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Abstract Recently there has been much interest in the possible quantum-like behavior of
the human brain in such functions as cognition, the mental lexicon, memory, etc., producing
a vast literature. These studies are both empirical and theoretical, the tenets of the theory in
question being mainly, and apparently inevitably, those of quantum physics itself, for lack
of other arenas in which quantum-like properties are presumed to obtain. However, attempts
to explain this behavior on the basis of actual quantum physics going on at the atomic or
molecular level within some element of brain or neuronal anatomy (other than the ordinary
quantum physics that underlies everything), do not seem to survive much scrutiny. More-
over, it has been found empirically that the usual physics-like Hilbert space model seems
not to apply in detail to human cognition in the large. In this paper we lay the groundwork
for a theory that might explain the provenance of quantum-like behavior in complex sys-
tems whose internal structure is essentially hidden or inaccessible. The approach is via the
logic obeyed by these systems which is similar to, but not identical with, the logic obeyed
by actual quantum systems. The results reveal certain effects in such systems which, though
quantum-like, are not identical to the kinds of quantum effects found in physics. These
effects increase with the size of the system.
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1 Introduction

The observation that certain brain functions seem to obey quantum rules goes back at least
to 1949, when Heinz von Foerster drew a compelling parallel between human memory
function and decay in quantum systems (6th Macy Conference on Cybernetics, 1949, pro-
ceedings published 1950, republished in [1]). More recently there has been a resurgence of
interest in the possible quantum-like behavior of the human brain in such functions as cog-
nition, the mental lexicon, memory, etc., producing a vast literature. These studies are both
empirical and theoretical, the tenets of the theory in question being mainly, and apparently
inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like
properties are presumed to obtain. (Some exceptions are discussed below.) For comprehen-
sive recent treatments see [2] and [3]. For an application in the spirit of the present paper,
see [4].

The elephant-like conundrum in the room is the provenance of this quantum-like behav-
ior. The obvious suspect, namely some actual quantum physics going on at the atomic or
molecular level within some element of brain or neuronal anatomy (other than the ordi-
nary quantum physics that underlies everything), does not seem to survive much scrutiny
[5]. Moreover, it has been found empirically that the usual physics-like Hilbert space model
seems not to apply in detail to human cognition in the large [6] and in fact our approach
here is not Hilbert space based. For other non-Hilbertian models completely different from
ours, see [7] and for a review of these matters see [8]. (For a probabilistic model more gen-
eral than ordinary Hilbertian quantum mechanics see [3]. For an argument in favor of a
classical, or non-quantum mechanical, effect via interference and synchronicity see [9]. We
shall return to these notions in the sequel.) As far as fundamental reasons for the existence
of this behavior are concerned, the matter seems to rest: the empirical results are generally
regarded as justifying the adoption of the tenets of standard quantum physics despite the
fact that these tenets seem not to apply in detail. So a mystery remains.

Classical systems, which do not exhibit quantum-like behavior, follow ordinary Boolean
logic. The systems we study, which may include neural systems that exhibit quantum-like
behavior, have states that we call “confusable”. These are states that are similar to one
another but are such that their small differences may affect the system’s behavior in cer-
tain ways not necessarily apparent to external systems. We call systems with confusable
states discriminating systems; we call other (classical) systems non-discriminating systems.
Discriminating systems and their quantum-like behavior can be described using a special
non-classical logic.

We shall argue that the logic intrinsic to such systems requires a small adjustment to,
or deformation of, the usual Boolean logic of non-discriminating systems, where here non-
discriminating means “confusable iff identical.” For such a non-discriminating system,
this logic, namely the collection of all possible propositions concerning the system, is the
Boolean lattice of all subsets of the set of states of the system. This Boolean lattice of propo-
sitions is replaced in the “discriminating” cases of interest here with a different kind of
lattice of subsets. These lattices differ in only one respect from the Boolean case, namely,
they are not distributive: the meet does not distribute over the join, nor the join over the meet,
an equivalent condition in any lattice. Such lattices are called ortholattices, the involution
taking the place of complementation in the Boolean case being called in this case the ortho-
complement. As we shall argue, this single difference, namely the non-distribution of meet
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over join, is sufficient to explain most if not all of the quantum-like behaviors which seem so
anomalous to classical thinkers. Just as ordinary propositional calculus (PC) is modeled by
Boolean lattices, so there is a logic modeled by ortholattices. It is called orthologic (OL) and
was first studied by R. Goldblatt [10]. This is the logic that emerges as the correct replace-
ment for PC in the models of interest, and we shall exploit various forms of its model theory
to reveal quantum-like attributes of these systems. We argue that certain of these models
already exhibit, in the total absence of physical trappings, such standard quantum-like clas-
sically anomalous behaviors as “quantum parallelism” (as in the fable of Schrödinger’s cat)
and “quantum interference” (á la the double slit experiment), though these phenomena are
not independent, both stemming from the peculiarities of quantum-like disjunction (Section 4).
As examples of such models we posit the sets of states of drastically simplified versions of
a “network” of the kind mentioned above. Namely, we shall, for the purpose of this paper,
except in the the simplest cases of Boolean or classical networks discussed in Subsection 6.1,
ignore the details of the network itself, returning to it in the sequel. We are left with the state
spaces of clusters of nodes, considered as discriminating systems, whose appropriate logic
is OL. We shall find that, in analogy with the case of aggregates of non-interacting physi-
cal quanta, our logical requirements impose quantum-like behavior on such clusters, though
apparently in a different form from actual quantum mechanics (Section 6.3).

We emphasize that our considerations here refer to the kinematics of the possible spaces
of states involved: that is to say, the states of affairs before the systems are “observed” or
“measured.” Thus the correspondent here to the problematic phenomenon known in ordi-
nary quantum theory as the “collapse of the wave-function” does not arise in this paper. It
will be addressed in the sequel.

The layout of the paper is as follows. Section 2 discusses the kind of model (or Kripke
frame) of interest which determines the logic OL as that which is modeled by its lattice of
propositions. Section 3 is a recital of the known model theory of OL and various closely
related topics which will form the foundation for what is to follow. Section 4 traces the
logical manifestations of quantum-like behavior in these models, namely parallelism and
interference, as mentioned above. In Section 5 we state a theorem and three of its corollar-
ies, which enables us to make precise the distinction between the presence of quantum-like
behavior and its absence. Its proof, along with other distracting mathematical material,
is relegated to an Appendix A. In Subsection 6.2 we discuss various examples both non
quantum-like and quantum-like. The case of a single node produces non quantum-like
behavior as expected but nevertheless the logic constrains this classical behavior in a pos-
sibly surprising way, and one which is entirely consistent with the behavior of a biological
neuron.

The last Subsection 6.3 considers the case of nodal clusters in which quantum-like behav-
ior is to be expected in the light of the theorem mentioned above, and we indicate how our
conclusions differ from the case of the ordinary quantum theory of collections of quanta. In
Section 7 we summarize our conclusions.

There are two appendices: Appendix A is the mathematical appendix mentioned above,
and Appendix B describes in very simple terms the structure and function of biological
neurons.

2 Proximity spaces and ortholattices

Our interest is in systems whose sets of states may be characterized as proximity spaces. A
proximity space 〈W,≈ 〉 is a set W with a relation ≈ on it having the properties: reflexivity
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(for w ∈ W , w ≈ w) and symmetry (for w, v ∈ W , w ≈ v iff v ≈ w). Such a relation,
called a proximity, is not generally transitive. Note that identity, =, is a proximity on any set.
A proximity relation has the informal intuitive reading: v ≈ w iff the state v is confusable
with the state w in the absence, say, of a direct observation or measurement, though the
states are discernibly different in general (except of course in the case of identity). In other
words, in the absence of any interference (such as a measurement), if such a system can be
surmised to be in the state v, it may as well, for all intents and purposes, be surmised to be
in the state w, and conversely. (For other similar interpretations and examples, see [11].)

This confusability of elements of W will now affect the practical operational matter of
assembling subsets of W . If the proximity were identity, =, then a subset E is trivially
assembled from its elements as

E =
⋃

v∈E

{v} (1)

=
⋃

v∈E

{w ∈ W : w = v} (2)

= {w ∈ W : ∃ v ∈ E such that w = v}. (3)

In the case of a general proximity, ≈, this must be replaced by

{w ∈ W : ∃ v ∈ E such that w ≈ v} =: ♦E. (4)

This is the set constructible out of the elements of E to within the limits of confusability.
Within the operational dictates of confusability, this is the closest to the set E one can get
by assembling its elements. Note that E ⊆ ♦E.

