subunit of FO. Thus, torque 
generation is a result of change in electrostatic potential, Δ(Δψ) brought about by the bind-
ing of proton moving along its concentration gradient to its binding site on the c-subunit 
that lies within the electrostatic potential field of the bound anion on the a-subunit stator at 
the abrupt a–c interface/junction within FO.

A charge geometry at the a–c interface containing bound ion pair and consensus con-
served residues for modeling torque generation in the FO portion of ATP synthase [30] is 
shown in Fig. 9. The model uses two mutually non-colinear half-access channels, whose 
existence had been predicted by us ([28, 53]; for a review, see especially pp. 88–93 and 
Fig.  12 of [30]), several years before structural studies on the ATP synthase by X-ray 
and cryo-EM techniques revealed their presence [68–70]. Thus, entry and exit of protons 
through the corresponding half-channels are separated by the time it takes the c-rotor to 
rotate by 15° (for twelve c-subunits in the c-ring). It should be noted that the torsional 
mechanism works equally effectively for other values of the number of c-subunits consti-
tuting the c-oligomer, as shown earlier [54].

In the charge geometry of Fig. 9, l23 is the distance between the two negatively charged 
c-rotor residues and d the channel distance between the rotor and the stator, or more pre-
cisely, the distance in space separating the residues harboring the positive and negative 
charges, which can be smaller than the channel thickness. We represent the vertical off-
set between the leading negatively charged rotor residue and the upper positively charged 
a-stator residue by r12.The vertical offset between the trailing negatively charged rotor resi-
due and the lower positively charged stator residue is represented by r34 , while the horizon-
tal offset is denoted by l34 . � is the angle subtended by the rotating c-subunit at any instant 
of time with the center of the c-ring. �′ is the angle swept by the imaginary line joining the 
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trailing rotor residue and the upper stator residue at any instant of time with respect to the 
local equilibrium position.

The dynamics of the system can be obtained by simulating in two 15° sub-steps the 
equation of motion

with the initial condition

(27)�
d�

�

dt
= �m,d − �m,r

(28)�
�

= 0 at t = 0

Protonated
Glu/Asp-61

Rotation  Trailing 
Glu/Asp-61

   Leading
Glu/Asp-61

Protonated
Glu/Asp-61

H+in

H+out Matrix/
Cytoplasm

Intracristae/
Periplasm

His-245

+

+

Arg-210

–

in

A–

A–

out

Fig. 9   Charge geometry for torque generation and unidirectional rotation of the c-ring with respect to the 
a-subunit stator in the membrane-bound FO portion of the FOF1-ATP synthase transporter. The conserved 
Arg-210 and His-245 amino acid residues (Escherichia coli numbering) on the a-stator are depicted by 
the + symbols. Dicarboxylic acid anion, e.g., succinate (dashed line), translocates along its concentration 
gradient and binds to its conserved a-subunit site [47, 49–51, 62, 63, 82], indicated by the minus symbol, 
creating a local Δ� . H+ ion (bold line) subsequently translocates along its concentration gradient through 
the two mutually non-colinear half-access channels shown in the figure and binds to and unbinds from its 
conserved Glu/Asp-61 binding site on the c-subunit lying within the electrostatic field of the bound suc-
cinate anion [30]. These principles are similar to those uncovered recently from pioneering X-ray structural 
studies on coupled Na+–succinate cotransporters of the DASS family [83–85]. The change in local electri-
cal potential, ΔΔ� due to the binding and unbinding events and subsequent ion pair recombination causes 
electrostatic interaction between the charges on the a- and c-subunits that leads to mechanical rotation, and 
ultimately to torsional energy storage in the γ-subunit of F1 to be utilized thereafter for formation of ATP, 
as detailed in Nath’s torsional mechanism of energy transduction and ATP synthesis [30, 34, 37, 49, 52–55, 
66]
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In Eq. (27), �m,d is the instantaneous driving electrostatic motor torque, and �m,r is the 
resisting electrostatic motor torque due to the charge geometry (Fig.  9). The solution of 
the equation of motion yields the angular displacement–time dynamics which is shown in 
Fig. 10. The parameters used in the simulation are given in the legend to Fig. 10 (see also 
ref. [30]). A major difference between the previous simulation [30] and this one (Fig. 10) is 
that at that time, the existence of 15° sub-steps in the rotatory motion of the c-rotor had not 
been known to occur. Moreover, the intermediate mechanical drive between c-ring rotation 
and rotation and twist of the γ-subunit of F1 was not simulated at that time, which is now 
modeled as rotation �′′ about the axis of the c-subunits arranged in parallel in the helix ring 
constituting the c-oligomer and twist of the C-terminal c-subunit α-helices of the c-ring 
[30, 53]. A timescale of ~ 0.66 ms for a (15 + 15) = 30° step involving bistability is found, 
leading to a rotational frequency for the enzyme of ~ 130 Hz (Fig. 10).

