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Abstract
A four-dimensional model was built to mimic the cross-talk among plasma glucose, plasma
insulin, intracellular glucose and cytoplasmic calcium of a cardiomyocyte. A time delay
was considered to represent the time required for performing various cellular mechanisms
between activation of insulin receptor and subsequent glucose entry from extracellular
region into intracellular region of a cardiac cell. We analysed the delay-induced model and
deciphered conditions for stability and bifurcation. Extensive numerical computations were
performed to validate the analytical results and give further insights. Sensitivity study of
the system parameters using LHS-PRCC method reveals that some rate parameters, which
represent the input of plasma glucose, absorption of glucose by noncardiac cells and insulin
production, are sensitive and may cause significant change in the system dynamics. It was
observed that the time taken for transportation of extracellular glucose into the cell through
GLUT4 plays an important role in maintaining physiological oscillations of the state vari-
ables. Parameter recalibration exercise showed that reduced input rate of glucose in the
blood plasma or an alteration in transportation delay may be used for therapeutic targets in
diabetic-like condition for maintaining normal cardiac function.
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1 Introduction

Calcium, the ubiquitous second messenger, is essential to the cardiac chamber’s contrac-
tion and relaxation mechanism, a process known as excitation-contraction (EC) coupling
[1]. This second messenger is always in dynamic state and oscillates in the range of 40–180
beats per minute (bpm) for normal cardiac cells. Any deviation suggests an unhealthy state
[2, 3]. Core calcium dynamics in cardiomyocytes are primarily subject to the membrane’s
electrical activity that operates voltage-gated channels, allowing calcium to enter into the
cell, whereas other ATP-driven pumps, exchangers and channels mediate the calcium fluxes
among sub-cellular compartments and across the plasma membrane [4]. Electrical bursting
causes oscillations in the intracellular calcium concentration and may lead to oscillatory
insulin levels in blood plasma due to pulsatile insulin secretion [5–7]. This type of oscil-
lations may be also observed in the model populations due to consideration of delay time
in performing various metabolic activities [8–11]. Any abnormality in calcium homeostasis
may play a significant role in progression of common cardiovascular disorders, including
cardiac arrhythmias and heart failure [12]. EC coupling consumes a significant amount
of cellular energy which is primarily compensated by mitochondrial oxidative phospho-
rylation [13]. Glucose metabolism compensates up to 20% of total energy requirement
of a healthy heart. Extracellular glucose is transported into cardiomyocyte through glu-
cose transporters primarily by GLUT4 in adult cardiomyocytes [14] and this process is
tightly regulated by circulating insulin levels [15]. Insulin receptors based on the cell sur-
face undergo auto phosphorylation after insulin binding, which initiates a signalling cascade
and results in translocation of GLUT4 to the membrane to facilitate glucose uptake by
the cell [16]. Thus, insulin stimulation in vivo increases myocardial glucose utilization by
40–60% [17, 18].

Because of its elevated and strictly regulated energy requirements, changes in systemic
insulin sensitivity or changes in myocardial insulin action may affect cardiac metabolism
and functioning. Diabetes-like condition (insulin resistance) impairs the ability of the heart
to adjust with the changing energy demands. For example, insulin resistance affects GLUT4
activity, which sometimes leads to cardiovascular complications [19]. Any deregulation,
either in the insulin level or in extracellular/intracellular glucose level or consequent alter-
ations in calcium oscillations, may have insulting effect on cardiac function and hence
health of the heart per se [3, 20]. Contractile dysfunction due to reduced Ca2+ transients is
one of the major causes of diabetic cardiomyopathy and the decreased Ca2+ sensitivity is
suggested to be glucose dependent [21].

Comprehensive information on the cross-talk among glucose, insulin and calcium to
maintain healthy cardiac functioning is very scattered and lacks a conclusive rationale.
Researchers have studied the glucose-insulin regulatory system mainly in beta-cells and
skeletal muscle cells [22], but comparatively very few studies have been done on car-
diomyocytes [14, 15, 23]. The combined effect of the glucose-insulin regulatory mechanism
with calcium dynamics is not well addressed in cardiomyocyte. Therefore, it would be
interesting to investigate the cross-talk among glucose, insulin and calcium with respect
to a cardiomyocyte. In the present study, we propose a four-dimensional delay differen-
tial system involving blood plasma glucose, blood plasma insulin, intracellular glucose
and cytoplasmic calcium concentrations in cardiomyocyte as state variables and analyse
it to obtain conditions for stability and bifurcation. Besides analytical observations, we
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did extensive numerical experiments on the proposed model using realistic parameter val-
ues. Sensitivity of system parameters was determined using a statistical technique known
as LHS-PRCC analysis. The overall objective of this study is to understand the role of
glucose transporting delay in cardiomyocyte, especially under diabetic condition. We also
explored the possible restoration mechanisms in the case of cardiomyocyte dysfunction
under diabetic condition.

2 Construction of mathematical model

Here we propose a mathematical model that captures the vital interaction among plasma
glucose, plasma insulin, intracellular glucose and cytoplasmic calcium of a cardiomyocyte.
As depicted in Fig. 1, insulin binds to its receptor (IR) on the cardiomyocyte membrane and
communicates a signal to the glucose transporter GLUT4 for activation, resulting in uptake
of plasma glucose from the outside to the inside of the cell in a concentration-dependent
manner [14, 24]. There is also a negative feedback on the plasma levels of insulin depending
on the levels of cytoplasmic glucose. Within a cardiomyocyte, a major portion of intra-
cellular glucose is used for energy production in the form of ATP through the cell energy
metabolism process. The remaining glucose is stored inside the cell in different forms [25].
ATP thus generated controls cardiomyocyte calcium dynamics through SERCA2a pump
of sarcoplasmic reticulum (SR) [26]. We consider for simplicity that calcium flux through
SERCA2a pump is dependent on the intracellular glucose concentration. Cytoplasmic cal-
cium dynamics is regulated through L-type calcium channel (LTCC), Na+/Ca2+ exchanger
(NCX) and SR. Calcium enters into the cell via LTCC, which then allows RyR2 channels to
release more calcium into cytoplasm from SR, known as calcium-induced calcium release
(CICR) [27]. After completion of cardiomyocyte contraction, a portion of cytoplasmic cal-
cium goes back into SR through SERCA2a pump and another portion goes to extracellular
region via NCX. A physiologically defined calcium concentration therefore plays a crucial

Fig. 1 Schematic diagram of insulin-dependent glucose-calcium interaction in a cardiomyocyte
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role in maintaining normal cardiac functioning. Based on this description, we propose the
following model:

dGe

dt
= vGe

k1 + Ge

− rGeI

k2 + Ge

− d1Ge,

dI

dt
= b + eGeI

k3 + Ge

− sIGi

km + Gi

− d2I,

dGi

dt
= rGeI (t − τ)

k2 + Ge

− d3Gi,

dC

dt
= L + pC2

k24 + C2
− nC2Gi

k25 + C2
− d4C, (1)

where Ge and I are the concentrations of glucose and insulin in the blood plasma, and
Gi and C are the concentrations of intracellular glucose and cytoplasmic calcium of the
cardiomyocyte, respectively.

It is observed that glucose input in blood plasma from all sources always maintains a
saturation limit [28]. So in the rate equation of extracellular glucose, input of glucose in the
blood plasma is represented by the saturated type function vGe

k1+Ge
, where v is the maximum

level of plasma glucose and k1 is the corresponding half-saturation constant. The second
term rGeI

k2+Ge
represents insulin-dependent transport of plasma glucose from outside to inside

of the cell with the help of the glucose transporter GLUT4. Here, r is the maximum rate of
glucose transportation and k2 is the corresponding half-saturation constant. The term d1Ge

represents the glucose absorption by cells other than cardiomyocytes, where d1 is a rate
constant.

A baseline insulin is maintained in the blood plasma [29]. Therefore, in the rate equa-
tion of insulin, a baseline insulin input in the blood plasma is represented by the constant b.
Glucose-dependent insulin secretion from the pancreas in the blood plasma follows a satu-
rated type curve [33] and is represented by the term eGeI

k3+Ge
, where e is the maximum rate

of insulin generation and k3 is the half-saturation constant. It is reported that intracellular
glucose (Gi) has a negative feedback on insulin concentration when intracellular glucose
reaches some threshold value [30]. This negative feedback effect of intracellular glucose
on the plasma insulin has been represented, following [34], by the term sIGi

km+Gi
, where s is

the maximum negative feedback rate and km is the corresponding half-saturation constant.
A natural degradation of insulin is considered through d2I , where d2 is the corresponding
degradation rate constant.