Similarly, since in the case of the identity proximity (and denoting set complementation
by the superscript c) we have

Ec = {w ∈ W : ∃ v ∈ E such that w = v}c (5)

this becomes, in the general case, (♦E)c and so, within the limits of confusability, we obtain,
as the proper generalization of ( )c, the subset

(♦E)∗ := ♦(♦E)c. (6)

For a proximity space 〈W,≈ 〉 the sets of the form ♦E, for E ⊆ W , were shown by J. L.
Bell [11, 12] to constitute a complete ortholattice, with join being the ordinary set union,
the concomitant meet of two elements ♦E and ♦F being the largest subset of the form
♦( ) contained within ♦E ∩ ♦F , and the complement given by ( )∗. Bell calls this lattice
the lattice of “parts” of 〈W,≈ 〉 and we shall follow him in denoting it by PartW since the
proximity relation will never be ambiguous. (See Subsection A.3 for more on the meet in
this lattice.)

The upshot is that the proper logic of propositions that deal “operationally” with the sys-
tems we are interested in, which generalizes PC in the Boolean case, is OL. Consequently
we shall adopt OL as our overarching logic when dealing with the systems of interest to us
here.

We shall therefore need first to rehearse the relevant material on this logic and its model
theory.
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3 Orthologic, modal logic and the Goldblatt completeness theorem

As mentioned above, orthologic (OL), which is in fact the core logic underlying echt
quantum logic, is a weakening of ordinary PC: one assumption is dropped, namely that con-
junction distributes over disjunction. In 1974 Goldblatt [10] introduced a deductive system
for OL and proved completeness theorems for it in terms of certain models. For example,
ordinary PC may be characterized by morphisms of formulas into Boolean lattices: a for-
mula is valid, or provable, in PC if and only if its image under any morphism into any
Boolean lattice is the top element. There is a similar completeness theorem for intuitionistic
logic (IL) with Boolean lattices being replaced by Heyting lattices. Goldblatt proved a sim-
ilar completeness theorem for OL, the target lattices in this case being ortholattices. (Since
Boolean lattices are ortholattices it follows immediately from the respective completeness
theorems that any orthotheorem is also a theorem of PC, but clearly not conversely: OL
is strictly weaker than PC). In the OL case the model theory bifurcates in the sense that
there is another kind of model that also characterizes OL, namely a Kripkean one. From
the existence of such models, one finds a different sort of semantics arising solely from the
peculiarities of disjunction, and it is this semantics—entirely absent in the classical Boolean
case—that mimics quantum behavior. This is because in the case of the slightly stronger
quantum logic itself, disjunction is exactly “quantum” superposition, the nexus of most if
not all of the puzzlements classical thinkers experience when confronted with quantum the-
ory. We remark that in the case of the Boolean models of PC these two types of model
collapse into one. The existence of these Kripkean models ofOL led Goldblatt to realize that
OL itself may be embedded into a well-studied modal system, namely the B (for “Brouw-
ersche”) modal system of Becker [13], which well predates the advent of quantum logic
in 1936 [14]. The same result was obtained almost simultaneously but independently by
Dishkant [15]: see also [16]. The associated Kripke models for this B-system also provide
a semantics for probing the anomalies of disjunction and it is these we shall focus on first,
since this system is well known, and reveals the quantum-like behavior clearly and simply.
In this section we give also a brief account of Goldblatt’s Kripkean completeness theorem
for OL (theorem 3): the models here are closer in their properties to actual quantum theory.

It will suffice for our immediate purpose here to rehearse the modal embedding theorem
for OL. Fairly complete though slightly simplified accounts of these matters, with proofs
and references, may be found in any of [17–19].

Goldblatt’s realization (ibid.) of OL as a deductive system may be described as follows.
The atoms, or primitive symbols, are

(i) a denumerable collection �0 of propositional variables a1, a2, . . .;
(ii) the connectives ∼ (“negation”) and � (“conjunction”); and
(iii) parentheses.

The set � of well-formed orthoformulas is constructed from these in the usual manner.
Elements of � will be denoted by lower case Greek characters α, β, ..., usually taken from
the beginning of the alphabet. We shall generally try to reserve characters at the end of the
Latin alphabet for elements of sets of various kinds.

Since there is no implication sign in �, a formal deductive calculus is based on sequents
involving at most single formulas and written in the form

α � β (7)

for α, β ∈ �, the reading of which is that β may be inferred from α. Certain sequents are
designated as axioms, and there are three rules of inference, namely, for any formulas α, β:
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AXIOMS

O1. α � α

O2. α � β � α

O3. α � β � β

O4. α �∼∼α

O5. ∼∼α � α

O6. α � ∼α � β

INFERENCE RULES

O7. α � β β � γ
α � γ

O8. α � β α � γ
α � β � γ

O9. α � β
∼β �∼α

A disjunctive connective may be introduced through the following definition

α 
 β := ∼((∼α) � (∼β)) (8)

and dual forms of O2, O3, O6 and O8 follow.
A string s1; s2; . . . ; sn of sequents is called a proof of its last member sn if each si is

either an axiom or follows from some preceding sequent through the use of one of the rules
of inference. If there exists a proof of a sequent α � β then we write

α �O β (9)

and say the β is deducible from α in orthologic. If α �O β for any formula α we say that β
is a theorem of orthologic or an orthotheorem, and we write

�O β. (10)

(Note that this is equivalent to α 
 ∼α �O β.)
The main result we shall utilize initially is the Modal Translation Theorem [10, 15, 16].

This requires a brief account of the modal system involved, namely the “Brouwersche” or
B-system of Becker (cf. for example [20–22]). To describe this system we introduce the
ordinary Boolean connectives ¬ (negation), ∧ (conjunction), and the modal operator �
(necessity). Material implication →, and the possibility operator ♦ are introduced through
the usual definitions (for example ♦ := ¬�¬). The axioms and inference rules include the
usual ones for PC with modus ponens, and the modal additions (for formulas α and β):

�(α → β) → (�α → �β) (11)

�α → α (12)

α → �♦α (the “Brouwersche” axiom) (13)

If α is deducible then �α is deducible. (Necessitation) (14)

We denote the set of modal formulas by �M . The theoremhood of a formula α is defined
as usual and we write

�B α (15)

if α is a theorem of the B-modal system.
(The origin of the odd nomenclature in (13) is that �♦ := �¬�¬ is like a strong form

of double negation and the rule in (13) is then similar to the rule p → ¬¬ p in IL, the form
of logic favored by L. E. J. Brouwer, whose converse is invalid in that system.)
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The completeness theorem for this system involves models of the following type. A
(Kripke) B-model is a triple B = 〈W, ≈, ϑ〉 where W is a set of “worlds” (later to be
renamed), ≈ is a proximity on W , and ϑ is a function ϑ : �M × W → 2, where 2 denotes
the two element Boolean lattice, satisfying:

V1. For each w ∈ W , ϑ( ,w) : �M → 2 is a Boolean valuation with respect to ¬ and
∧. That is:
ϑ(¬α,w) = ¬ ϑ(α,w) where ¬ on the right denotes complementation in 2 and
ϑ(α ∧ β, w) = ϑ(α,w) ∧ ϑ(β, w) where ∧ on the right denotes the meet in 2;

V2. For any modal formula α, ϑ(�α,w) = 1 iff ϑ(α, x) = 1∀x such that x ≈ w.
It follows that:

V3. ϑ(α ∨ β, w) = ϑ(α,w) ∨ ϑ(β,w) where ∨ on the right denotes the join in 2, and
V4. For any modal formula α, ϑ(♦α,w) = 1 iff ∃ x ≈ w (i.e. ∃ x with x ≈ w)

such that ϑ(α, x) = 1.