The salient details of the simulation, how the parameter values were selected, and other 
differences from a prior simulation [30] are provided next, in compliance with the second 
reviewer’s suggestion. Since we are dealing with a quantum of energy required to synthe-
size a molecule of ATP of > 25 kT , random Brownian forces on the order of ~ 1 kT were 
neglected in the Langevin equations of motion. The moment of inertia, I , of the c- and �
-subunits was calculated as 

∑
i

�
mir

2
i

�
 for all atoms of the c- and �-subunits based on extant 

X-ray structures [69, 71]. This resulted in an I value of < 4.5 × 10−37 kg m2 for the subu-
nits. Hence, the inertial terms in the previous simulation [30] could be neglected, given 
that each term was > 15 orders of magnitude smaller than the other terms in the dynamical 
equations of motion. We also verified numerically that the inertial terms did not make any 
perceptible contribution at the microsecond to millisecond timescale of the simulations. 
This therefore led to a simplified dynamical equation with focus on the electrostatic and 
mechanical aspects of the energy transduction process.
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Fig. 10   Dynamics of angular rotation in two discrete 15° elementary substeps for c-rings with 12 c-subunits. The 
dynamics are quantified by solution of the equations of motion for the FOF1-ATP synthase enzyme molecule. 
The values of the parameters used in the simulation are as follows: ζ = 2.5 × 10

−25 kg m2 s−1; d = 0.25 × 10
−9 

m; l
23

= 1.3 × 10
−9 m; r

12
= 0.65 × 10

−9 m; r
34

= 0.65 × 10
−9 m;  l

34
= 0.65 × 10

−9 m; �
m
= 4 . Each 30° 

step takes approximately 0.66 ms, and one ATP molecule is made per 120° rotation. This leads to a rotational 
frequency of ~ 130 Hz, in accord with the experimental value for maximal rate of ATP synthesis of 400 ATP 
s
−1

F
O
F
1

−1 by the bacterial ATP synthase [86]
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The parameters of the simulation were selected based on available high-resolution 
structural information on FO. Given the diameter of the c-ring of 5 nm [68, 69], the dis-
tance between two carboxylate binding sites on adjacent c-subunits ( l23 ) could be estimated 
to measure 1.3 nm. The distances r12 , r34 , and l34 were taken as one-half of the value of l23 . 
We view this choice of distance parameters as an improvement over values in the previous 
simulation [30]. Not only does this choice obey symmetry principles and is aesthetically 
elegant, but it also ensures that local equilibrium of the c-rotor–a-stator system is reached 
at regular angular intervals of 360°/n , or every 30° for n = 12 [28, 30], which is also stable 
to rotational Brownian fluctuations. The value of the frictional coefficient is in accord with 
drag studies in the fields of biopolymers and molecular motors [72–74].

The differential equation (Eq.  (27)) was solved numerically by the Runge–Kutta fourth-
order method. The relationship between �′ and � was derived trigonometrically for both � = 
0–15° and � = 15–30° sub-steps. Numerical simulation of several test cases revealed that a lin-
ear electrostatic motor torque vs. �′ or � was obtained in all cases. With respect to �′ , the rela-
tionship showed a perfect straight line 

(
R2 = 1.0

)
 . It is remarkable that a simple, perfectly lin-

ear relationship results from such a complex charge geometry (Fig. 9) involving trigonometric 
functions and polynomial distance formulae [30]. What is the underlying reason for this inter-
esting observation arising from the simulations, which offers tantalizing clues to the molecular 
mechanism of ATP synthesis? The simulation of the system dynamics (Fig. 10) offers several 
novel insights into biological energy transduction. The driving electrostatic motor torque, �m,d , 
the resisting motor torque, �m,r , due to the charge geometry, and their difference which gives 
the net motor torque, �m,net (Fig. 11), are determined by electrostatic interactions between the 
charges on a-stator–c-rotor upon ion pair binding/unbinding. �m,net is found to decrease linearly 
as a function of both �′ and θ over a 15° interval, from 75.8 to 0 pN-nm for the 0–15° sub-step 
and from 138 to 0 pN-nm for the 15–30° sub-step (Fig. 11). Since the electrostatic forces are 
time-variant, �m,net and its components also vary with time. The underlying reason for a linear 
torque–angle relationship lies in the need to balance the conservative force between the charges 
by elastic forces. This necessitates the presence of the intermediate drive of the c-subunits in 
the c-ring of FO that twist and store torsional energy before transferring their torsional energy to 
the γ-subunit to enable ATP synthesis [30, 52–54].

Given the new understanding, it is of great importance to model the mechanics of c-subunit 
deformation in FO. First, an estimate of the linear spring constant of the c-subunit C-terminal 

Fig. 11   Net electrostatic motor 
torque, �

m,net
 , and its components 

�
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 and �
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helix is made from the theory of elasticity. The formula for elastic energy storage, U , is given 
by

where R and L are the radius and length of the �-helix, respectively, E is the Young’s 
modulus, and � the Poisson’s ratio. From X-ray and cryo-EM data on densely packed 
c-rings in FO [68, 69], as also from a statistical analysis of �-helices in protein databases 
[75], R = 0.7 nm. This dimension is also in consonance with the value of l23 = 1.3 nm 
employed in the simulations, which should approximately measure 2R . With L = 0.7 nm, 
E = 1.8 × 109 N m−2, and � = 0.4 , this yields k��

= 4.8 × 10−20 kg m2 s−2. Hence k′′

eq
 for 

the ( n − 2) = (12 − 2) = 10 twisting c-subunits arranged in parallel in the c-ring works out 
to be 4.8 × 10−19 kg m2 s−2. For the 0–15° sub-step with an initial �m,net = 75.8 pN-nm 
(Fig.  11), ���

= 75.8 × 10−21∕4.8 × 10−19 = 0.1566 radians, implying a torsional energy 
storage 1