In the rate equation of intracellular glucose Gi , the first term represents the transported
glucose into the cell by insulin-dependent GLUT4 transporters. GLUT4 is packaged into a
specialized compartment and remains static in the absence of insulin. In response to insulin
stimulation, GLUT4 is expressed and translocated from intracellular location to the cell
membrane, where it allows plasma glucose to enter into the cell [24]. Without consider-
ing the intermediate transportation mechanisms in an explicit way, we consider the time τ

required for activation of the insulin transporter and subsequent entry of extracellular glu-
cose into the cell. The translocated GLUT4 near the cell membrane at time t , which causes
entry of plasma glucose at time t into the cell, is actually the stimulating effect of plasma
insulin at time t − τ . This insulin-dependent transportation of glucose, however, saturates
as the plasma glucose concentration increases [33]. The first term in the rate equation of
intracellular glucose represents such insulin-dependent saturated glucose entry into the cell
at a maximum rate r with half-saturation value k2. A degradation of intracellular glucose is
represented by the term d3Gi , where d3 is the corresponding rate constant.
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In the rate equation of cytoplasmic calcium concentration, a constant calcium input L

is considered to represent the calcium influx through L-type channels [31, 32]. The major
influx of calcium into the cytoplasm from SR occurs via RyR2 channel and major efflux
from the cytoplasm into SR is regulated by SERCA2a pump. RyR2 channel-dependent cal-

cium influx is reported to follow a sigmoid function [35] and considered as nC2Gi

k25+C2 , where

n and k5 are the maximum rate and half-saturation constant respectively. A portion of cyto-
plasamic calcium goes back to SR through SERCA2a pump and it depends implicitly on
the intracellular glucose concentration. Therefore, following [36], we model this efflux by
nC2Gi

k25+C2 , where n and k5 are the maximum rate and half-saturation constant respectively.

Change in calcium concentration is relatively fast and quickly reaches to its saturation
value [35, 36], and therefore, the Hill constant is assumed to be higher. Another portion of
cytoplasmic calcium goes out to extra cellular region through NCX (N+/Ca2+ exchanger)
located in the cell membrane. This calcium efflux is assumed to be linear [31, 32] and is
denoted by d4C, where d4 is a rate constant.

3 Results

3.1 Analytical results

From mathematical point of view, it is important to show that the system (1) has a unique
solution which is bounded. This solution should also be non-negative based on the bio-
logical constraint that the concentration cannot be negative. We address such issues in
Appendix 1. We have obtained conditions for the existence of the interior equilibrium point
for the system (1) and its stability conditions in the absence (Appendix 2) and presence of
delay (Appendix 3). We have used these conditions in our numerical analysis to understand
the nature of the equilibrium point for the considered set of parameter values. We have also
observed analytically that delay may cause instability in the system through a Hopf bifurca-
tion provided the length of the delay (τ ) exceeds some critical length τ0 (see Appendix 4).
This analytical result is important because it helps us to determine the time length of delay
so that the system components oscillate within the physiological range. The direction and
stability of the Hopf bifurcation, which are more interesting from mathematical point of
view, are presented in Appendix 5.

3.2 Simulation results

3.2.1 Choice of the parameter set and time series analysis

To obtain insight into the system dynamics, extensive simulations were performed. We con-
structed a parameter set (see Table 1) of which most parameter values were collected from
similar studies. Other non-referenced parameters were estimated in such a way that the
system components show temporal behaviour within the normal physiological range. For
example, the delay parameter τ has been selected so that the system experiences a Hopf
bifurcation and the oscillation is maintained in the physiological range. As the glucose
absorption rate by noncardiac cells is much higher in comparison with that of cardiac cells,
we have chosen d1 >> r . The fasting blood glucose level between 3.9 and 6.1 mM/l is
termed as normal; glucose level between 6.1 and 6.9 mM/l is occurs as prediabetic and said
to be diabetic if the blood glucose level crosses 6.9 mM/l. Hypoglycemia is occurs if the
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Table 1 Description of system parameters with their default values and references

Para. Definition Value and unit Reference

v Maximum levels of plasma glucose 3.5 mM s−1 [37]

k1 Half-saturation constant of glucose input 1.5 mM estimated

r Insulin-dependent glucose uptake by the cardiac cell 0.0278 mM s−1 [38]

k2 Half-saturation constant of cell’s glucose uptake 10.5 mM [38]

d1 Glucose absorption rate by cells other than cardiomyocytes 0.5 s−1 Estimated

b Basal level of blood insulin 4 pM s−1 [29]

e Maximum rate of insulin production 36 pM s−1 [37]

k3 Half-saturation constant of insulin production 30 pM Estimated

s Maximum negative feedback of intracellular 30 mM Estimated

glucose on insulin

km Half-saturation constant intracellular glucose’s 10 mM Estimated

negative feedback on insulin

d2 Normal insulin degradation rate 3.5 s−1 Estimated

d3 Intracellular glucose degradation rate 0.5 s−1 Estimated

L Calcium input via L-type channels 3.02 μM s−1 [31]

p Maximum calcium influx rate through RyR2 20 μM s−1 [32]

k4 Half-aturation constant of RyR2 0.5 μM [32]

n Maximum calcium efflux rate via SERCA2a pump 6 µM mM−1 s−1 Estimated

k5 Half-saturation constant of SERCA2a pump 0.1 µM [32]

d4 Calcium efflux through cell membrane NCX 10 s−1 [31, 32]

fasting blood glucose level is below 3.9 mM/l [39]. For fasting plasma, normal insulin level
should be within 14–174 pM [40]. It is also reported that the amplitude of oscillation of
calcium should be more than 0.4 μM [41].

Considering the parameter values as in Table 1, we first verify that F(G∗
e ) = 0 has

a unique positive root (see Appendix 2) and consequently a unique equilibrium point
of the system. The leading coefficient and the constant term of F(G∗

e ) are respectively
−0.0001 × 104 and 2.1613 × 104 and the corresponding positive roots are 600.5195,
5.5141, and 1.5161. Since G∗

e < g∗(= 5.5000) for the feasibility of I ∗ and G∗
i , so the

only feasible root is 1.5161 and consequently the system posses a unique equilibrium
point E∗. This equilibrium point E∗ will be stable, in the absence of the delay, if it sat-
isfies the conditions of Theorem 1. For the parameters given in Table 1, we computed
a11 = −0.3261, a22 = −0.1041, a44 = −8.3409 and A3 + B2 = 0.4347, indicating that
the conditions of Theorem 1 are satisfied. Thus, the parameter set given in Table 1 gives a
unique equilibrium point E∗ which is stable in the absence of delay. Here we want to men-
tion that this parameter set is not unique in satisfying the assumptions of the Theorem 1;
rather there exists some non-trivial set of such parameters. For this, we created 500 sets of
parameter values by varying each parameter 1.5-fold up and down from its default value
and then picked a random set using Latin Hypercube Sampling (LHS). We obtained at least
172 such parameters set which simultaneously satisfy existence and stability conditions of
E∗. We have also verified that conditions of Theorem 3 (see Appendix 4) are satisfied and
the critical value of the delay parameter is evaluated as τ = τ0 = 0.9639 s. Figure 2 demon-
strates that the system is stable for all τ < 0.9639 and oscillatory for τ > 0.9639. Stable
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Fig. 2 Bifurcation diagrams of system variables with respect to delay (τ ) for the parameter set given in
Table 1

time evolutions of each system component for some lower value of delay (τ = 0.9 < τ0) are
presented in Fig. 3 (in black curve). Each system component shows oscillatory behaviour
(see Fig. 3 coloured curve) within the physiological ranges when τ considers the value 1.2
s (> τ0). For the given parameter set, using Theorem 4 (see Appendix 5), one can evaluate
that μ2 = 17.4876, β2 = −3.6864, and T2 = 106.5212. Since μ2 > 0 and β2 < 0, the Hopf
bifurcation is supercritical and the bifurcating periodic solution exists when τ crosses τ0
from left to right. Also, the bifurcating periodic solution is stable (as β2 < 0) and its period
is increasing with τ (as T2 > 0). Figure 2 shows that when τ exceeds the critical value τ0,
the system (1) bifurcates from stable focus to stable limit cycle. One can also note that the

Fig. 3 Simulation time courses show stability (in black curves) of the interior equilibrium point E∗ of the
system for the parameter set given in Table 1 with τ = 0.8 s (< τ0 = 0.9639), whereas they show oscillatory
behaviour for τ = 1.2 s (> τ0)
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amplitude of the oscillations increases with increasing τ . Lower level of plasma glucose
crosses the limit 3.9 mM/l if τ exceeds 1.5 seconds. We, therefore, fix τ = 1.2 seconds as
our default value so that plasma glucose oscillates in the normal physiological range.