A modal formula α is said to be:
true at the world w in the B-model B, written w |=B α, iff ϑ(α,w) = 1;
true on the set E ⊆ W , written E |=B α, iff w |=B α for all w ∈ E;
true in the B-model B iff W |=B α;
B-valid, written |= α, iff it is true in all B-models.
These models characterize the B-system:

Theorem 1

�B α iff |= α

This is proved in the references cited. (Note that if we consider the ensemble of B-models
for which the proximity relation is taken to be that of identity, then the modalities collapse
and the logic so characterized is just ordinary PC. In this sense, the quantum-like behavior
to be discussed in the next section arises from deformations of the identity relation into
more general proximity relations in B-models.)

As noted, a translation of OL into the B-system was found by Goldblatt and indepen-
dently Dishkant. The translation recursively assigns to each orthoformula α ∈ � a modal
formula α◦ ∈ �M as follows:

T1. For atomic formulas ai : a◦
i = �♦ai

T2. (α � β)◦ = α◦ ∧ β◦
T3. (∼α)◦ = �¬ α◦

Then we have the following Modal Translation Theorem.

Theorem 2 For α ∈ �

�O α iff �B α◦

For proofs see the references already cited.
The translation of OL into the modal B-system is interesting and instructive, as we shall

see in Section 4, but of course the B-system is presumably a stronger logic. It will be
essential for later applications to state a completeness theorem for OL itself, which has a
somewhat similar Kripkean model theory, but yields a rather different semantics. As men-
tioned above, this is due to Goldblatt ([10]: see also [15, 16]). To state the result, some
terminology is required.
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An orthogonality space F = 〈W, ⊥〉 comprises a set W and a binary relation ⊥ which
is an orthogonality: namely, it is irreflexive (x x) and symmetric (x ⊥ y iff y ⊥ x). For
x ∈ W , Y ⊆ W we write x ⊥ Y iff x ⊥ y ∀y ∈ Y and define Y⊥ := {x ∈ W : x ⊥ Y }.
Note that each proximity space 〈W,≈〉 determines an orthogonality space 〈W,⊥〉 where
x ⊥ y iff x /≈y, and conversely each orthogonality space 〈W, ⊥〉 determines a proximity
space 〈W, ≈〉 where x ≈ y iff x y. It is easy to show that for any E,F ⊆ W , we have
E ⊆ E⊥⊥, and (E∪F)⊥ = E⊥∩F⊥. Note also that ∅⊥ = W andW⊥ = ∅. (cf. Section A).

In Goldblatt’s terminology Y ⊆ W is said to be regular if

Y⊥⊥ = Y. (16)

For reasons to appear, we shall call such subsets propositions.
The class R(〈W,⊥〉) of propositions of W constitutes a complete ortholattice under the

partial order given by set inclusion and ⊥ as orthocomplement. Note that W and ∅ are both
propositions.

A Kripke orthomodel M = 〈W, ≈, �〉 is a proximity space 〈W,≈〉 and a valuation
� : � → R(〈W,⊥〉) satisfying:

�(∼α) = �(α)⊥ (17)

�(α � β) = �(α) ∩ �(β). (18)

We will say that a formula α is:
true at the “world” w ∈ W , and write w �M α, iff w ∈ �(α);
true on a set E ⊆ W , and write E �M α, iff w ∈ �(α) for all w ∈ E—i.e. iff E ⊆ �(α);
true in the Kripke orthomodel M iff W �M α;
Kripke valid, and write � α, iff it is true in all Kripke orthomodels.
Then the Goldblatt completeness theorem is as follows:

Theorem 3

�O α iff � α

For proofs we refer to the references cited.
Now, returning to Section 2 in light of this model theory, our proximity spaces of states

are seen to provide Kripkean models for OL in which the valuations � take values in the
lattice R(〈W,⊥〉) of propositions. But our argument in Section 2 would seem to have iden-
tified the lattice PartW as the correct generalization of the lattice of Boolean propositions.
Fortunately, these notions coincide thanks to the following theorem due to J. L. Bell [11,
12]. Here ♦( ) is as defined in Section 2, and �( ) is as defined in (64).

Theorem 4 Given an orthogonality space 〈W,⊥〉:
♦ : R(〈W,⊥〉) → PartW (19)

is an isomophism of complete ortholattices. Its inverse is

� : PartW → R(〈W,⊥〉). (20)

A complete proof may be found in [17], section 2.4; see also [11]. We shall now generally
relinquish the lattice PartW in favor of the completely isomorphic lattice R(〈W,⊥〉) in
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those places where the Kripkean models are invoked. However, it will be used again in the
proof of theorem 5 given in Subsection A.3.

4 Quantum–like behavior in the models

With theorems 2, 3 and 4 in hand we can now investigate some semantics of orthotheorems
in these models.

By way of preamble, let us note some properties of actual quantum mechanics. In this
theory (which has passed every conceivable test over the course of nearly a century) a
“quantum” (such as a particle like an electron or a photon) is not an object in the classi-
cal macroscopic sense since it does not have objective properties or attributes. These will
generically depend upon the mode of obtaining information about them. The observation,
or determination, of one property (for instance, the momentum of an electron, say) will ren-
der another property indefinite (the electron’s position in this case) and vice versa. This of
course flies in the face of classical tenets about objects. This particular example epitomizes
the Heisenberg Uncertainty Principle, whose real import is that quanta do not have objec-
tive states of being. Instead, certain repertoires of actions may be specified as possible to
carry out upon a quantum, and it is the ensembles of these actions—which occupy a com-
plex Hilbert space—that determine all possible propositions that can be asserted about the
quantum. These Hilbert space elements may be thought of as descriptors of those possible
elementary experiments that can be done on the quantum, and as such they are not inher-
ent to the quantum, but rather inherent to the episystem, which is everything involved in
experimenting upon the system which is not the system itself, including the experimenter,
apparatus, etc. (cf. [23]). “Observers” correspond to different sets of elements and that
which is observed now depends on these sets, and are generically different among observers.
(Technically, an “observer” corresponds to an algebra of commuting Hermitian operators on
the Hilbert space in question, each such algebra determining an eigenbasis common to each
of its elements.) This is how the non-objective nature of the quantum manifests itself in the
formalism. The operational upshot of this is that a quantum can only be characterized per
“observer” or experimenter or episystem, by certain combinations, called superpositions,
of sets of measurable acts (namely, the eigenbasis mentioned above) which are in a sense
simultaneously potential, or in parallel. (This is the property that is exploited in the hopeful
science of quantum computing.) Only when a measurement or intervention occurs may the
superposition collapse onto a suitable eigenvector representing that act corresponding to the
measurement or intervention (whose eigenvalue is the value of the outcome). (This opera-
tional view is expounded for instance in [23]. See also [18], and for a treatment in the same
spirit [24].)

This realization by Heisenberg of the non-objective nature of quanta constituted a radical
departure from the ontology of macroscopic classical physics. For the systems of interest
to us here, we do not posit such a radical ontology. For these systems, the states are actual,
though they may not be directly accessible to “observers,” by which we mean possible
episystems, or other components of a family of systems. Thus, they reveal themselves, as in
the case of actual quantum mechanics, in terms of the orthological version of superposition,
namely orthodisjunction, via the modal translation theorem (Theorem 2). As we have noted,
this is how orthodisjunction is interpreted in actual quantum logic, whose models are certain
lattices of closed subspaces of complex Hilbert spaces, which we do not discuss here. It is
the strangely non-classical behavior of this disjunction that lies at the root of the discomfort
experienced by classical thinkers when confronted with quantum mechanics, as we have
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noted. These non-classical properties are preserved in OL and its models, entirely in the
absence of any physical trappings, as we shall now demonstrate.