2
k
′′

eq
�

′′2 in the c-ring helices of 3.5 kJ mol−1. Similarly for the 15–30° sub-step with 
an initial �m,net = 138 pN-nm (Fig.  11), ���

= 138 × 10−21∕4.8 × 10−19 = 0.285 radians, 
leading to energy storage  1

2
k
′′

eq
�

′′2 in the c-ring helices of 11.8 kJ  mol−1 as twist energy. 
Hence, the total energy stored as twist in the c-ring for a 30° rotation equals 15.3 kJ mol−1. 
For 120° rotation corresponding to synthesis of one ATP molecule, this provides a stored 
energy of 15.3 × 4 = 61.2 kJ mol−1, which adequately meets the energy requirements for 
synthesis. The maximum angle of rotation �′′ about the axis of a single c-subunit, if it were 
alone, would be 2.85 × 57.3 = 160 °, in agreement with the value determined experimen-
tally using NMR spectroscopy by comparison of the solution structure of an unprotonated 
c-subunit with the structure of the protonated c-subunit [76].

Furthermore, from the standpoint of �m,net , taking the area under the curve of the τm,net–θ 
relationship obtained from the simulation (Fig. 11), the total torsional energy storage per 
30° rotation works out to be 

(
9.9 × 10−21 + 18.1 × 10−21

)
= 28 pN-nm, or (5.9 + 10.8) = 

16.7 kJ mol−1, which corresponds to ~ 67 kJ mol−1 for one catalytic cycle of 120° (Fig. 10). 
Hence, the above analysis shows that the physical, chemical, and energetic requirements of 
ATP synthesis are met adequately, that constraints arising from experimental data are satis-
fied, and that excellent agreement is obtained with all available experimental information 
by the results of the simulation (Figs. 10 and 11).

The present simulation also explains why the previous simulation [30] worked satis-
factorily, although it did not incorporate the “wheels-within-wheels” detailed molecular 
mechanism of twisting of the c-subunits in the c-ring during ATP synthesis, first pro- 
posed back in 2002 ([30, 53]; see esp. pp. 90–93 and Fig. 12 in [30]) and modeled in this 
work. Neglecting inertia, the equation of motion of the previous simulation [30] can be 
recast as

In Eq. (30), as in the prior simulation [30], k is the torsional spring constant of the �
-subunit in F1. However, there is no direct interaction between the c-rotor in FO and the 
�-subunit in F1 — they each interact directly only with the common intermediary of the 
c-subunit �-helices of the c-rotor in FO. But since we have a resisting motor torque, �m,r , 
that is linear with angular displacement, as shown in Fig.  11, the k� in Eq.  (30) inad-
vertently modeled, or rather mimicked, �

m,r
 , as readily seen by comparing Eq. (27) with 

Eq. (30). Hence, phenomenologically, the right results were obtained earlier, although the 

(29)U =
�R4E

8L(1 + �)
�

��2

(30)�
d�

�

dt
= �m,d − k�
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actual physical situation was not fully realized, and the detailed molecular mechanism 
within FO was not incorporated in the previous simulation [30]. The present simulation 
takes us a step deeper in our understanding of the process of energy storage and transduc-
tion in ATP synthase, and in molecular motors in general.

The above discussion has clarified the important point that if �′′ was identical to � (or 
�

′ ), then as � increases from 0 to 15 degrees during c-ring rotation (Fig. 10), k� in the linear 
springs of the c-subunit α-helices can only increase, implying that there will only be energy 
storage as twist, but never any energy release. Hence, for efficient release of stored energy, 
there is the absolute requirement of an intermediate drive between the γ-subunit and the elec- 
trostatic torque at the a–c interface, e.g., as twist of c-helices by rotation, �′′ , about their own  
axis. Thus, we are led to the conclusion that in response to the initial impulse of the net 
electrostatic torque, �m,net , �

′′ also increases very fast and the c-subunit springs of the c-ring 
twist until their k′′

eq
�

′′ balances �m,net . However, �m,net is a continually decreasing function of 
� as � progresses over a 15° angular interval.

Thus, once k′′

eq
�

′′ balances �m,net close to � ∼ 0o , since �m,net itself is a decreasing torque 
due to the charge geometry (i.e., due to non-mechanical reasons), the �′′ will start decreas-
ing, i.e., untwisting occurs, and the k′′

eq
�

′′ will always dynamically balance the �m,net over 
the entire range of � during the release process. Since �m,net does not decrease to 0 instanta-
neously, k′′

eq
�

′′

 also does not disappear instantaneously but follows the torque. Furthermore, 
this untwisting energy of the c-subunit helices is off-loaded to the γ-subunit. The energy 
stored in γ as torsional energy works out to be ~ 60 kJ mol−1 over a 120° interval in the sim-
ulation (Figs. 10 and 11), which is thermodynamically competent to synthesize one mole 
of ATP [47, 50, 54, 62].

In summary, the twisting of the c-helices is very fast in response to the motor torque but 
the release of torsional energy is slow and is distributed over most of the 15° rotation cycle 
in FO during ATP synthesis. Thus, the applied torsional spring force balances the inertial 
conservative electrostatic force during the energy release process. This leads to a most effi-
cient transduction of energy in ATP synthesis by ATP synthase.