3.2.2 Global sensitivity analysis

To check the sensitivity of each parameter, we performed the global sensitivity analy-
sis (GSA) using Latin Hypercube Sampling (LHS) and partial rank correlation coefficient
(PRCC) sensitivity analysis [42]. Sensitivity of each parameter is plotted in a bar graph (see
Fig. 4) and measured in terms of the bar length. A parameter is said to be sensitive with
respect to a variable if its PRCC value is greater than ± 0.3 [43]. One can easily note from
Fig. 4 that the parameters v, d1, e, d2, d3 and τ are sensitive parameters for the system (1).

3.2.3 Robustness of parameters

For this analysis we considered the default value of delay (τ = 1.2 s) and then observed the
system output (see Table 2) due to variation of each sensitive parameter (both upwards and
downwards) while keeping other system parameters fixed. The objective is to find the range
of the sensitive parameters for which normal physiological oscillations (PO) of the system
variables are maintained.

3.2.4 Two-parameter bifurcation analysis

Two-parameter bifurcation analysis is important because it demonstrates the physiological
states of the system component when two sensitive parameters are perturbed simultaneously.
Our global sensitivity analysis shows that plasma glucose level (v) is the most sensitive
parameter. We therefore observed the variational effect of other sensitive parameters with

Fig. 4 Parameter sensitivity with the help of PRCC technique. A parameter is assumed to be sensitive if
PRCC is greater than ± 3. Here v, d1, e, d2, d3 and τ are sensitive parameters
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Table 2 Robustness of sensitive parameters with respect to normal physiological oscillations of system
components

Parameters Range for PO Stability range NPO

v 3.5 ≤ v < 4.05 v ≤ 3.45 3.45 < v < 3.5, v ≥ 4.05

d1 0.425 < d1 ≤ 0.5 d1 > 0.5 d1 ≤ 0.425

e 36 ≤ e < 42.2 e < 36 e ≥ 42.2

d2 2.7 < d2 ≤ 3.5 d2 > 3.5 d2 ≤ 2.7

d3 0.5 ≤ d3 < 0.78 d3 < 0.45 0.45 ≤ d3 < 0.5, d3 ≥ 0.78

Here we kept delay at its default value τ = 1.2 s. System oscillations were considered normal if plasma levels
of glucose and insulin remain below 6.1 mM/l and 174 pM, respectively, and calcium level exceeds 0.4 µM

respect to v (see Fig. 5). We used green colour to represent the physiological oscillations
(PO) of the system components. The non-physiological oscillations (NPO) and the sta-
ble behaviour (no oscillations) are represented by the red colour. The narrow range of PO

Fig. 5 Two-parameter bifurcation analysis for fixed τ = 1.2 s: a v vs d1, b v vs d2, c v vs d3 and d v vs e. In
the green colour region, system components oscillate in physiological range and in red coloured region either
they become stable or oscillate beyond the physiological range. Bounds for fasting PO range are considered
as follows: glucose level between 3.9 and 6.1 mM/l, insulin between 14 and 174 pM and calcium level above
0.4 µM
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indicates that plasma glucose level (v) is highly sensitive for maintaining normal oscilla-
tions. Figure 5 a and b show that plasma glucose level (v) has a linear relationship with
glucose absorption rate by cells other than cardiomyocytes (d1) and insulin degradation rate
(d2). It is observed that the existence of PO depends mainly on glucose input rate (v) in
comparison with intracellular glucose degradation rate (d3) or insulin production rate (e)
(Fig. 5c, d). Delay τ is another sensitive parameter that plays a crucial role in normal Ca2+
oscillations in cardiomyocyte. To maintain PO, the length of delay should be smaller when
glucose input rate (v), intracellular glucose degradation rate (d3) and insulin production
rate (e) are high (see Fig. 6). The interdependency is opposite in the case of other pairs,
viz. (τ, d1) and (τ, d2). Out of these, the sensitive pair (τ, e) has the largest PO regime and
could be used as therapeutic target in maintaining system’s normalcy. Similar direct rela-
tionship is observed when insulin production rate (e) is varied along with d1, d2 and inverse
relationship is observed when it is varied with d3 (see Fig. 7).

3.2.5 Parameter recalibration analysis

Our GSA analysis did not identify the insulin-dependent glucose uptake rate (r) of car-
diomyocyte as a sensitive parameter but it has a significant impact on the progression of
diabetic cardiomyocytes. In the case of insulin-resistant diabetic condition, transporta of
plasma glucose into cardiomyocytes is hampered, causing a perturbation in the parameter
r . We therefore presented a detailed exploration for this parameter and observed that both
suppression and over-expression of r lead towards diminished calcium oscillations or vio-
late the upper limits of both extracellular glucose level and insulin level. To demonstrate
this we increased and decreased r by 2-, 3-, 4- and 5-fold. It was noticed that for a 2-fold
reduction the system behaves normally and there is no need to recalibrate any parameter,

Fig. 6 Two-parametric bifurcation analysis with delay versus other sensitive parameters. Colour interpreta-
tion is same as in Fig. 5
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Fig. 7 Two-parametric bifurcation analysis for fixed τ = 1.2 s: a e vs d1, b e vs d2 and c e vs d3. Different
coloured regions have the same meaning as in Fig. 5

but any higher fold change in r creates dysfunction. We observed that most of the sensitive
parameters can restore normalcy when r is increased, but fail to do so when r is decreased.
For example, one can maintain normalcy even for a5-fold increase in r by regulating the
parameter d1, but this is not possible when r is reduced beyond 3-fold. A complete result
showing the role of different sensitive parameters on restoring normalcy due to variation in
r is given in Table 3, and Fig. 8 shows a visualization of these recalibrations.

Two parameters, τ and d1, are also important as far as the diabetic patient is concerned
because glucose absorption by noncardiac cells may decrease significantly and the time
required for insulin-dependent glucose transport may increase in diabetic cardiomyocytes.
Therefore, a similar recalibration exercise was done considering τ (Fig. 9) and d1 (Fig. 10)
as target parameters. Figure 9 shows that v, d1, e and d2 are the key parameters to restore
PO from NPO state due to variation in τ . Though d3 can restore the system but it cannot be
considered as a good recalibrating parameter as it requires high fold change for restoring
the system. In the other case, there is only three parameters (v, τ and r) that can recalibrate
the system when d1 is perturbed (see Fig. 10). However, v and τ are better parameters
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Table 3 Restoration of normal calcium oscillations and plasma glucose & insulin levels by recalibrating
sensitive parameters. Here we kept delay at τ = 1.2 s fixed

Para. r
5

r
4

r
3

r
2 2r 3r 4r 5r

τ N.W. N.W. 1.156f.d. N.R. 1.250f.i. 1.400f.i. 1.620f.i. 1.830f.i.

v N.W. N.W. 1.035f.d. N.R. 1.053f.i. 1.100f.i. 1.143f.i. 1.183f.i.

d1 N.W. N.W. 1.037f.i. N.R. 1.057f.d. 1.110f.d. 1.159f.d. 1.207f.d.

e N.W. 1.066f.d. 1.056f.d. N.R. 1.068f.i. 1.128f.i. 1.185f.i. 1.241f.i.

d2 N.W. 1.09f.i. 1.059f.i. N.R. 1.102f.d. 1.205f.d. 1.315f.d. 1.435f.d.

d3 2.33f.d. 1.980f.d. 1.540f.d. N.R. N.W. N.W. N.W. N.W.

Ge and I levels were maintained bellow 6.1 mM and 174 pM, respectively. Amplitude of Ca2+ oscillation
was maintained above 0.4 µM. Here N.W.: not working, means that variation in corresponding parameter
is unable to restore normal Ge and I levels and normal amplitude of Ca2+ oscillations. N.R.: variation not
required, f.d.: fold decrease and f.i.: fold increase

for recalibration process compared with r as they need little variation to restore system
normalcy.