Thus suppose B = 〈W, ≈, ϑ〉 is a B-model and α, β are two orthoformulas. We wish to
simplify the modal translation of the formula α 
 β (Theorem 2). It will prove convenient
to employ the formalism of truth sets. Namely, we write for each modal formula α:

‖α‖B := {w ∈ W : w |=B α}, (21)

called the truth set of α relative to B. Then, dropping the subscripts, and noting the
definitions in Subsection A.1, the following assertions are easily proved:

‖α ∧ β‖ = ‖α‖ ∩ ‖β‖, (22)

‖¬α‖ = ‖α‖c, (23)

‖α ∨ β‖ = ‖α‖ ∪ ‖β‖, (24)

‖�α‖ = �‖α‖, (25)

‖♦α‖ = ♦‖α‖. (26)

Then (from T1–T3 in Section 3)

‖(α 
 β)◦‖ = ‖(∼[(∼α) � (∼β)])◦‖ (27)

= ‖�¬ [(∼α)◦ ∧ (∼β)◦]‖ (28)

= ‖�¬ [�¬ α◦ ∧ �¬ β◦]‖ (29)

= ‖� [♦α◦ ∨ ♦β◦]‖ (30)

= �♦ (‖α◦‖∪ ‖β◦‖) fromM1 etc. of proposition 1 in Subsection A.1 (31)

= �♦ (‖α◦ ∨ β◦‖) (32)

= ‖�♦ (α◦ ∨ β◦)‖. (33)

Thus, for w ∈ W ,

w |=B (α 
 β)◦ iff w |=B �♦(α◦ ∨ β◦). (34)

The “semantics” is now given by just unfolding the definitions in the last formula,
namely:

In any state w ∈ W : ∀u ≈ w ∃ x ≈ u such that x |=B α◦ or x |=B β◦.
The points to notice are:

– The validity or otherwise of either α◦ or β◦ may not be definite nor even defined in
every state w. These may only be determined at at least one unknown daughter (i.e. w-
proximal) state, since w ≈ w, and unknown granddaughter states. (Since the proximity
relation is not transitive, these granddaughter states are not proximal, i.e. not confus-
able with the current state w.) This indefiniteness of validity in the current state is the
characteristic feature of (quantum-like) superposition. In the case of actual quantum
mechanics, the system would be said to be in a superposition (of states).

– The conditions for the validity or otherwise of both branches of the disjunction are
carried over to at least one unknown daughter state and many unknown granddaughter
states and must, to a classical thinker, therefore be somehow available to them. So, to
such a thinker, these potentialities must seem to coexist in some form over the span
of pairs of states proximally connected to the current state w. This interpretation of
superposition, in actual quantum theory, goes by the name parallelism.

After inspecting two examples we shall, in Section 5, delineate more precisely what we
mean by quantum-like behavior in a model of this type.
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4.1 Example 1. Schrödinger’s cat

Our first application will be to Schrödinger’s cat Ketzi. Here we take an atomic formula a to
represent the proposition Ketzi is alive. The appropriate orthotheorem is then �O a 
 ∼ a.
By theorem 2 this translates into the B-theorem �B (a 
 ∼a)◦. Our task is to simplify this
translation and investigate its behavior vis-à-vis B-models.

From (33) we have in any B-model:

‖(a 
 ∼a)◦‖ = ‖�♦(a◦ ∨ (∼a)◦))‖ (35)

= ‖�♦(�♦a ∨ �¬�♦a)‖ (36)

= ‖�♦(�♦a ∨ ¬♦�♦a)‖ (37)

= ‖�♦(�♦a ∨ ¬♦a)‖ from M9 (38)

= ‖�(♦�♦a ∨ ♦¬♦a)‖ from M1 (39)

= ‖�(♦a ∨ ♦�¬ a)‖ from M9 (40)

= ‖�♦(a ∨ �¬ a)‖ from M1. (41)

We now consider the elements of W to represent “states” of a system in which the
interpretation is carried out, and choose any w ∈ W . Then, from the last equation,

w |=B (a 
 ∼a)◦ iff w |=B �♦(a ∨ �¬ a). (42)

As before, the semantics is given by just unfolding the definitions in the last formula,
namely:

In any state w ∈ W : ∀u ≈ w ∃ x ≈ u such that x |=B a or x |=B �¬ a.
or

In any state w ∈ W : ∀u ≈ w ∃ x ≈ u such that x |=B Ketzi is alive or x |=B �Ketzi is
dead

If we interpretW as the set of states of Ketzi’s abuser’s box, in the absence of any external
interference, such as releasing the poison or opening the box, then the above interpretation
may be read:

In a given state w, ∀u ≈ w ∃ x ≈ u such that Ketzi is alive in state x or Ketzi is dead
in state x and remains dead at x-proximal states (since z |=B ¬ a for all z ≈ x). This
occurs at every state w.

Note here, as before, the appearance of the characteristic feature of “quantum” superposi-
tion: at some states w of the system the truth or otherwise of the proposition a may not be
definite nor even defined, as far as an episystem, or “observer,” is concerned. To a classical
thinker the truth value at such states would seem to hover between the two alternative possi-
bilities. This value is potential, not actual in such states, only determined at some unknown
daughter and many unknown granddaughter states, never at the state in question. Moreover,
the apparent retention of both branches of a decision tree of potential outcomes over two
generations, seems to classical thinkers to imply some sort of inherent joint existence or
storage of these two branches. As noted above, this is exactly (“quantum”) parallelism. So
to classical thinkers Ketzi seems to be dead and alive simultaneously in such states since to
them both outcomes seem to be somehow stored and the truth value of the proposition a is
always in abeyance, at least until the box is opened.
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The reader may note that these conclusions have been reached just by working through
the ineluctable algebra of modal logic, and that no metaphysical contortions concerning the
actual state of Ketzi as an object, her de Broglie wavelength, etc., were required.

The phenomena of “quantum” parallelism, and another quantum-like feature called
interference, may be more plainly seen in our second example.

4.2 Example 2. The double slit experiment

In this case we concoct another orthotheorem in the form of a disjunct. For instance sup-
pose the atomic formula ai , i = 1, 2, denotes the proposition the electron passes through
slit i. Then �O ai 
 ∼ ai is the orthotheorem representing the proposition the electron
passes through slit i or it does not and �O (a1 
 ∼ a1) 
 (a2 
 ∼ a2) is the orthotheorem
(its orthotheoremhood following from the dual forms of either O2 or O3) representing the
proposition the electron passes through slit 1 or the electron passes though slit 2 or the elec-
tron passes through neither slit. Writing this as �O α1 
 α2 it is an easy exercise using M1
and M9, and (33) and (41), to show that for an arbitrary B-model B and w ∈ W :

w |=B (α1 
 α2)
◦ iff w |=B �♦((a1 ∨ �¬ a1) ∨ (a2 ∨ �¬ a2)) (43)

As before, this unfolds as

For any state w ∈ W : ∀u ≈ w ∃ x ≈ u such that x |=B a1∨�¬ a1 or x |=B a2∨�¬ a2

which can be read:

For any state w ∈ W : ∀u ≈ w ∃ x ≈ u such that in the state x: (the electron goes through
slit 1 or stays away from it in all x-proximal states) or (the electron goes though slit 2 or
stays away from it in all x-proximal states).

As before, there may be states w at which nothing concerning the truth or otherwise of the
proposition can be determined or is defined. Moreover since in general (α1
α2)

◦ �= α◦
1∨α◦

2
we can have w |=B (α1 
 α2)

◦ without either w |=B α◦
1 or w |=B α◦

2. That is to say, it
might be the case that the proposition [(the electron goes though slit 1 or does not) or (the
electron goes though slit 2 or does not)] is valid at w without it being the case that either the
proposition (the electron goes though slit 1 or does not) is valid at w or the proposition (the
electron goes though slit 2 or does not) is valid at w. Thus, if the electron could go through
either slit independently (i.e.“classically”), the outcome would in general be different at
such a state—namely the latter ordinarily disjunctive case above—from the former case.
That is to say, the outcome for one slit is affected by the presence of the other slit. It would
appear to a classical thinker that the advent of the second slit interferes with the state of
affairs when the electron faces only one slit. This is “quantum” interference, which should
not be confused with the entirely classical phenomenon of the interference of waves, but
most often is. Although wave-like interference patterns emerge in experiments upon quanta
like electrons in the two slit experiment, they are not the result of the interference of actual
waves.

This fundamental non-classical property—namely the non truth–functionality of
orthodisjunction, so disconcerting to classical thinkers—emerges more clearly in the
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Kripkean models appearing in theorem 3. Namely, suppose we have an orthodisjunction of
the form α 
 β. Then in a Kripkean model M :

�(α 
 β) = �(∼(∼α � ∼β)) (44)

= �(∼α � ∼β)⊥ (45)

= (�(α)⊥ ∩ �(β)⊥)⊥ (46)

= (�(α) ∪ �(β))⊥⊥ from M10 (47)

⊇ �(α) ∪ �(β) from M5. (48)

Thus, there may be states w ∈ �(α 
β) that are not in �(α)∪�(β), or, in other words, there
may be states w such that w �M α 
 β but neither w �M α nor w �M β. (Cf. Section 5.)