3.9 � A meeting ground for physics, chemistry, and biology

This work has presented the first analysis of ion translocation and energy transduction in 
membrane transporters from a Gibbs energy landscape perspective. The dynamic regula-
tion of the transport of ions and other polar metabolites through a lipid barrier represents 
a vital biological attribute of all cells. The complex membrane system requires a study of 
its structure, architecture, connectivity, interaction, and function that is reflective of life 
processes, a central topic of biologists. Yet analysis of the biological system requires phys-
ics, e.g., by electrostatic theories that quantify Gibbs energy landscapes, phase-transition 
in frustrated systems, and elucidation of system dynamics by Langevin, Fokker–Planck, 
or similar equations of motion. These properly constitute the subject matter of physics. 
However, the translocation of ions through membrane transporters and the ion-protein 
interactions that are crucial to biological energy transduction traditionally belong to the 
domain of physical chemistry, as do the thermodynamics of these processes. In fact, even 
the concept of Gibbs energy itself may be regarded as a mainstay of chemists. In this work, 
concepts from the above fields have been integrated from an energy landscape perspective. 
It is shown by physical analysis that membrane-bound enzymes, transporters, and molecu-
lar machines such as the FOF1-ATP synthase can be treated as a microcosm in which many 
fundamental concepts from physics, chemistry, and biology are reflected.
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4 � Conclusions

A large number of conclusions on ion translocation and dynamics of membrane transporters 
were arrived at in this study based on a novel analytical framework of Gibbs energy landscapes.

1.     Current models of ion translocation through membrane transporters do not take into  
account the self-energy of the relevant charges, which is a serious lacuna of these models.

2.       The macroscopic Kirkwood–Tanford–Warshel (KTW) electrostatic theory, origi-
nally developed for spherical membranous phases, has been extended and shown to be 
applicable to planar membranes also. The KTW theory properly takes into account the self-
energies of the ions, has the ability to accurately evaluate the electrostatic Gibbs energy of a 
system of charges, and possesses great conceptual power. It provides a simple model based 
on continuum electrostatic considerations that offers valuable insights into complex bioen-
ergetic and membrane transport processes, without performing detailed or exact calcula-
tions or all-atom molecular dynamics simulations. The theory can be readily extended, and 
the reliability of calculations further enhanced, by use of semi-macroscopic or microscopic 
electrostatic theories as further experience is gained by applying them to many biological 
systems and processes.

3.        The calculated Gibbs energy landscape for a single species of translocated ion 
versus translocation of a proton–anion charge pair through a membrane transporter show 
qualitatively very different characteristics. An important feature is that the Gibbs energy 
asymptotes to a large positive (destabilizing) value for translocation of a single ion species, 
owing to the high self-energy of the process. Thus, the energy barrier cannot be lowered to 
0 for a charge configuration involving only a single type of ion.

4.     On the other hand, for a charge pair, the adverse ΔGdesolvation is almost completely 
compensated by the sum of the electrostatic Gibbs energy of the charge–charge interac-
tions and the solvation energy of the ion pair. In essence, between two stable low Gibbs 
energy states, corresponding to a long-range ion pair and chemical bond formation of an 
uncharged substrate HA , a maxima in ΔGKTW(R) is found at an intermediate value of the 
interionic distance, R , corresponding to an [E–H+A-]* “high-energy charge-pair interme-
diate” on the enzyme. The difference in Gibbs energy between the maxima and the low 
Gibbs energy state is transduced and stored in local domains of the macromolecule and can 
be used thereafter for the performance of useful external work.

5.        The electrostatic Gibbs energy involving an ion pair can therefore be regarded 
as another illustration of a frustrated system involving bistability that shows a maxima at 
intermediate values of the order parameter. Hence, the physics of first-order phase transi-
tions can be applied to gain further valuable insights into the process.

6.     The theoretically calculated Gibbs energy landscape for ion pairs has been com-
pared using experimental data from NMR spectroscopy for a number of globular proteins, 
and good agreement between theory and experiment has been shown.

7.        Proton-only and all single-ion theories of ATP synthesis, such as the chemios-
motic theory, are inadequate to understand energy transduction and storage in bioenergetic 
processes.

8.     By including the key roles of both proton and anion that translocate in a sequen-
tial, coupled way to form an enzyme-bound H+ − A− charge pair in half-access channels 
of membrane transporters such as the FOF1-ATP synthase, Nath’s torsional mechanism of 
energy transduction and ATP synthesis and Nath’s two-ion theory of energy coupling offer 
novel insights and lead to a superior understanding of energy transduction at the molecular 
level.
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9.     The net ΔGKTW tends to a value of ∼ 0 at a finite separation distance of H+ and A− 
( ∼ 10 Å) due to complete Gibbs energy compensation arising from ion-ion coupling 
by local fields. The profiles of the local electrical field and the local electrical potential 
have been shown to be amenable to analytical derivation by direct solution of Poisson’s 
equation. The localized coupling within membrane transporters has been concluded to 
be caused physically by interaction between the electrical layers around the positive and 
negative space-charge regions. The necessary condition for coupling has been shown to 
be 𝜆 ∼ R < 𝜆D . Thus, an analysis of system scale sizes has been shown to shed light on 
molecular mechanism in ATP synthase. These fundamental physical concepts should be 
applicable to other mesoscopic systems also.

10.     The timescale at which the mechanochemical enzyme/transporter system moves 
between the two stable states of the frustrated system has been shown to be estimated by 
simulation of the dynamics of torque generation. This works out to measure approximately 
two-thirds of a millisecond for ATP synthesis by the FOF1-ATP synthase.