4 Discussion

It is very common that diabetic patients are more cardiovascular disease prone. To main-
tain a healthy cardiac function, systematic plasma glucose transport into cardiomyocytes
and in other cells is essential. Calcium is a key element to maintain physiological oscil-
lations (PO) in cardiomyocytes, whereas glucose transportation is maintained by insulin,
its receptors and other glucose transporters, like GLUT4. In the transport mechanism, a
delay can be crucial to maintaining normal cardiac function. Here we proposed a four-
dimensional delay-induced model to understand the complex interaction among plasma

Fig. 8 This figure depicts required fold change in each sensitive parameter to restore normal system (glucose
level Ge < 6.1 mM, insulin level I < 174 pM and Ca2+ oscillations amplitude above 0.4 µM) due to an
increase or decrease in insulin-dependent glucose uptake rate (r) from its default value r = 0.0278. For
example, v needs to be increased by 1.14- and 1.183-fold to restore system for the values of r = 0.1112 and
0.139, respectively. Parameters were kept fixed as in Table 1 with τ = 1.2 s while other parameters were
varied
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Fig. 9 It depicts required fold change in each sensitive parameter to restore normalcy in the system dynamics
due to an increase in the time delay (τ ) from its critical value τ = 0.9639 s. For example, v needs to be
decreased by 0.95-, 0.92- and 0.90-fold to restore system’s normalcy for higher values of τ = 2.5, 3.5 and 5,
respectively. Parameters are as in Table 1

glucose, plasma insulin, intracellular glucose and cytoplasmic calcium of a cardiomyocyte
under different parametric perturbations. We looked for situations that would help to main-
tain calcium oscillations of cardiac cells in physiological range along with normal blood
glucose and insulin concentrations. A set of conditions was prescribed for the existence of
a Hopf bifurcation, leading to periodic oscillations of the system around its interior equilib-
rium point. We then constructed a parameter set so that blood glucose and insulin remain
in normal range and the amplitude of intracellular calcium oscillation is also maintained. It
was observed that the system exhibits periodic solutions about the interior equilibrium point
if the transport delay τ exceeds some critical value τ0. However, if τ0 becomes very high
due to some irregularities in the normal process, like in case of delayed phosphorylation
or delayed response of insulin receptor for some metabolic reasons, then the system oscil-
lates beyond the physiological range. This means that τ0 plays a crucial role in maintaining

Fig. 10 This figure depicts required fold change in the parameters v, r and τ to restore normal system
dynamics due to decreased glucose absorption rate (d1) in noncardiac cells from its default value d1 = 0.5.
For example, v needs to be decreased by 0.94-, 0.90- and 0.86-fold to restore system’s normalcy for the
lower values of d1 = 0.42, 0.40, 0.38, respectively; whereas r needs multiple fold change for such control.
Parameters are as in Table 1 with τ = 1.2 s
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physiological range of the state variables and suggests that the length of delay should be
maintained within a definite range. Through global sensitivity analysis (GSA), we obtained
a set of six sensitive parameters including τ and then performed a robustness analysis to
find their ranges satisfying PO. We observed that each sensitive parameter has a finite range
for which the system shows PO and beyond which the system shows either stability or non-
physiological oscillations (NPO). Sensitive parameters having smaller range for PO (see
Table 2) are more important because a small perturbation in these parameters may have a
significant effect on the entire system. From this point of view, the parameters v, d1 and d3
were considered to be more important. Our sensitivity analysis (see Fig. 4) demonstrated
that glucose input rate in the bloodstream v is the most sensitive parameter and directly
influences all the state variables. We observed that increased level of glucose, as in the
case of diabetic condition, caused an adverse effect on cardiac functioning by diminishing
the calcium oscillations. We found a range of v in which the system functioned well. Our
global sensitivity analysis also revealed insulin production rate (e), its degradation rate (d2)
and glucose absorption rate (d1) by noncardiac cells as sensitive parameters. Plasma glu-
cose enters into the cell with the help of insulin to meet the energy requirement of the cell.
Furthermore, our robustness analysis showed that any large perturbation in these sensitive
parameters could lead to irregular calcium oscillations in cardiac cells. A two-parameter
bifurcation analysis was performed on the selected parameters to observe their simultaneous
effect on the system dynamics. It is observed that the glucose-dependent insulin production
rate had a linear relationship with the degradation rate of plasma glucose and plasma insulin;
while it had an inverse relation with intracellular glucose degradation rate. Thus, intracellu-
lar glucose degradation rate (d3) seemed to be an important player in deciding the calcium
dynamics within a cardiomyocyte. Besides these two important factors, the main focus of
the present study was to mimic diabetic condition leading to change in calcium oscillations,
causing cardiac dysfunction. We achieved this in our model by changing parameters related
to insulin-dependent glucose uptake rate r and glucose transport delay τ .

4.1 Insulin-dependent glucose uptake by the cell

Insulin-induced GLUT4 translocation regulates glucose uptake in cardiomyocytes. The
requirement of glucose for heart function is readily apparent in situations of metabolic
stress. Our analysis found insulin-dependent glucose uptake by a cardiomyocyte (r) to be
directly proportional to the rate of insulin production (e) and the time taken for glucose
uptake (τ ), but was inversely proportional to the glucose absorption rate by cells other than
cardiomyocytes (d1). Insulin-dependent glucose uptake via the GLUT4 transporter dimin-
ishes during diabetes. Therefore, to mimic a similar scenario, we gradually decreased the
value of r . Consequently, a shift in calcium oscillations was observed from physiological
range (PO) to non-physiological range (NPO). To restore PO for calcium, parametric recali-
bration of all parameters except r was done but the possibility of restoration decreased with
the reduction in r . As is evident from Table 3, a negligible effect on calcium oscillations was
seen when r was halved. However, if r was reduced 3 times, calcium oscillations drifted into
NPO. PO could be restored by recalibrating most of the parameters including τ , v, d1, e, d2
and d3. However, further reduction in r by 4 times limited the number of parameters (viz.
e, d2 and d3) that could restore calcium PO. d3 was the only parameter which was robust
enough to restore calcium PO subsequent to 5-fold reduction in r . No further restoration
was possible for larger reduction in the value of r . Hence, decrease in insulin production
rate, or increase in insulin degradation rate, or decrease in intracellular degradation rate was
revealed as possible and robust strategies to restore calcium PO in a diabetes-like scenario.
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4.2 Role of glucose transportation time inside the cell on calcium oscillation

Our GSA identified time delay τ as a sensitive parameter influencing all variables. Time
delay refers to the delay in glucose uptake as a result of either faulty IR signalling or delayed
GLUT4 translocation. Fold change required for each sensitive parameter to restore system
to its normal state is depicted in Fig. 9. Bifurcation analysis revealed that it was impor-
tant to maintain a minimum τ in order to keep the Ca2+ oscillations in the PO range. For
a particular value τ = 1.2, a range of different sensitive parameters was identified dur-
ing which the system maintained POs. Parametric recalibration revealed that τ could be
used as a therapeutic strategy in maintaining normal cardiac function in a diabetes-like
condition. Through two-dimensional bifurcation analysis we estimated the range of other
sensitive parameters against the delay in GLUT4 transportation for maintaining PO. All
these observations show that τ plays a significant role in maintaining calcium oscillations
in cardiomyocytes. Our observation find supports from published papers [44, 45]. The role
of insulin-sensitive GLUT4 in calcium homeostasis was studied in the heart of mouse mod-
els [44]. The authors demonstrated that GLUT4 deficiency significantly altered calcium
homeostasis in cardiomyocytes. Similarly, the effect of insulin on calcium homeostasis was
demonstrated in obese mice by another group from Sweden [45]. The investigators charac-
terized the effect of insulin on calcium homeostasis and demonstrated that insulin enhanced
electrically evoked calcium release from obese cells.

4.3 Role of glucose absorption rate by cells other than cardiomyocytes

In diabetic condition, cells other than cardiomyocytes experience disruption in glucose
uptake. Our analysis found glucose absorption rate parameter (d1) for noncardiac cells as a
critical parameter which has inverse relationship with all state variables (see Fig. 4). From
robustness analysis (Table 2), we found a narrow range of d1 where the system maintains
its PO. It is very interesting to see how this parameter response in diabetic situation due to
less consumption of glucose by noncardiac cells. It is observed that if the glucose absorp-
tion rate by noncardiac cells is successively reduced form its default value 0.5, then multiple
fold change in the parameter value r is required to restore the system’s normalcy, imply-
ing that r is not a good controller. On the contrary, a small change in the plasma glucose
input rate (v) brings normalcy to the system, indicating that v is a good controller. Even
the delay parameter τ is a better controller than r . Hence in a diabetic-like situation, either
reduced input of glucose into blood plasma or a relatively lower transport delay may play
an important role in maintaining PO and could be used for therapeutic targets.