It is this property that puts paid to any attempt to build a Curry–Howard type correspon-
dence for OL (or quantum logic).

It may be seen that the modal translation formalism used above, rather than the Kripke
orthomodel (which requires an interpretation in the family of propositional subsets rather
than locally at states) is useful for providing a local semantics relative to the proximity space
involved.

4.3 The hallmarks of quantum-like behavior

We digress briefly to recapitulate the characteristic signatures of quantum and quantum-like
behavior.

– Superposition. Firstly, there is the primary ontological revolution instigated by Heisen-
berg: namely, the non-objective nature of quantum entities or quanta. Their states of
being are not objective attributes. This manifests in actual quantum mechanics as the
superpositional nature of the states of a quantum. The “actual” state of being is indefi-
nite until a measurement operation or experiment is performed upon the quantum. In the
logical context here, superposition is achieved by the orthodisjunct, whose apparently
anomalous properties have been discussed.

– Parallelism. One interpretation or side-effect of superposition goes by the name of
parallelism, discussed above: this paradigm has been found useful, particularly in
application to quantum computing, though it is essentially just another name for
superposition.

– Interference. Yet again, superposition is responsible for the phenomenon known as
interference as in the double slit example. Here the situation obtaining for one slit is
apparently altered by the advent of another slit. The orthodisjunct responsible in this
interpretation is the one coming between other orthodisjuncts in the leftmost assertion
in (43).

5 Non quantum-like behavior vs. quantum-like behavior in the models

Although we have adopted OL as our overarching logic on the basis of the structure of
propositional lattices in general proximity spaces, there are cases in which this lattice is
in fact Boolean. In these cases the modality collapses on the lattice of propositions but
not necessarily on the entire set of subsets, so there might be a non-trivial local modal
semantics (as in the examples in Section 4) even in these cases. However, in these cases
the resulting semantics do not exhibit the orthodisjunctional anomalies to which we have
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attributed quantum-like behavior. In a sense, the Booleanness of the propositional lattice in
a model constrains the local modality just enough to prevent quantum-like behavior.

To be specific, we have the following.

Theorem 5 For an orthogonality space 〈W,⊥〉 the following are equivalent:

(1) The lattice R(〈W,⊥〉) is Boolean;
(2) For every E ⊆ W , (♦E)⊥ = E⊥;
(3) The modalities collapse on R(〈W,⊥〉). That is, for any proposition E, ♦E = �E =

E, and 
 = ∪ on R(〈W,⊥〉) so that it is a Boolean sublattice of the Boolean lattice
2W of subsets of W .

This is proved in Subsection A.3.

Corollary 1 If R(〈W,⊥〉) is Boolean, then as operators on subsets of W , �♦ = ♦.

This is proved in Subsection A.4.

Corollary 2 Suppose R(〈W,⊥〉) is not Boolean. Then there exists an orthotheorem of the
form α1
 α2, a Kripkean model M = 〈W, ≈, �〉 and a state w ∈ W such that

w �M α1 
 α2 but w �M α1 and w �M α2.

Conversely, if M = 〈W, ≈, �〉 is a Kripkean model and there exists an orthotheorem of the
form 
n

i αi such that for some w ∈ W we have w �M αi for all i, then R(〈W, ⊥〉) is not
Boolean.

This is proved in Subsection A.5.

Corollary 3 Suppose R(〈W,⊥〉) is not Boolean. Then there exists a modal theorem of the
form (α1 
 α2)

◦, a B-model B = 〈W, ≈, ϑ〉 and a state w ∈ W such that

w |=B (α1 
 α2)
◦ but w �B α◦

1 and w �B α◦
2 .

Conversely, if B = 〈W, ≈, ϑ〉 is a B-model and there exists a modal theorem of the form
(
n

i αi)
◦ such that for some w ∈ W we have w �B α◦

i for all i, then R(〈W,⊥〉) is not
Boolean.

This is proved in Subsection A.6.
(Of course the assertions on the left in both of the last two corollaries are redundant since

the formulas to the right of the turnstile are assumed to be theorems in the respective logics,
but we state them anyway to emphasize the non-classical nature of the disjunction in these
cases.)

The dichotomy is now clear. We shall attribute quantum-like behavior to those systems
any of whose states validate a finitely disjunctive orthotheorem as in corollary 2 (or the
modal version as in corollary 3). These are precisely the systems whose proximity spaces of
states have non-Boolean proposition lattices. We shall call a state validating some orthotheo-
rem which is an orthodisjunct of two or more orthoformulas a superpositional state or just a
superposition. So a system admitting a superpositional state of the above type—namely one
satisfying the negated assertions shown above for some disjunctional orthothereom—will
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be taken to exhibit quantum-like behavior. A proximity space with a Boolean proposi-
tion lattice cannot have any superpositional states of this kind, and therefore exhibits no
quantum-like behavior.

These results will be borne out in examples shown below (Subsection 6.2).

6 Neural-like networks

Brains are collections of many systems of extremely complex neuronal networks interacting
in complex dynamical ways. Considered ontologically in terms of states of these subsys-
tems, or sub-networks, such subsystem’s states are inaccessible and confusable until and in
case some effect is registered by other subsystems. It is these subsystems we wish to model
here, postponing a treatment of their possible interactions and integration to the sequel.
(While it is true that certain aspects of brain states may be measured in vivo from the outside,
like EEGs and fMRIs, our formalism must accommodate also such “observers” or “measur-
ing devices” as other subsystems of the brain or nervous system. For a careful discussion of
the problems of measuring brain function, see [25] chapter 3.)

Thus, our main example is modeled loosely on the idea of a neural network, though
omitting most of the assumptions traditionally ascribed to them. We shall consider networks
of nodes which are supposed to be capable of holding real values within certain ranges
depending on the node in question, perhaps transiently. We initially frame no hypotheses
concerning the network topology nor its possible physical attributes. The upshot is that for
a finite, though arbitrarily large, such network, of n nodes, say, we may characterize the
internal “states” of the system via the sets of allowed values in the nodes organized into
vectors in a certain region of real n-space, once an ordering of the nodes has been chosen.
We note, for use in subsequent work, that the associated network topology may be encoded
as an incidence or adjacency matrix and included in the state description. (Conclusions
should then be examined for dependency upon this ordering). We assume the system to
be possibly volatile and dynamically changing and to take into account growth, pruning,
change of topology, etc., within a large but finite domain of variation, we may adopt as our
model of the space of possible states for a single such network, an appropriate subset of a
real vector space of sufficiently high (but finite) dimension. Having done so, the question
arises as to what proximity to choose on these spaces of states. Here we note that two
normalized vectors in a Euclidean space of any dimension are identical if parallel and most
dissimilar when orthogonal with respect to the inner product determined by the nodes. So
our orthogonality relation among normalized vectors is just the one given by ordinary inner
product, denoted in what follows by a dot. That is, for non zero states x, y we have x

‖x‖ ⊥
y

‖y‖ iff x.y = 0 so that x ≈ y iff x.y �= 0.
In this article we shall confine our attention initially to the less volatile situation of a

fixed number of nodes, indicating in the sequel how the logic may be externalized to deal
with combinations of, and interactions among, different systems of this type, which will
yield a formalism to handle the waxing and waning of network size and complexity.

In de-emphasizing the usual details, our initial view of these structures can be thought
of as a coarse meta-level engagement with systems of daunting—indeed dismaying—
complexity: cf. the brain networks discussed in [25]. It is a view subject to almost arbitrary
refinement however, though our immediate aim is to reveal possible effects that may be
regarded as quantum–like.
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We shall start the discussion with the “digital” case, and some other kinds of restrictions
on the node values, in which the we do not expect to find quantum–like behavior. These
examples bear out the results in Section 5.