11.     Quantification of the dynamics of the enzyme/transporter system has been shown 
to offer a wealth of novel mechanistic insights and help infer conditions for efficient trans-
duction of energy during ATP synthesis by the FOF1-ATP synthase. These include the 
necessity of an intermediate mechanical drive of the c-subunits in the c-ring of FO that 
twists, stores elastic energy, and subsequently untwists and transfers the stored energy to 
the central γ-subunit as torsional energy that is used thereafter for ATP synthesis in F1. The 
energy storage in the c-subunits due to ion binding/unbinding and ion-protein interactions 
in FO is almost instantaneous and thus “discrete,” while the energy release from the c-sub-
units to the γ-subunit is slow, “continuous,” and distributed throughout the ~15° rotation 
cycle of the c-rotor during the process of ATP synthesis. These features of balanced energy 
release have been shown to lead to the most efficient energy transfer in ATP synthase.

12.     The unifying analytical framework developed here for Gibbs energy landscapes in 
membrane-bound enzymes, membrane transporters, and biological molecular machines such 
as the FOF1-ATP synthase have been shown to provide a meeting ground for physics, chem-
istry, and biology. They can also serve as a reliable guide for the design and fabrication of 
efficient mechanochemical devices in nanoscience and nanotechnology applications [34, 53].

13.     The unified framework of Gibbs energy landscapes has been shown to provide the 
essential features of biological energy coupling, transduction, and ATP synthesis by mem-
brane transporters that should not be overlooked by further work in this important field of 
contemporary interdisciplinary research. In summary, the revolutionary impact of energy 
landscapes to fundamental biological processes stands accentuated.

Acknowledgements  The author acknowledges the very thoughtful and constructive comments of both 
referees that have greatly contributed to improve overall readability and the presentation of many detailed 
aspects in the paper.

Author contribution  The author conceived the study, designed the research program, performed research, 
analyzed and interpreted the data, and wrote the paper.

Availability of data and material  All are included in the manuscript.

Code availability  Not applicable.

Declarations 

Competing interests  The author declares no competing interests.

429Energy landscapes and dynamics of membrane transporters...



1 3

References

	 1.	 Gould, S.J.: Punctuated Equilibrium. Harvard University Press, Cambridge, MA, USA (2007)
	 2.	 Moran, N.A.: Accelerated evolution. Proc. Natl. Acad. Sci. USA 93, 2873–2878 (1996)
	 3.	 Romero, P.A., Arnold, F.H.: Exploring protein fitness landscapes by directed evolution. Nature Rev. 

Mol. Cell Biol. 10, 866–876 (2009)
	 4.	 Zhang, Q.C., et al.: Acceleration of emergence of bacterial antibiotic resistance in connected microen-

vironments. Science 333, 1764–1767 (2011)
	 5.	 Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand bind-

ing to myoglobin. Biochemistry 14, 5355–5373 (1975)
	 6.	 Ansari, A., Berendzen, J., Bowne, S.F., Frauenfelder, H., Iben, I.E.T., Sauke, T.B., Shyamsunder, E., 

Young, R.D.: Protein states and proteinquakes. Proc. Natl. Acad. Sci. USA 82, 5000–5004 (1985)
	 7.	 Janke, W.: Rugged Free Energy Landscapes: Common Computational Approaches to Spin Glasses, 

Structured Glasses and Biological Macromolecules. Springer, Berlin (2010)
	 8.	 Bryngelson, J.D., Wolynes, P.G.: Spin-glasses and the statistical-mechanics of protein folding. Proc. 

Natl. Acad. Sci. USA 84, 7524–7528 (1987)
	 9.	 Shakhnovich, E.: Protein folding thermodynamics and dynamics: where physics, chemistry, and 

biology meet. Chem. Rev. 106, 1559–1588 (2006)
	10.	 Frauenfelder, H.: Energy landscape and dynamics of biomolecules. J. Biol. Phys. 31, 413–416 

(2005)
	11.	 Holmes-Cerfon, M., Gortler, S.J., Brenner, M.P.: A geometrical approach to computing free-energy 

landscapes from short-ranged potentials. Proc. Natl. Acad. Sci. USA 109, E5–E14 (2012)
	12.	 Hénin, J., Fiorin, G., Chipot, C., Klein, M.L.: Exploring multidimensional free energy landscapes 

using time-dependent biases on collective variables. J. Chem. Theory Comput. 6, 35–47 (2010)
	13.	 Radak, B.K., Phillips, J.C., Jiang, W., Jo, S., Kalé, L., Schulten, K., Roux, B.: Free energy land-

scapes of membrane transport proteins. Technical Report ANL/ALCF/ESP–17/11 for the Argonne 
Leadership Computing Facility Theta Early Science Program (Williams, T.J., Balakrishnan, R., 
Eds.), Argonne National Laboratory (2017)

	14.	 Selvam, B., Mittal, S., Shukla, D.: Free energy landscape of the complete transport cycle in a key 
bacterial transporter. ACS Cent. Sci. 4, 1146–1154 (2018)

	15.	 Lu, H., Marti, J.: Cellular absorption of small molecules: free energy landscapes of melatonin bind-
ing at phospholipid membranes. Sci. Rep. 10, 9235 (2020)

	16.	 Crossley, J.A. et  al.: Energy landscape steering in SecYEG mediates dynamic coupling in ATP 
driven protein translocation. bioRxiv preprint. https://​doi.​org/​10.​1101/​793943 (2020)