5 Conclusion

One of the main aims of the present work is to investigate the role of time delay associated
with the transportation of extracellular glucose into the cardiomyocyte through GLUT4. We
observed that the uptake rate of extracellular glucose through GLUT4 and the time required
for the activities between the insulin receptor and GLUT4 activation plays a vital role in
maintaining normal calcium oscillation. The time required to transport glucose from blood
plasma to cellular cytoplasm has a possible therapeutic value and its regulation could restore
normalcy in the case of diabetes-like conditions. With the importance of the input rate of
glucose into the plasma and the insulin production rate, we observed that regulated glucose
input into blood plasma is good for normal oscillations of calcium in cardiomyocytes. We
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also observed that there are other ways to control physiological oscillations in calcium and
glucose by manipulating other parameters but that depends on the time delay associated
with the intracellular glucose uptake rate.
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Appendix 1

Existence and uniqueness of solutions

The initial conditions of the delay differential system (1) have the following form:

Ge(θ) = φ1(θ), I (θ) = φ2(θ), Gi(θ) = φ3(θ), C(θ) = φ4(θ),

φi(θ) ≥ 0, θ ∈ [−τ, 0], φi(0) > 0, i = 1, .., 4, (2)

where (φ1(θ), .., φ4(θ))∈ C([−τ, 0],R4+) and C is the Banach space of con-
tinuous functions mapping the interval [−τ, 0] into R

4+ with norm ||φ|| =
sup−τ≤θ≤0{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|, |φ4(θ)|}, where φ = {φ1(θ), .., φ4(θ)}.

Positivity and boundedness

For biological demand, we need to prove that all solutions of system (1) with initial
conditions (2) are defined on [0, ∞) and remain positive for all t ≥ 0.

To show global existence of solutions it is enough to show that the right-hand side of (1)
is globally Lipschitz. The system (1) can be expressed as

dX

dt
= f (X), (3)

where X = (x1, x2, x3, x4)
T and f = (f1, f2, f3, f4)

T . The function f : R
4+ → R

4+
possesses the global Lipschitz condition if there exists a Lipschitz constant M > 0 such that
|f (x) − f (y)| ≤ M|x − y| holds for any x, y ∈ R

4+.
Following [46], it can be easily proved that

|f1(x) − f1(y)| ≤ M1|x − y| (4)

|f2(x) − f2(y)| ≤ M2|x − y| (5)

|f3(x) − f3(y)| ≤ M3|x − y| (6)

|f4(x) − f4(y)| ≤ M4|x − y| (7)

where M1 = d1 + v + (1+ K2)r , M2 = d2 + (1+ K2)(e + s), M3 = d3 + (1+ K2)r , and
M4 = d4 + p + (1+ K3)n. M4 = d4 + p + (1+ k3)n, with the assumption that there exists
real positive numbers k2andk3 such that |x2|leqk2and|x3|leqk3.
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Now, to obtain the global Lipschitz constant for f , we simply choose M =√
M2

1 + M2
2 + M2

3 + M2
4 and obtain

|f (x) − f (y)| ≤ M|x − y|. (8)

Therefore, f , and hence the right-hand side of (1), is globally Lipschitz. Thus, the system
possesses a unique solution. Again since f is Lipschitz, then it maps non-negative vectors
to non-negative vectors, i.e., (1) gives positive invariant solution with the positive initial
condition (2).

Next we show that solutions are bounded. From the first equation of system (1), we have

dGe

dt
+ d1Ge ≤ v. (9)

Thus, following [47], we get

lim sup
t→∞

Ge(t) ≤ v

d1
,

implying that Ge(t) is ultimately bounded.
Using the second equation, we get

dI

dt
+ (d2 − ev

k3d1 + v
)I ≤ b. (10)

Assuming d2 > ev
k3d1+v

, we have

lim sup
t→∞

I (t) ≤ �,

where � = b(k3d1+v)
d1d2k3+d2v−ev

. This shows that I (t) is ultimately bounded.
For all t > t∗ + τ , where t∗ is any non-negative time, we obtain from the third equation

dGi

dt
+ d3Gi ≤ r�. (11)

Again one gets lim supt→∞ Gi(t) ≤ r�
d3
, implying that Gi(t) is ultimately bounded.

Similarly, we obtain

dC

dt
+ d4C ≤ L + p =⇒ lim sup

t→∞
C(t) ≤ Π, (12)

where Π = L+p
d4

, implying that C(t) is ultimately bounded.
Thus, there exists a unique solution, which is positive for t > 0 and is ultimately

bounded.

Appendix 2

Equilibrium point and its stability

We are interested in the interior equilibrium point of the system (1) denoted by E∗ ≡
(G∗

e , I ∗, G∗
i , C∗), where I ∗ = G∗

e+k2
r

( v
G∗

e+k1
− d1) and G∗

i = G∗
e

d3
( v
G∗

e+k1
− d1). Note that

I ∗, G∗
i both exist if G∗

e < g∗, where g∗ = v
d1

− k1. Thus, steady-state concentrations of
insulin and plasma glucose are biologically meaningful if plasma glucose concentration is
not too high and lies below the critical level g∗.

Steady-state concentration C∗ is given by the positive root of the equation

H(C∗) = 0, (13)
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where

H(C∗) = d4C
∗5 + (nG∗

i − L − p)C∗4 + d4(k
2
4 + k25)C

∗3

+{nk24G
∗
i − L(k24 + k25) − pk25}C∗2 + k24k

2
5C

∗ − Lk24k
2
5.

It is to be noted that H(0) < 0 and H(∞) > 0. Thus, there is at least one positive root of the

polynomial H(C∗). Further, if G∗
i ≥ max

{
L+p

n
, L

n
+ L+p

n

(
k5
k4

)2}
holds then, following

Descartes’ rule, there is an unique root of (13). The steady state concentration G∗
e is given

by the positive root of the equation

F(G∗
e ) = 0, (14)

where

F(G∗
e ) = P0G

∗
e
5 + P1G

∗
e
4 + P2G

∗
e
3 + P3G

∗
e
2 + P4G

∗
e + P5,

and

P0 = d2
1 (s + d2 − e),

P1 = d1(k3Ah + Bh − eDh) + (Ah − ed1)Fh + d1br,

P2 = d1{k3Bh − Ch + eEh + (k1 + k3)br} + (Ah − ed1)Gh + brDh

+ (k3Ah + Bh − eDh)Fh,

P3 = d1(brk1k3 − k3Ch) + (k3Bh − Ch + eEh)Fh + (k3Ah + Bh − eDh)Gh,

+ {(k1 + k3)Dh − Eh}br,

P4 = (k3Bh − Ch + eEh)Gh − k3ChFh + {k1(k3Dh − Eh) − k3Eh}br,

P5 = k1k3kmd3{k2d2(v − d1k1) − k1k3br},
Ah = d1(s + d2), Bh = (1 + d2)(d1k1 − v) − d2d3km, Ch = k1kmd2d3,

Dh = d1k1 − v − d3km, Eh = k1kmd3, Fh = d1k1 − v + d1k2,

Gh = d1k1k2 − vk2.

Equation (14) has at least one positive real root if P0 and P5 have opposite signs and it holds
if e − s < d2 < k1br

k2(v−d1k1)
, or e − s > d2 > k1br

k2(v−d1k1)
. Thus, the system (1) has at least one

interior equilibrium. In the simulations, we show that the parameter set satisfies the second
condition for the existence of a positive root and the root is unique.

After linearization around E∗, system (1) can be expressed in matrix form

d

dt

⎛
⎜⎜⎝

Ge(t)

I (t)

Gi(t)

C(t)

⎞
⎟⎟⎠ = M1

⎛
⎜⎜⎝

Ge(t)

I (t)

Gi(t)

C(t)

⎞
⎟⎟⎠ + M2

⎛
⎜⎜⎝

Ge(t − τ)

I (t − τ)

Gi(t − τ)

C(t − τ)

⎞
⎟⎟⎠ , (15)

where

M1 =

⎛
⎜⎜⎝

a11 a12 0 0
a21 a22 a23 0
a31 0 a33 0
0 0 a43 a44

⎞
⎟⎟⎠ , M2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 a32 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

and a11 = vk1
(k1+G∗

e )
2 − rk2I

∗
(k2+G∗

e )
2 − d1, a12 = − rG∗

e

k2+G∗
e
, a21 = ek3I

∗
(k3+G∗

e )
2 ,

a22 = eG∗
e

k3+G∗
e

− sG∗
i

km+G∗
i

− d2, a23 = − skmI∗
(km+G∗

i )
2 , a31 = rk2I

∗
(k2+G∗

e )
2 , a32 = rG∗

e

k2+G∗
e
, a33 = −d3,

a43 = − nC∗2
k25+C∗2 , a44 = 2pk24C

∗
(k24+C∗2)2 − 2nk25G

∗
i C

∗
(k25+C∗2)2 − d4.
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The characteristic equation around E∗ reads

(λ − a44){λ3 + A1λ
2 + (A2 + B1e

−λτ )λ + A3 + B2e
−λτ } = 0, (16)

where

A1 = −(a11 + a22 + a33),

A2 = a11a22 + a11a33 + a22a33 − a12a21,

A3 = a12a21a33 − a12a23a31 − a11a22a33,

B1 = −a23a32,

B2 = a11a23a32.