6.1 Some Boolean circuits

By “digital” we mean a network of the above type in which the nodal values are taken
from a finite set or alphabet. In the case of ordinary digital computers, this alphabet is
generally taken to consist of the bits, 1 and 0. Although an observation or intervention is
still required to “read” or ascertain the contents of an internal register, say, the fact that we
know that the alphabet is finite allows the conclusion that the only distinctions that can be
made between nodal settings are those between the settings that are completely different.
If two settings differ even in only one position, then they are completely different. That is
to say, two such settings are confusable iff they are identical, so identity is the appropriate
proximity. A Kripkean model M = 〈W, =, �〉 has in this case the family of propositions
R(〈W, �=〉) = 2W since for any subset E ⊆ W , E⊥ = Ec, so E = E⊥⊥ = Ecc so E is
a proposition. Thus, the logic so modeled is ordinary PC, there is neither parallelism nor
interference since the modalities completely collapse on all subsets and the now ordinary
disjunct satisfies

�(α ∨ β) = �(α) ∪ �(β) (49)

from (26), and the situation is completely classical.
We shall consider first the simplest non-trivial case of a network of two nodes, each

capable of being in one and only one of two states, namely ON or OFF, denoted by the
attribution respectively of the bit 1 or 0 to the node. Then we have W = {00, 01, 10, 11} in
an obvious notation, and there is not much more that can be said without further semantic
restrictions. Thus we now assume the simplest network configuration as shown in either of
the two diagrams in Fig. 1.

We postulate a pulsed flow of some discrete kind along the edge shown, from left to
right, perhaps a spike of current or a particle or charge. We may think of the values in a node
being reset periodically back to 0 (as would be associated with some physically transient
quantity). Then a single pulse consists of a 1 being sent along the edge (or channel) shown.
If we find the 1 in the leftmost node, after such a pulse, then the rightmost node must be
still at 0 (the upper diagram in Fig. 1). If on the other hand we find a 0 in the the leftmost
node, then the 1 must have gone all the way and turned ON the rightmost node (the lower
diagram in Fig. 1). Thus, by restricting the possible states to the proposition {01, 10} of W

we have produced the table for the Boolean circuit or gate known as the inverter.
Thus, let an atomic formula a stand for the proposition the current configuration conflicts

with the flow model and put �(a) = {00, 11}. Then the now classical Kripkean model has

�M a ∨ ¬ a (50)

Fig. 1 Inverter
1

1

0

0
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and w �M ¬ a iff w ∈ {10, 01}. So the interpretation of ¬ a (a pruned) in the model
M describes exactly the table of a Boolean inverter gate. Note that the flow model seman-
tics unequivocally “chooses” the negated branch of the now classical disjunct. There is no
parallelism and no interference.

The next example, though apparently almost as trivial, may in fact be regarded as telling
the whole story of Boolean gates, and therefore most of classical computer theory, in this
context. Namely, we consider the network depicted in Fig. 2.

Here again, from rest or reset, we pulse 1s simultaneously through both channels. If we
find a 1 in one left node and a 0 in the other, then the other 1 must have made it all the way
though so there must be a 1 in the right node. If we find a 1 in each left node then there must
be a 0 in the right node. If there are 0s in both left nodes, it means that both 1s have made it
to the right node turning it ON so that it is ascribed the value 1. Thus, the states consistent
with the flow model may be written {011, 101, 001, 110}. This is the table for the Boolean
NAND gate—when we interpret the left nodes in the obvious way as inputs and the right
node as output—and is well known to be universal among Boolean gates: any other may
be obtained by linking NAND gates together appropriately. A similar logical interpretation
applies here but of course remains a rather sterile exercise in the presence of the ordinary
Boolean disjunct: as before there is no parallelism or interference.

If we were to suppose that these particular configurations were selectively advantageous
in an environment of dynamically changing network topologies, growth and pruning, flows,
chemical baths, sources, sinks, etc., then these configurations may be selected and stabi-
lized, and the essential elements of Boolean computation may be seen to evolve. This is not
to suggest that these specific gate-like elements actually did evolve in biology, though other
network configurations, or motifs [25], certainly did, though very probably not for compu-
tational purposes. (For instance, the 3 neuron motif called the “dual dyad” by Sporns [25],
which seems to proliferate in certain areas of mammalian brains and were probably selected
because they seem to promote connectivity among subnetworks, may be obtained from our
NAND gate example by arranging the two input edges on the left to emanate from the node
on the right.)

6.2 Other Boolean situations and the case of a single node

The “digital” case, in which the states can be represented by bit strings, say, is not the
only case in which the lattice of propositions in a Kripkean model is Boolean. We illustrate
this phenomenon in the completely generalizable case of n = 2. Thus we suppose that the
allowable node values are real and non-negative, so that the set of possible vectors of values
comprises a product of intervals [0, t1 ] × [0, t2 ], with ti > 0 for i = 1, 2. As above, let us
adopt as proximity relation the one arising from the Euclidean inner product on R2: namely
for W := [0, t1 ] × [0, t2 ]�{(0, 0)} and v,w ∈ W , v ≈ w iff v.w �= 0. Now it is a simple

Fig. 2 NAND gate
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matter to determine the lattice of propositions R(〈W, ⊥〉). Choose an arbitrary vector in
W , w = (w1, w2) say. Then if w1 > 0 and w2 > 0, there are no vectors v ∈ W such
that v.w = 0, so that {w}⊥ = ∅ and {w}⊥⊥ = W . But {w}⊥⊥ is the smallest proposition
containing {w} by the remark following Proposition 2 (Appendix A). So the only proposition
containing any such positive vector is W .

On the other hand, if w1 = 0, the set of vectors V := {(λ, 0) : 0 < λ ≤ t1, λ ∈ R} is
exactly {w}⊥ in W and {w}⊥⊥ = {(0, μ) : 0 < μ ≤ t2, μ ∈ R}, namely the vectors parallel
to w lying in W . Consequently, the only propositions are W, V, V ⊥,and ∅ with the lattice
structure as depicted in Fig. 3.

This is isomorphic with the Boolean lattice 22, the lattice of subsets of the two element
set. The generalization to n nodes, with the corresponding W = ∏n

i=1[0, ti ]�{(0, . . . , 0)},
leads in a similar way to a Boolean proposition lattice isomorphic with 2n. But note that in
these cases the modalities do not collapse on the entire set of subsets, since, for instance,
♦{w} = W �= {w}.

In light of corollary 2 to theorem 5 the attempt in these cases to perform a modal semantic
analysis via the modal translation theorem (as in Section 4) is doomed to reduce to the case
of mere non-quantum-like indeterminacy.

It is clear from the geometry that if the node values are constrained in certain ways as
above, then the proposition lattices will remain Boolean. On the other hand, if the node
value ranges are differently disposed, then a non-Boolean lattice of propositions will result,
as we show below (Subsection 6.3).

This is not the case for n = 1: in this case, the associated lattice of propositions is
always Boolean. For, let us choose as the range of node values any interval I ⊆ R. Then
W1 := I �{0} and for x, y ∈ W1, x ≈ y iff xy �= 0. But then for any x ∈ W1, {x}⊥ = ∅
and {x}⊥⊥ = W1 so there are only two propositions W1 and ∅ and the lattice structure is
isomorphic to the simplest Boolean lattice 2, as is to be expected in this apparently trivial
case. (Note that in this case, for any x, y ∈ W1, we have x ≈ y).

However, in this case it is interesting to perform a modal analysis as in the examples
in Section 4. This can be done because in this case—as in the Boolean 2n case considered
above—although the lattice of propositions is Boolean, the modality does not collapse on
the whole of 2W1 . (For instance, for any non-empty E ⊂ W1, ♦E = W1 �= E.)

We emphasize that in the examples to follow, an “observer” cannot just read the values
in the nodes, since nothing is supposed to emanate from them until some event transpires,
such as a firing or turning ON of the node. Please see below.

Fig. 3 An isomorph of 22 W

V V
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So in this case of a single node, we can take further the semantics in the conclusion
of corollary 1 (cf. Subsection A.4) for the case of the single atomic formula as used in
the Schrödinger’s cat example in Section 4.1. The conclusion is, perhaps surprisingly, not
completely trivial.