	17.	 Bacchin, P.: Membranes: a variety of energy landscapes for many transfer opportunities. Mem-
branes 8, 10 (2018)

	18.	 Kornberg, R.D., McNamee, M.G., McConnell, H.M.: Measurement of transmembrane potentials in 
phospholipid vesicles. Proc. Natl. Acad. Sci. USA 69, 1508–1513 (1972)

	19.	 Burykin, A., Warshel, A.: What really prevents proton transport through aquaporin? Charge self-
energy versus proton wire proposals. Biophys. J. 85, 3696–3706 (2003)

	20.	 Shirai, O., Yoshida, Y., Matsui, M., Maeda, K., Kihara, S.: Voltammetric study on the transport of 
ions of various hydrophobicity types through bilayer lipid membranes composed of various lipids. 
Bull. Chem. Soc. Japan 69, 3151–3162 (1996)

	21.	 Laforge, F.O., Sun, S., Mirkin, M.V.: Shuttling mechanism of ion transfer at the interface between 
two immiscible liquids. J. Am. Chem. Soc. 128, 15019–15025 (2006)

	22.	 Soumpasis, D.M., Jovin, T.M.: Computation of Biomolecular Structures: Achievements. Problems 
and Perspectives. Springer, Berlin (1993)

	23.	 Zhang, J., Kamenev, A., Shklovskii, B.I.: Conductance of ion channels and nanopores with charged 
walls: a toy model. Phys. Rev. Lett. 95, 1488101 (2005)

	24.	 Mulkidjanian, A.Y.: Proton in the well and through the desolvation barrier. Biochim. Biophys. Acta 
1757, 415–427 (2006)

	25.	 Morelli, A.M., Ravera, S. Calzia, D., Panfoli, I.: An update of the chemiosmotic theory as sug-
gested by possible proton currents inside the coupling membrane. Open Biol. 9, 180221 (2019)

	26.	 Williams, R.J.P.: The problem of proton transfer in membranes. J. Theor. Biol. 219, 389–396 
(2002)

	27.	 Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 
41, 445–502 (1966)

	28.	 Rohatgi, H., Saha, A., Nath, S.: Mechanism of ATP synthesis by protonmotive force. Curr. Sci. 75, 
716–718 (1998)

430 S. Nath

https://doi.org/10.1101/793943


1 3

	29.	 Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics: Founda-
tions, Applications, Frontiers. Springer, Berlin (2008)

	30.	 Nath, S.: The molecular mechanism of ATP synthesis by F1F0-ATP synthase: a scrutiny of the 
major possibilities. Adv. Biochem. Eng. Biotechnol. 74, 65–98 (2002)

	31.	 Jain, S., Murugavel, R., Hansen, L.D.: ATP synthase and the torsional mechanism: resolving a 
50-year-old mystery. Curr. Sci. 87, 16–19 (2004)

	32.	 Villadsen, J., Nielsen, J., Lidén, G.: Bioreaction Engineering Principles, 3rd edn. Springer, New 
York (2011). (Chapter 4)

	33.	 Wray, V.: Commentary on “Oxidative phosphorylation revisited.” Biotechnol. Bioeng. 112, 1984–
1985 (2015)

	34.	 Nath, S.: Molecular mechanisms of energy transduction in cells: engineering applications and 
biological implications. Adv. Biochem. Eng. Biotechnol. 85, 125–180 (2003)

	35.	 Bal, W., Kurowska, E., Maret, W.: The final frontier of pH and the undiscovered country beyond. 
PLoS ONE 7, e45832 (2012).

	36.	 Żurawik, T.M. et al.: Revisiting mitochondrial pH with an improved algorithm for calibration of the 
ratiometric 5(6)-carboxy-SNARF-1 probe reveals anticooperative reaction with H+ ions and war-
rants further studies of organellar pH. PLoS ONE 11, e0161353 (2016)

	37.	 Nath, S.: The torsional mechanism of energy transduction and ATP synthesis as a breakthrough in our 
understanding of the mechanistic, kinetic and thermodynamic details. Thermochim. Acta 422, 5–17 
(2004)

	38.	 Warshel, A., Russell, S.T.: Calculations of electrostatic interactions in proteins and in solutions. Q. 
Rev. Biophys. 17, 283–422 (1984)

	39.	 von Kitzing, E., Soumpasis, D.M.: Electrostatics of a simple membrane model using Green’s functions 
formalism. Biophys. J. 71, 795–810 (1996)

	40.	 Zhang, J., Kamenev, A., Shklovskii, B.I.: Ion exchange phase transitions in water-filled channels with 
charged walls. Phys. Rev. E 73, 051205 (2006)

	41.	 Bonthuis, D.J., Zhang, J., Hornblower, B., Mathe, J., Shklovskii, B.I., Meller, A.: Self-energy-limited 
ion transport in subnanometer channels, Phys. Rev. Lett. 97, 128104 (1996)

	42.	 Chen, H., Ilan, B., Wu, Y., Zhu, F., Schulten, K., Voth, G.A.: Charge delocalization in proton channels: 
the aquaporin channels and proton blockage. Biophys. J. 92, 46–60 (2007)

	43.	 Ivanischev, V.V.: Problems of the mathematical description of the chemiosmotic theory. News Tula 
State Univ. Natl. Sci. 3, 129–135 (2018)