From (16), we have one real eigenvalue a44 and the other eigenvalues are the roots of the
equation

P(λ, τ) = λ3 + A1λ
2 + (A2 + B1e

−λτ )λ + A3 + B2e
−λτ = 0. (17)

In the absence of delay, (17) reduces to

P(λ, 0) = λ3 + A1λ
2 + (A2 + B1)λ + A3 + B2 = 0. (18)

Assuming a11 < 0 and a22 < 0, we have A1 > 0, A2+B1 > 0 and A1(A2+B1)−(A3+
B2) > 0. Further, if A3 + B2 > 0 then, following the Routh-Hurwitz criterion, all three
roots of the cubic (18) will have negative real parts. Hence we have the following theorem.

Theorem 1 If a11, a22, a44 are negative and A3 + B2 is positive, then the equilibrium E∗
is locally asymptotically stable in the absence of delay.

Appendix 3

Following [48, 49], one can easily obtain the following results on the distribution of roots
of the transcendental equation (17) and stability of E∗.

Lemma 1 For the transcendental equation (17), all roots with positive real parts of (17)
will have the same sum as those of (18) for all τ if Q3 ≥ 0 and Q2

1 − 3Q2 ≤ 0, where
Q1 = A2

1 − 2A2, Q2 = A2
2 − 2A1A3 − B2

1 and Q3 = A2
3 − B2

2 .

Theorem 2 Assume that Theorem 1 holds with Q3 ≥ 0 and Q2
1 − 3Q2 ≤ 0. Then the

equilibrium E∗ is locally asymptotically stable for all τ ≥ 0.

Appendix 4

We here consider the delay parameter τ as our bifurcation parameter and determine the
condition for delay-dependent instability. For this, let λ(τ) = η(τ)+iω(τ) be the eigenvalue
of (17) such that for some value of τ , say τ = τ0, we have η(τ0) = 0 and ω(τ0) = ω0 
= 0
(without loss of generality, we may assume ω0 > 0).

Following [48], we have

τj = 1

ω0
cos−1

[
ω0B1(ω

3
0 − ω0A2) + B2(ω

2
0A1 − A3)

ω2
0B

2
1 + B2

2

]
+ 2jπ

ω0
j = 0, 1, 2... (19)
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We have to show that the transversality condition is satisfied, i.e., d(Reλ)
dτ

∣∣∣∣
τ=τ0

> 0.

Differentiating the cubic (17) with respect to τ , we get

(3λ2 + 2A1λ + A2)
dλ

dτ
+ e−λτ {B1 − τ(B1λ + B2)}dλ

dτ
= λ(B1λ + B2)e

−λτ . (20)

It gives

(
dλ

dτ

)−1

= 3λ2 + 2A1λ + A2

λ(B1λ + B2)e−λτ
+ B1

λ(B1λ + B2)
− τ

λ

= 2λ3 + A1λ
2 − A3

−λ2(λ3 + A1λ2 + A2λ + A3)
+ B2

−λ2(B1λ + B2)
− τ

λ
.

Now we have

Sign

{
d(Reλ)

dτ

}

λ=iω0

= Sign

{
Re

(
dλ

dτ

)}

λ=iω0

= Sign

{
Re

[
2λ3 + A1λ

2 − A3

−λ2(λ3 + A1λ2 + A2λ + A3)

]
+ Re

[
B2

−λ2(B1λ + B2)

]}

λ=iω0

= Sign

{
Re

[
−2ω3

0i − A1ω
2
0 − A3

ω2
0(−ω3

0i − A1ω
2
0 + A2ω0i + A3)

]
+ Re

[
B2

ω2
0(B1ω0i + B2)

]}

= Sign

{
2ω6

0 + (A2
1 − 2A2)ω

4
0 − A2

3

ω2
0{(A1ω

2
0 − A3)2 + (ω3

0 − A2ω0)2}
+ B2

2

ω2
0(B

2
2 + B2

1ω
2
0)

}

= 1

ω2
0

Sign

{
2ω6

0 + (A2
1 − 2A2)ω

4
0 + B2

2 − A2
3

B2
2 + B2

1ω
2
0

}

= 1

ω2
0

Sign

{
H(μ)

B2
2 + B2

1ω
2
0

}
, (21)

where H(μ) = 2μ3 + (A2
1 − 2A2)μ

2 + B2
2 − A2

3 is evaluated at ω2
0 = μ. Differentiating

H(μ) with respect to μ, we have

dH(μ)

dμ
= 6μ2 + 2(A2

1 − 2A2)μ. (22)

Two roots of dH(μ)
dμ

= 0 can be written as

μ1 = 0, μ2 = −Q1

3
.

If we have Q1 > 0, then

dReλ

dτ

∣∣∣∣∣ω=ω0,τ=τ0 = 1

ω2
0

Sign

{
H(μ)

B2
2 + B2

1ω
2
0

}
> 0 . (23)

Based on the above result, we write the following theorem.
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Theorem 3 Assume that Theorem 1 holds and if Q1 > 0, Q3 ≥ 0, Q2
1 − 3Q2 ≥ 0, then

the equilibrium E∗ is locally asymptotically stable for all τ < τ0, unstable for τ > τ0 and
a Hopf bifurcation occurs at τ = τ0, where

τ0 = 1

ω0
cos−1

[
ω0B1(ω

3
0 − ω0A2) + B2(ω

2
0A1 − A3)

ω2
0B

2
1 + B2

2

]
.

Appendix 5

Using normal form theory and the centre manifold theorem [50], we here determine the
direction of the Hopf bifurcation and the properties of bifurcating periodic solutions.
Throughout this section, we always assume that system (1) undergoes a Hopf bifurcation
at the positive equilibrium E∗ for τ = τ0 and then ±iω0 are the corresponding purely
imaginary roots of the characteristic equation.

Let (x, y, z, w)T = (Ge −G∗
e , I −I ∗,Gi −G∗

i , C −C∗)T . Then, using the Taylor series
expansion for system (1) at E∗, we obtain

ẋ = a11x + a12y + c11x
2 + c12xy,

ẏ = a21x + a22y + a23z + c21x
2 + c22xy + c23yz + c24z

2,

ż = a31x + a32y(t − τ) + a33z + c31x
2 + c32xy(t − τ),

ẇ = a43z + a44w + c41zw + c42w
2. (24)

Here, all aij ’s are given in (15) and c11 = − vk1
(k1+G∗

e )
3 + rk2I

∗
(k2+G∗

e )
3 , c12 = rk2

(k2+G∗
e )

2 , c21 =
− ek3I

∗
(k3+G∗

e )
3 , c22 = ek3

(k3+G∗
e )

2 , c23 = − skm

(km+G∗
i )

2 , c24 = − skmI∗
(km+G∗

i )
3 , c31 =

− rk2I
∗

(k2+G∗
e )

3 , c32 = −c12, c41 = − 2nk25C
∗

(k25+C∗2)2 , c42 = pk24(k
2
4−3C∗2)

(k24+C∗2)3 − nk25G
∗
i (k

2
5−3C∗2)

(k25+C∗2)3 .