Thus suppose the atomic formula a stands, for example, for the proposition the node
fires (or, as in the case of an actual neuron, reaches the threshold potential: cf. Section B.
We could as well say the node turns ON). Then the theorem �O a 
 ∼ a translates as in
Subsection 4.1 as �B (a 
 ∼ a)◦. Now suppose that B = 〈W1,≈, ϑ〉 is some B-model.
Since R(〈W1,⊥〉) is Boolean it follows from the converse to corollary 3 of theorem 5 that
for all w ∈ W1:

w |=B α◦ or w |=B (∼ a)◦ (51)

Thus
w |=B �♦a or w |=B �♦�¬ a, (52)

and from corollary 1 of theorem 5 on the left and M8 (Section A) on the right we obtain

w |=B ♦a or w |=B �¬ a. (53)

But in this case the� can be removed on the right since x ≈ y for all x, y ∈ W1. So, finally,
we have

w |=B ♦a or W1 |=B ¬ a, (54)

and this unfolds as in Subsection 4.1 to give:
In any state w ∈ W1:

∃ x ∈ W1 such that x |=B a or W1 |=B ¬ a, (55)

or
In any state w ∈ W1:

∃ x ∈ W1 such that the node fires at the non-zero value x or the node does not fire at all.
(56)

Of course, in certain respects this result is not exactly surprising: if the node fires at all
it must do so at at least one value, but it is perhaps worth stating it in the modal language.
Namely, we note that in any state (w), or at any time, say, if the node is firable at all, there is
some generically different state or non-zero value (x) at which this happens. Our formalism
has forbidden inclusion of the 0 state, since it is not confusable with itself. (At another state
w the node’s condition may be different. Without further restrictions a node may be firable
at one moment but not firable at the next.) This is of course classical behavior though the
value of x is not determined in the current state. This is indeterminacy, not parallelism, and
bears out corollaries 2 and 3 of Section 5 which assert that there can be no quantum-like
behavior if the proposition lattice is Boolean. Of course, the value of x (the threshold), may
be independent of w as it is in the case of actual neurons (Appendix B).

We might summarize this non-quantum-like, or classical, 1-node case by saying that the
node is generally in a state of potentially firing or not firing, i. e. potentially turning ON or
not turning ON.

This behavior surprisingly mimics the similar all-or-nothing operation of an actual bio-
logical neuron: it can fire at some value of its membrane potential, though this value cannot
be determined until the neuron is probed and/or or stimulated. And when these cells are
broken into, probed and stimulated, as they have been in laboratories over the course of cen-
turies, it is found that the threshold potential value is indeed non-zero, in consonance with
our model, though of course the actual potential does pass through the zero value during the
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cell’s firing phase. In an Appendix B, we give a vastly simplified account of the functioning
of real neurons, and other excitable cells.

Although the behavior of a single node is classical as expected, the behavior of a cluster
of more than one is not, as we will see in Subsection 6.3.

6.3 Non–Boolean examples: quantum-like behavior in nodal clusters

As remarked, if the node value ranges are appropriately disposed, then a non-Boolean lattice
of propositions will result. Again, the easily generalizable case of n = 2 will suffice to
demonstrate this. We now consider node values of the form [−si , ti ], si > 0, ti > 0,
i = 1, 2, so that W2 := [−s1, t1 ] × [−s2, t2 ]�{(0, 0)}. Then any vector w ∈ W2 has
an associated orthogonal 1-dimensional subspace {w}⊥ of R2 which now intersects W2.
Moreover, {w}⊥⊥ is the line containing w so the intersection of this line with W2 is the
smallest proposition containing {w}. Each intersection of W2 with a line of slope tan θ going
through the origin—call it Vθ—is thus a proposition, and these are the only ones lying
between ∅ andW2. Thus, the lattice structure in this case is that of an infinite Chinese lantern
as partially depicted in flattened out form in Fig. 4, with θ ∈ [0, π) and V(θ+ π

2 ) = V ⊥
θ ,

with the meridian thought of as lying on a circle, identifying the leftmost subspace with the
rightmost one. This is a non-Boolean ortholattice (indeed, it is orthomodular).

In this case we may expect to find quantum-like phenomena and indeed we do. With the
set of states of the form W2 = [−s1, t1 ]× [−s2, t2 ]�{(0, 0)} as above let us now denote by
the atomic formula ai the proposition the node i fires (or the node i is ON) for i = 1, 2. Now
the circumstances for each component node has changed since R(〈W2, ⊥〉) is non-Boolean.
We can define a valuation � on the atoms ai as follows

�(a1) = {(λ, 0) : λ ∈ R} ∩ W2 (57)

�(a2) = {(0, μ) : μ ∈ R} ∩ W2 (58)

with any propositions assigned to other atoms, and extend it inductively to all formulas.
Then it is obvious that there are an infinite number of w ∈ W2 such that in the Kripkean

model M = 〈W2, ≈, �〉

w �M ai 
 ∼ai but w �M ai and w �M ∼ai

for i = 1, 2. So each node now exhibits quantum-like behavior and can languish in Limbo-
like, unobservable superpositions of firing (or being ON) and not firing (or being OFF),
as in the case of Ketzi, as far as episystems are concerned. This is to be contrasted with
the case of only one node considered above, which is entirely different: classical though
indeterminate. The presence of the other node has made available more degrees of freedom,
that is to say more superpositional states, and has therefore induced quantum-like behavior
which had been entirely absent from the single node in isolation.

Fig. 4 A Chinese lantern
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To see this more clearly, let us introduce a numerical measure into the situation by asking
what the probability could be of a state w in one of our Wns (in an obvious notation) above
being proximal to—or confusable with—a state v ∈ Wn. We shall denote this by prob(w ≈
v), and note that we should have 0 ≤ prob(w ≈ v) ≤ 1, prob(w ≈ w) = 1, prob(w ≈ v) =
prob(v ≈ w) and prob(w ⊥ v) = 0. There is an obvious choice in our examples, namely

prob(w ≈ v) :=
(

w.v
‖w‖‖v‖

)2

(59)

where the norms denote Euclidean lengths. (An analogous identity obtains in actual quan-
tum mechanics but there it is not obvious. It goes by the name Born’s Law and was at first
added as an axiom. However, more recently it has been realized to be deducible from the
other axioms of quantum theory [18].)

Let us test this in the case of a single node, with the model as above. Here clearly we
have prob(x ≈ y) = 1, which is consistent with the fact that it is certain that x ≈ y for every
pair. This is a reflection of some observer’s ignorance of the contents of the node until the
node does something, like fire. (Of course in the case of an actual neuron, observers such
as humans, equipped with appropriate instruments, may detect intracellular or membrane
potentials when the cell is not firing, but the formalism must allow for all observers includ-
ing, for example, other networks in the same brain. The same is true in the case of actual
quantum mechanics.) Before such an event or observation, all possible non-zero values are
mutually confusable.

Let us now choose a general state w = (w1, w2) in the last 2-node example, and ask the
question: what is the probability that w is confusable with a state in which the first node
appears to behave as if it were alone, namely, as in the statement (56) summarized by saying
that the first node is in its classical state of being potentially firable or not, that is, potentially
ON or not? (Note that the W1 there is I �{0} which in the present example lies along the
axis in R2 determined by the first component of the ws). This is tantamount to calculating
prob(w ≈ (w, 0)), to wit

prob(w ≈ (w, 0)) =
(

(w1, w2).(w, 0)

‖w‖‖(w, 0)‖
)2

(60)

=
(

w1w

(w2
1 + w2

2)
1
2 |w|

)2

(61)

= w2
1

w2
1 + w2

2

, (62)

a result which is independent of w. Thus, in a general state w of the 2-node system, the
first node’s apparent behavior in isolation, though not quantum in itself, has only a certain
probability (< 1) of occurring. Likewise the second node. A similar effect obtains in a
system of n nodes, of course, and we notice that the probability of any particular node
appearing to behave in its isolated fashion when the system is in this general superpositional
state w decreases as n increases, since the denominator in (62) will increase with n. This
is certainly quantum-like behavior, and it increases with the number of nodes. Namely, the
apparent classical behavior of each node in a general state of an n-node system becomes
less probable with increasing n.

Put another way, as n increases, the number of superpositional possibilities, or families,
increases at least exponentially, namely at least as 2n−1−1: this is shown in Subsection A.7.
There is an increasing repertoire of states for the system to appear to be hovering among as
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the number of nodes goes up, while the probability of any one constituent node appearing
to behave as it would by itself, decreases: we note that a human brain is estimated to have
1011 neurons. The upshot is that this quantum-like behavior becomes more apparent as
complexity increases.