	44.	 Levy, W.B., Calvert, V.G.: Communication consumes 35 times more energy than computation in the 
human cortex, but both costs are needed to predict synapse number. Proc. Natl. Acad. Sci. USA 118, 
e2008173118 (2021)

	45.	 Karapetyan, L., Mikoyan, G., Vassilian, A., Valle, A., Bolivar, J., Trchounian, A., Trchounian, K.: 
Escherichia coli Dcu C4-dicarboxylate transporters dependent proton and potassium fluxes and 
FOF1-ATPase activity during glucose fermentation at pH 7.5. Bioelectrochemistry 141, 107867 (2021)

	46.	 Bose, H.S., Marshall, B., Debnath, D.K., Perry E.W., Whittal, R.M.: Electron transport chain complex 
II regulates steroid metabolism. iScience 23, 101295 (2020)

	47.	 Nath, S.: Entropy production and its application to the coupled nonequilibrium processes of ATP syn-
thesis. Entropy 21, 746 (2019)

	48.	 Nath, S.: Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the gov-
erning equations of the chemiosmotic theory. Biophys. Chem. 230, 45–52 (2017)

	49.	 Nath, S.: Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in 
oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP syn-
thesis. J. Bioenerg. Biomembr. 42, 301–309 (2010)

	50.	 Nath, S.: Analysis of molecular mechanisms of ATP synthesis from the standpoint of the principle of 
electrical neutrality. Biophys. Chem. 224, 49–58 (2017)

	51.	 Nath, S.: Optimality principle for the coupled chemical reactions of ATP synthesis and its molecular 
interpretation. Chem. Phys. Lett. 699, 212–217 (2018)

	52.	 Nath, S., Rohatgi, H., Saha, A.: The torsional mechanism of energy transfer in ATP synthase. Curr. 
Sci. 77, 167–169 (1999)

	53.	 Nath, S., Jain, S.: The detailed molecular mechanism of ATP synthesis in the F0 portion of ATP syn-
thase reveals a non-chemiosmotic mode of energy coupling. Thermochim. Acta 394, 89–98 (2002)

	54.	 Nath, S.: The new unified theory of ATP synthesis/hydrolysis and muscle contraction, its manifold 
fundamental consequences and mechanistic implications and its applications in health and disease. Int. 
J. Mol. Sci. 9, 1784–1840 (2008)

	55.	 Nath, S.S., Nath, S.: Energy transfer from adenosine triphosphate: Quantitative analysis and mechanis-
tic insights. J. Phys. Chem. B 113, 1533–1537 (2009)

431Energy landscapes and dynamics of membrane transporters...



1 3

	56.	 Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special 
application to zwitterions. J. Chem. Phys. 2, 351–361 (1934)

	57.	 Tanford, C., Kirkwood, J.G.: Theory of protein titration curves. I. General equations for impenetrable 
spheres. J. Am. Chem. Soc. 79, 5333–5339 (1957)

	58.	 Born, M.: Volumen und Hydratationswärme der Ionen. Z. Phys. 1, 45–48 (1920)
	59.	 Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)
	60.	 Shockley, W.: The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. 

Tech. J. 28, 435–489 (1949)
	61.	 Warshel, A., Schlosser, D.W.: Electrostatic control of the efficiency of light-induced electron transfer 

across membranes. Proc. Natl. Acad. Sci. USA 78, 5564–5568 (1981)
	62.	 Nath, S.: The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation. Biophys. 

Chem. 219, 69–74 (2016)
	63.	 Nath, S.: Modern theory of energy coupling and ATP synthesis. Violation of Gauss’s law by the che-

miosmotic theory and validation of the two-ion theory. Biophys. Chem. 255, 106271 (2019)
	64.	 Mitchell, P.: Bioenergetic aspects of unity in biochemistry: evolution of the concept of ligand conduc-

tion in chemical, osmotic and chemiosmotic reaction mechanisms. In: Semenza, G. (ed.) Of Oxygen, 
Fuels and Living Matter, Part 1, pp. 30–56. John Wiley, New York (1981)

	65.	 Williams, R.J.P.: Some unrealistic assumptions in the theory of chemi-osmosis and their consequences. 
FEBS Lett. 102, 126–132 (1979)

	66.	 Nath, S.: Consolidation of Nath’s torsional mechanism of ATP synthesis and two-ion theory of energy 
coupling in oxidative phosphorylation and photophosphorylation. Biophys. Chem. 257, 106279 (2020)

	67.	 Nath, S.: Coupling mechanisms in ATP synthesis: rejoinder to “Response to molecular-level under-
standing of biological energy coupling and transduction”. Biophys. Chem. 272, 106579 (2021)

	68.	 Kühlbrandt, W., Davies, K.M.: Rotary ATPases: a new twist to an ancient machine. Trends Biochem. 
Sci. 41, 106–115 (2016)

	69.	 Schulz, S., Iglesias-Cans, M., Krah, A., Yildiz, Ö., Leone, V., Matthies, D., Cooke, G.M., Faraldo-
Gómez, J.D., Meier, T.: A new type of Na+-driven ATP synthase with a two-carboxylate ion-coupling 
motif. PLoS Biol. 11, e1001596 (2013). https://​doi.​org/​10.​1371/​journ​al.​pbio.​10015​96

	70.	 Pinke, G., Zhou, L., Sazanov, L.A.: Cryo-EM structure of the entire mammalian F-type ATP synthase. 
Nature Str. Mol. Biol. 27, 1077–1085 (2020)