Now, let τ = τ0 + μ and ut (θ) = u(t + θ) for θ ∈ [−τ, 0]. Denote Ck([−τ, 0],R4) =
{φ|φ : [−τ, 0] → R

4}, φ has k−th order continuous derivative. For the initial conditions
φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ))T ∈ C([−τ, 0],R4), (24) can be written as

u̇(t) = Lμ(ut ) + F(ut , μ), (25)

where u(t) = (u1(t), u2(t), u3(t), u4(t))
T ∈ C, Lμ : C → R

4 and F : C → R
4 are given,

respectively, by

Lμφ = (τ0 + μ)M1φ(0) + (τ0 + μ)M2φ(−τ),

F (φ, μ) = (τ0 + μ)F . (26)

Here Lμ is a one parameter family of bounded linear operators in C, whereas M1 and M2
are given in (15) and

F =

⎛
⎜⎜⎝

c11φ1(0)φ1(0) + c12φ1(0)φ2(0)
c21φ1(0)φ1(0) + c22φ1(0)φ2(0) + c23φ2(0)φ3(0) + c24φ3(0)φ3(0)

f c31φ1(0)φ1(0) + c32φ1(0)φ2(−τ)

c41φ3(0)φ4(0) + c42φ4(0)φ4(0)

⎞
⎟⎟⎠ .

By the Reisz representation theorem, there exists a function η(θ, μ) of bounded variation
for θ ∈ [−τ, 0] such that

Lμφ =
∫ 0

−τ

dη(θ, μ)φ(θ). (27)
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We can choose

η(θ, μ) = (τ0 + μ)M1δ(θ) + (τ0 + μ)M2δ(θ + τ), (28)

where δ(θ) is the Dirac delta function. For φ ∈ C1([−τ, 0],R4), we define

A(μ)φ =
{

dφ
dθ

, θ ∈ [−τ, 0)∫ 0
−τ

dη(θ, μ)φ(θ), θ = 0,
(29)

R(μ)φ =
{
0, θ ∈ [−τ, 0)
F (φ, μ), θ = 0.

(30)

Since u̇(t) = u̇t (θ), (25) can be written as

u̇(t) = A(μ)ut + R(μ)ut , (31)

where ut = u(t +θ), θ ∈ [−τ, 0]. For ψ ∈ C1([0, τ ],R4), let us define the adjoint operator
A∗ of A as

A∗ψ(s)φ =
{

dψ(s)
ds

, s ∈ [−τ, 0)∫ 0
−τ

dη(θ, μ)φ(θ), s = 0.
(32)

For φ ∈ C1([−τ, 0],R4) and ψ ∈ C1([0, τ ],R4), in order to normalize the eigenvalues of
operators A and A∗, we also define a bilinear inner product

< ψ,φ >= ψ(0)φ(0) −
∫ 0

θ=−τ

∫ θ

ξ=0
ψ(ξ − θ)(dη(θ))φ(ξ)dξ, (33)

where η(θ) = η(θ, 0) and ψ is the complex conjugate of ψ . One can verify that A∗ and
A(0) are adjoint operators with respect to this bilinear form.

We assume that ±iω0 are eigenvalues of A(0) and the other eigenvalues have strictly
negative parts. Thus, they are also eigenvalues of A∗. Now we compute the eigenvector q of
A corresponding to the eigenvalue iω0 and the eigenvector q∗ of A∗ corresponding to −iω0.
Suppose that q(θ) = (1, p1, p2, p3)

T eiω0θ is the eigenvector of A(0) associated with iω0,
then A(0)q(θ) = iωq(θ). From the definition of A(0), (26), (27) and (29), we have

(M1 + M2e
−iω0τ0 − I4iω0)q(0) = 0. (34)

Solving (34), we obtain q(0) = (1, p1, p2, p3)
T , where p1 = iω0−a11

a12
, p2 =

a12a31+a32(iω0−a11)e
−iω0τ0

a12(iω0−a33)
, p3 = a43(iω0−a11)(iω0−a22)−a12a21a43

a12a23(iω0−a44)
.

Similarly, let the eigenvector q∗ of A∗ corresponding to −iω0 is q∗(s) =
( 1
D

)(1, p∗
1, p

∗
2, p

∗
3)

T eiω0s , s ∈ [0, τ ]. Again, using the definition of A∗ and (26), (27), (29),
we get

(M1
T + M2

T e−iω0τ0 + I4iω0)q
∗(0) = 0. (35)

Solving (35), one can obtain q∗(0) = ( 1
D

)(1, p∗
1, p

∗
2, p

∗
3)

T , where p∗
1 =

a21a31e
iω0τ0−a32(a11+iω0)

a21a32−a31(a22+iω0)e
iω0τ0

, p∗
2 = a23p

∗
1

a33+iω0
, p∗

3 = 0.

274



Effect of delay in transportation of extracellular glucose into...

In order to assume that < q∗, q >= 1, we must determine the value of D. From (33),
we get

< q∗, q > = q∗T
(0)q(0) −

∫ 0

θ=−τ0

∫ θ

ξ=0
q∗T

(ξ − θ)(dη(θ))Q(ξ)dξ

= 1

D
(1 + p1p1

∗ + p2p2
∗ + p3p3

∗)

−
∫ 0

−τ0

∫ θ

0

1

D
(1, p1

∗, p2
∗, p3

∗)e−iω0(ξ−θ)

×(dη(θ))(1, p1, p2, p3)
T eiω0ξ dξ

= 1

D
(1 + p1p1

∗ + p2p2
∗ + p3p3

∗) −
∫ 0

−τ0

1

D
(1, p1

∗, p2
∗, p3

∗)θeiω0θ

×(dη(θ))(1, p1, p2, p3)
T

= 1

D

[
(1 + p1p1

∗ + p2p2
∗ + p3p3

∗) + τ0e
−iω0τ0(1, p1

∗, p2
∗, p3

∗)

×M(1, p1, p2, p3)
T
]

= 1

D

[
(1 + p1p1

∗ + p2p2
∗ + p3p3

∗) + τ0e
−iω0τ0 p1p2

∗a32
]
,

D = (1 + p1p1
∗ + p2p2

∗ + p3p3
∗) + τ0e

−iω0τ0 p1p2
∗a32. (36)

Let

v(t) = < q∗, ut >,

W(t, θ) = ut − vq − vq = ut − 2�(v(t)q(θ)). (37)

On the centre manifold Ω0, we have

W(t, θ) = W(v(t), v(t), θ), (38)

where

W(v(t), v(t), θ) = W20(θ)
v2

2
+ W11(θ)vv + W02(θ)

v2

2
+ · · · , (39)

v and v are local coordinates of the centre manifold Ω0 in the direction of q∗ and q∗,
respectively. Note that ut real implies W is real. Considering only the real solutions, from
(37), we obtain

< q∗, W > = < q∗, ut − vq − vq >

= < q∗, ut > −v(t) < q∗, q > −v(t) < q∗, q > . (40)

For the solution ut ∈ Ω0 of (25), from (30) and (33), since μ = 0, we have

v̇(t) = < q∗, ut >

= < q∗, A(0)ut + R(0)ut >

= < q∗, A(0)ut > + < q∗, R(0)ut >

= < A∗q∗, ut > +q∗T
(0)F (ut , 0)

= iω0v(t) + q∗T
(0)f0(v, v)

v̇(t) = iω0v(t) + g(v, v), (41)
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where

g(v, v) = q∗T
(0)f0

= q∗T
(0)F (W(v, v, θ) + 2�{v(t)q(θ), 0})

= g20
v2

2
+ g11vv + g02

v2

2
+ g02

vv2

2
+ · · · . (42)

Substituting (31) and (41) into (37), we get

Ẇ = u̇(t) − v̇q − v̇ q

= Aut + Rut −
(
iω0v + q∗T

(0)f0(v, v)
)

q −
(
iω0v + q∗T

(0)f0(v, v)
)

q

= Aut + Rut − Avq − Av q − 2�
(
q∗T

(0)f0(v, v)q
)
. (43)

Now

Ẇ =
⎧
⎨
⎩

AW − 2�
(
q∗T

(0)f0(v, v)q
)

, θ ∈ [−τ, 0)

AW − 2�
(
q∗T

(0)f0(v, v)q
)

+ f0(v, v), θ = 0,
(44)

This can be written as
Ẇ = AW + H(v, v, θ), (45)

where

H(v, v, θ) = H20(θ)
v2

2
+ W11(θ)vv + W02(θ)

v2

2
+ · · · . (46)

On the centre manifold Ω0, we have

Ẇ = Wvv̇ + Wvv̇. (47)

Substituting (39) and (41) into (47), we get

Ẇ = (W20v + W11v + · · · )(iω0v + g) + (W11v + W02v + · · · )(−iω0v + g). (48)

Again, substituting (39) and (46) into (45), we have

Ẇ = (AW20 + H20)
v2

2
+ (AW11 + H11)vv + (AW02 + H02)

v2

2
+ · · · . (49)