	71.	 Abrahams, J.P., Leslie, A.G.W., Lutter, R., Walker, J.E.: Structure at 2.8 Å resolution of F1–ATPase 
from bovine heart mitochondria. Nature 370, 621–628 (1994)

	72.	 Nath, S., Bowers, J.S., Prud’homme, R.K.: Orientation and relaxation of nonlinear elastic dumbbells in 
electric fields: modeling transient electric birefringence. J. Chem. Phys. 89, 5943–5949 (1988)

	73.	 Nath, S., Siddiqui, R.S.: Transient electric birefringence of flexible polymers: orientation and relaxa-
tion dynamics. J. Chem. Phys. 103, 3212–3219 (1995)

	74.	 Mandadapu, K.K., Nirody, J.A., Berry, R.M., Oster, G.: Mechanics of torque generation in the bacte-
rial flagellar motor. Proc. Natl. Acad. Sci. USA 112, E4381–E4389 (2015)

	75.	 Kumar, S., Bansal, M.: Geometrical and sequence characteristics of α-helices in globular proteins. 
Biophys. J. 75, 1935–1944 (1998)

	76.	 Rastogi, V.K., Girvin, M.E.: Structural changes linked to proton translocation by subunit c of the ATP 
synthase. Nature 402, 263–268 (1999)

	77.	 Kumar, S., Nussinov, R.: Relationship between ion pair geometries and electrostatic strengths in pro-
teins. Biophys. J. 83, 1595–1612 (2002)

	78.	 Bosshard, H.R., Zürrer, M.: The conformation of cytochrome in solution. Localization of a conforma-
tional difference between ferri- and ferrocytochrome c on the surface of the molecule. J. Biol. Chem. 
255, 6694–6699 (1980)

	79.	 Kilmartin, J.V., Fogg, J.H., Perutz, M.F.: Role of C-terminal histidine in the alkaline Bohr effect of 
human haemoglobin. Biochemistry 19, 3189–3193 (1980)

	80.	 Parsons, S.M., Raftery, M.A.: Ionization behavior of the catalytic carboxyls of lysozyme. Effects of 
ionic strength. Biochemistry 11, 1623–1629 (1972)

	81.	 Rees, D.C.: Experimental evaluation of the effective dielectric constant in proteins. J. Mol. Biol. 141, 
323–326 (1980)

	82.	 Nath, S., Villadsen, J.: Oxidative phosphorylation revisited. Biotechnol. Bioeng. 112, 429–437 (2015)
	83.	 Mancusso, R., Gregorio, G.G., Liu, Q., Wang, D-N.: Structure and mechanism of a bacterial sodium

dependent dicarboxylate transporter. Nature 491, 622–626 (2012)
	84.	 Sauer, D.B., Wang, B., Sudar, J.C., Song, J., Marden, J., Rice, W.J., Wang, DN.: The ups and downs 

of elevator-type di/tricarboxylate membrane transporters. FEBS J. 1–9 (2021). https://​doi.​org/​10.​1111/​
febs.​16158

432 S. Nath

https://doi.org/10.1371/journal.pbio.1001596
https://doi.org/10.1111/febs.16158
https://doi.org/10.1111/febs.16158


1 3

	85.	 Sauer, D.B., Trebesch, N., Marden, J.J., Cocco, N., Song, J., Koide, A., Koide, S. Tajkhorshid, E., 
Wang, D-N.: Structural basis for the reaction cycle of DASS dicarboxylate transporters. eLife 9, e61350 
(2020). https://​doi.​org/​10.​7554/​eLife.​61350

	86.	 Etzold, C., Deckers-Hebestreit, G., Altendorf, K.: Turnover number of Escherichia coli F0F1 ATP syn-
thase for ATP synthesis in membrane vesicles. Eur. J. Biochem. 243, 336–343 (1997)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Sunil Nath1 

 *	 Sunil Nath 
	 sunath@iitd.ac.in; sunil_nath_iit@yahoo.com

1	 Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 
Hauz Khas, New Delhi 110016, India

433Energy landscapes and dynamics of membrane transporters...

https://doi.org/10.7554/eLife.61350
http://orcid.org/0000-0002-0362-069X

	Energy landscapes and dynamics of ion translocation through membrane transporters: a meeting ground for physics, chemistry, and biology
	Abstract
	1 Introduction
	2 Methods
	2.1 Kirkwood theory for calculation of electrostatic Gibbs energy
	2.2 Extension of Kirkwood theory to a planar membrane

	3 Results and discussion
	3.1 Profile of local electrical field and potential in a biological membrane containing localized space-charge regions of positive and negative charge          
	3.2 Calculation of the desolvation Gibbs energy barrier for ion transport through membranes
	3.3 Calculation of Gibbs energy landscapes for a single-charged species in a membrane transporter
	3.4 Calculation of Gibbs energy landscapes for an ion pair in a membrane transporter
	3.5 Comparison of theoretically predicted landscape with experimental data on proteins
	3.6 Thermodynamic interpretation of continuum electrostatic Gibbs energy theories
	3.7 Molecular interpretation and biological implications
	3.8 Calculation of the timescale of movement between two stable states and quantification of the rotary dynamics of FOF1-ATP synthase
	3.9 A meeting ground for physics, chemistry, and biology

	4 Conclusions
	Acknowledgements 
	References