Comparison of (48) and (49) gives

(A − 2iω0)W20(θ) = −H20(θ),

AW11(θ) = −H11(θ),

(A + 2iω0)W02(θ) = −H02(θ). (50)

Since ut = u(t + θ) = W(v, v, θ) + vq + v q, we have

ut =

⎛
⎜⎜⎝

u1(t + θ)

u2(t + θ)

u3(t + θ)

u4(t + θ)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

W(1)(v, v, θ)

W(2)(v, v, θ)

W(3)(v, v, θ)

W(4)(v, v, θ)

⎞
⎟⎟⎠ + v

⎛
⎜⎜⎝

1
p1
p2
p3

⎞
⎟⎟⎠ eiω0θ + v

⎛
⎜⎜⎝

1
p1
p2
p3

⎞
⎟⎟⎠ e−iω0θ . (51)

This gives

uj (t + θ) =
(

W
(j)

20 (θ)
v2

2
+ W

(j)

11 (θ)vv + W
(j)

02 (θ)
vv2

2
+ · · ·

)

+vpj e
iω0θ + v pj e

−iω0θ , (52)

where j = 1, 2, 3, 4, and p0 = p0 = 1.
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It can be observed that

φj (0) = vpj + v pj + W
(j)

20 (0)
v2

2
+ W

(j)

11 (0)vv + W
(j)

02 (0)
vv2

2
+ · · · , (53)

where j = 1, 2, 3, 4, and p0 = p0 = 1 and

φ2(−τ) = vp1e
−iω0τ + v p1e

iω0τ + W
(2)
20 (−τ)

v2

2
+ W

(2)
11 (−τ)vv

+ W
(2)
02 (−τ)

vv2

2
+ · · · (54)

From (41), it follows that

f0(v, v) = F = (
Fij

)
4×4 (v2, v2, vv, v2v)T , (55)

where

F11 = c11 + c12p1, F12 = c11 + c12p1, F13 = 2c11 + c12 (p1 + p1) ,

F14 =
(

c11+ 1

2
c12p1

)
W

(1)
20 (0) + (2c11+c12p1)W

(1)
11 (0) + c12

(
W

(2)
11 (0) + 1

2
W

(2)
20 (0)

)
,

F21 = c21 + c22p1 + c23p1p2 + c24p
2
2, F22 = c21 + c22p1 + c23p1p2,

F23 = 2c21 + c22 (p1 + p1) + c23 (p1p2 + p2p1) + 2c24p2p2,

F24 =
(

c21+ 1

2
c22p1

)
W

(1)
20 (0) + 1

2
(c22+c23p2) W

(2)
20 (0)+

(
1

2
c23p1 + c24p2

)
W

(3)
20 (0)

+ (2c21 + c22p1) W
(1)
11 (0) + (c22 + c23p2)W

(2)
11 (0) + (c23p1 + 2c24p2) W

(3)
11 (0),

F31 = c31 + c32p1e
−iω0τ , F32 = c31 + c32p1e

iω0τ ,

F33 = 2c31 + c32

(
p1e

−iω0τ + p1e
iω0τ

)
,

F34 =
(

c31 + 1

2
c32p1e

iω0τ

)
W

(1)
20 (0) + c32

(
1

2
W

(2)
20 (−τ) + W

(2)
11 (−τ)

)

+
(
2c31 + c32p1e

−iω0τ
)

W
(1)
11 (0),

F41 = c42p
2
3 + c41p2p3, F42 = c42p3

2 + c41p2p3,

F43 = 2c42p3p3 + c41 (p2p3 + p2p3) ,

F44 =
(

c42p3 + 1

2
c41p2

)
W

(4)
20 (0) + (2c42p3 + c41p2)W

(4)
11 (0)

+c41

(
p3W

(3)
11 (0) + 1

2
p3W

(3)
20 (0)

)
.

Since q∗(0) = 1
D

(1, p1
∗, p2

∗, p3
∗)T , we have

g(v, v) = q∗T
(0)f0(v, v)

= 1

D
(1, p1

∗, p2
∗, p3

∗)
(
Fij

)
4×4 (v2, v2, vv, v2v)T

= 1

2

(
g20v

2 + g02v
2 + 2g11vv + g21v

2v
)

, (56)
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where

g20 = 2

D

(
F11 + F21p1

∗ + F31p2
∗ + F41p3

∗) ,

g02 = 2

D

(
F12 + F22p1

∗ + F32p2
∗ + F42p3

∗) ,

g11 = 1

D

(
F13 + F23p1

∗ + F33p2
∗ + F43p3

∗) ,

g21 = 2

D

(
F14 + F24p1

∗ + F34p2
∗ + F44p3

∗) . (57)

From (48) and (49), we get

H(v, v, θ) = −2 Re
(
q∗T

(0)f0(v, v)q(θ)
)

= −2 Re (g(v, v)q(θ))

= −g(v, v)q(θ) − g(v, v)q(θ)

= −1

2

(
g20v

2 + g02v
2 + 2g11vv + g21v

2v
)

q(θ)

−1

2

(
g20v

2 + g02v
2 + 2g11vv + g21v

2v
)

q(θ). (58)

Comparing with (46), we have

H20(θ) = −g20q(θ) − g02q(θ),

H11(θ) = −g11q(θ) − g11q(θ),

H02(θ) = −g02q(θ) − g20q(θ). (59)

It follows from (29) and (50) that

Ẇ (θ) = AW20 = 2iω0W20(θ) − H20(θ)

= 2iω0W20 + g20q(0)eiω0θ + g02q(0)e−iω0θ . (60)

Solving for W20(θ) and W11(θ) from above equation, one gets

W20(θ) = ig20

ω0
q(0)eiω0θ + ig02

3ω0
q(0)e−iω0θ + E1e

2iω0θ ,

W11(θ) = − ig11

ω0
q(0)eiω0θ + ig11

ω0
q(0)e−iω0θ + E2, (61)

where E1 and E2 can be determined by setting θ = 0 in H(v, v, θ). In fact, we have

H(v, v, 0) = −2 Re
(
q∗T

(0)f0(v, v)q(0)
)

+ f0(v, v)

= −1

2

(
g20v

2 + g02v
2 + 2g11vv + g21v

2v
)

q(0)

−1

2

(
g20v

2 + g02v
2 + 2g11vv + g21v

2v
)

q(0)

+ (
Fij

)
4×4 (v2, v2, vv, v2v)T . (62)

Comparing the coefficients of the above equations with those in (47), it follows that

H20(0) = −g20q(0) − g02q(0) + (F11, F21, F31, F41)
T ,

H11(0) = −g11q(0) − g11q(0) + (F13, F23, F33, F43)
T . (63)
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By the definition of A and (30) and (50), we get
∫ 0

−τ0

dη(θ)W20(θ) = AW20 = 2iω0W20(0) − H20(0),

∫ 0

−τ0

dη(θ)W11(θ) = AW11 = − H11(0). (64)

One can notice that [
iω0I4 −

∫ 0

−τ0

eiω0θ dη(θ)

]
q(0) = 0,

[
−iω0I4 −

∫ 0

−τ0

e−iω0θ dη(θ)

]
q(0) = 0. (65)

Thus, we obtain [
2iω0I4 −

∫ 0

−τ0

e2iω0θ dη(θ)

]
E1 = (F11, F21, F31, F41)

T ,

[∫ 0

−τ0

dη(θ)

]
E2 = −(F13, F23, F33, F43)

T , (66)

where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 , E

(4)
1 )T , E2 = (E

(1)
2 , E

(2)
2 , E

(3)
2 , E

(4)
2 )T .

The above equation can be written as

(2iω0I4 − M1 − M2e
−iω0τ0 − I4iω0)E1 = (F11, F21, F31, F41)

T ,

(M1 + M2)E2 = (F13, F23, F33, F43)
T . (67)

From (61) and (67), we can calculate g21, and we can derive the following parameters:

C1(0) = i

2ω0

[
g20g11 − 2|g11|2 − 1

3
|g02|2

]
+ g21

2
,

μ2 = −Re (C1(0))

Re (λ′(τ0))
,

β2 = 2 Re (C1(0)),

T2 = − Im (C1(0)) + μ2 Im (λ(τ0))

ω0
. (68)

Thus, we have the following results:

Theorem 4 The periodic solution is supercritical (subcritical) if μ2 > 0 (μ2 < 0), the
bifurcating periodic solutions are orbitally asymptotically stable (unstable) if β2 < 0 (β2 >

0), the period of the bifurcating periodic solution increases (decreases) if T2 > 0 (T2 < 0).
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