It may be noted also, from (62), that the probability in general that at least one node is in
a classical state is unity, since this probability is the sum over the node index of those shown
on the right hand side of that equation. (It is a simple matter to compute the probability of a
subset of k nodes to appear to behave classically in a general state, and the result is generally
< 1.) So it is certain that such a system, in any state, will have at least one (unknown)
classically behaving node while in that state, so that this node will either fire at a certain
non-zero value or not fire at any value. This situation would seem evanescent, since the
classically behaving node and its firing value could change with w. But what we have been
describing here is merely the kinematical template of all the possible outcomes and would
require in reality the imposition of some sort of external principle or principles, as in the
examples discussed in Subsection 6.1. For instance, it is known that in the case of biological
neurons, the firing or threshold value (x in (56)) would be constant across many species
(namely −55 mV), a finding not in conflict with our statement (56). (In actual physics, it
is usually a dynamical principle that confines a system’s actual states to subsets of its state
space. This is true of quantum physics also, but in this case it is the nature of the information
determined by the state that is different from the classical case.)

It may seem counterintuitive that two nodes are quantum-like while one node is not.
However, even a small cluster of neurons, say, embedded within a mass of other neurons, is
still a black box as far as our initial assumptions concerning these models are concerned. The
analogy here is not to a cluster of neurons sitting on a laboratory bench hooked up to gauges
and probes, but rather to a cluster of neurons embedded in a living brain. To predict the
actual statistical behavior forthcoming from our assumptions will require the development
of an appropriate theory of measurement, which is work for the future.

This multiple node case is similar to, but apparently not identical with, the situation in
actual physics in which there is a collection of non-interacting quanta: despite the lack of
mutual interaction, the quantum assumptions enforce certain statistics upon the quanta. This
raises the question of how to distinguish among such systems—for example a family of n

one node systems vs. an n-node system—which will be addressed in the sequel.
All these considerations (in the quantum-like cases) have been conducted in the absence

of any interaction posited between the nodes which would be effected by assumptions con-
cerning how they are networked and what characteristics the networks may have. In the
sequel we will follow up these arguments and consider problems we have not begun, or
only just begun, to address here. Namely: the nature of possible dynamics, entanglement of
states of different networks, network topology, and interaction of networks.

7 Conclusions

We have found the following kind of quantum-like behavior in clusters of n nodes of pos-
tulated “networks” under the presumption of confusability of internal states. Namely, in a
general state of the system:

– At least one node is certain to appear to behave classically—which is to say it is in a
state of potential firing or not firing, not in a superposition—but which node it is is not
determined by the system state.
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– The classical behavior of a specific node becomes less probable as n increases.

It would seem that as n increases the effect of massive superposition obliterates the influ-
ence of individual nodes, until some sort of measurement event or interaction intervenes to
destroy the superposition. And we note that the repertoire of such interventions is rather
limited: a node fires or does not fire.

Although this behavior is apparently quantum-like, it is unlike any actual physical quan-
tum system. In a general state of a nodal cluster, each node appears to play the role of a
qubit, in that it is generally in a superposition of two states, but an actual physical qubit
in isolation never exhibits the classical behavior of a single node of our type. It remains
in a superposition until a measurement operation is performed, whereupon the superposi-
tion collapses onto one of its two constituent states. Nor do we seem to have an analog
of quantum entanglement since the states here are generally not tensorial. (The entangle-
ment phenomenon might be expected when we have more than one cluster in some kind of
juxtaposition and this will be considered in the sequel.)

One upshot of these differences is the lesson that one should tread carefully when apply-
ing the paraphernalia of ordinary quantum theory to these systems. It would seem that a new
quantum-like theory needs to be developed ab initio, and we hope to take this up in further
work.
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Appendix A: Mathematical results

A.1 Modal identities

It will be convenient to record some modal identities. Let 〈W,≈〉 denote a proximity space,
with 〈W,⊥〉 denoting the associated orthogonality space. We have defined in Section 2 for
each subset E ⊆ W :

♦E := {w ∈ W : ∃ v ∈ E such that w ≈ v} (63)

and noted that E ⊆ ♦E. Dually, we define �E as

�E := (
♦Ec

)c
. (64)

Then we have:

Proposition 1 For 〈W,≈ 〉 as above and E,F ⊆ W :

M1. ♦(E ∪ F) = ♦E ∪ ♦F

M2. For a family F of subsets of W , ♦(
⋂

F∈F F) ⊆ ⋂
F∈F (♦F)
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M3. ♦E = (E⊥)c := E⊥c

M4. �E = Ec⊥ = {w ∈ W : Sw ⊆ E}
M5. E ⊆ E⊥⊥
M6. E ⊆ F implies F⊥ ⊆ E⊥
M7. E⊥⊥⊥ = E⊥
M8. �♦�E = �E

M9. ♦�♦E = ♦E

M10. (E ∪ F)⊥ = E⊥ ∩ F⊥
M11. E⊥ ∪ F⊥ ⊆ (E ∩ F)⊥

The proofs are elementary and may be found in the references cited (or [17, 18]).

A.2 Propositions in Kripke orthomodels

For a proximity space as above Dalla Chiara et al. [16] define a proposition to be a subset
X ⊆ W satisfying:

if x ∈ W is such that ∀ y ≈ x, ∃ z ∈ X such that y ≈ z, then x ∈ X. (65)

Equivalently, X is a proposition iff

Sx ⊆ ♦X implies x ∈ X. (66)

Then we have:

Proposition 2 1. For all X ⊆ W , �♦X = X⊥⊥ and X is a proposition iff �♦X =
X⊥⊥ = X.

2. X is a proposition iff x /∈ X implies ∃ y ≈ x with y ⊥ X.
3. For any Y ⊆ W , Y⊥ is a proposition.
4. If C is a family of propositions, then

⋂
C is a proposition.

5. If Y is a proposition, then X ⊆ Y iff ♦X ⊆ ♦Y .

Thus, from the first statement above, the two definitions of propositions (cf. (16)) are
equivalent. Note also that it follows from M5 and M6 that for a subset E ⊆ W , E⊥⊥ is the
smallest proposition containing E.

For proofs, see the references cited (or [17, 18]).

A.3 Proof of Theorem 5, section 5

(1) implies (2). Assume the lattice R(〈W,⊥〉) is Boolean. Then in view of theorem 4,
Section 3, PartW is also Boolean, hence distributive. The join in PartW is just set union
and we shall exploit its distributivity in this case. First we derive an expression for the meet
in this lattice which we shall write as �. Thus, for any subsets E,K of W :

♦E � ♦K = ((♦E)∗ ∪ (♦K)∗)∗ (67)

= ((♦(♦E)c) ∪ (♦(♦K)c))∗ (68)

= ((♦E⊥) ∪ (♦K⊥))∗ from M3 (69)
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= (♦(E⊥ ∪ K⊥))∗ from M1 (70)

= ♦(♦(E⊥ ∪ K⊥))c (71)

= ♦((E⊥ ∪ K⊥)⊥) from M3 (72)

= ♦(E⊥⊥ ∩ K⊥⊥) from M10. (73)

(It is not hard to show that this meet is indeed the largest subset of ♦E ∩ ♦K of the form
♦( ): that is to say, if ♦L ⊆ ♦E ∩ ♦K then ♦L ⊆ ♦(E⊥⊥ ∩ K⊥⊥) ⊆ ♦E ∩ ♦K .) Meet
distributes over join in any lattice iff the converse also holds, so if PartW is Boolean, hence
distributive, the following identity would obtain for any subsets E,F,G of W:

♦E ∪ (♦F � ♦G) = (♦E ∪ ♦F) � (♦E ∪ ♦G). (74)

The left hand side of this last equation is

♦E ∪ (♦F � ♦G) = ♦E ∪ ♦(F⊥⊥ ∩ G⊥⊥) from (73) (75)

= ♦(E ∪ (F⊥⊥ ∩ G⊥⊥)) from M1 (76)

= ♦((E ∪ F⊥⊥) ∩ (E ∪ G⊥⊥)). (77)

The right hand side is, from (73):

(♦E ∪ ♦F) � (♦E ∪ ♦G) = ♦((♦E ∪ ♦F)⊥⊥ ∩ (♦E ∪ ♦G)⊥⊥) (78)

= ♦((♦(E ∪ F))⊥⊥ ∩ (♦(E ∪ G))⊥⊥). (79)

If the the left hand side equals the right hand side for any subsets, take E = ∅ and G = F .
Then equality gives

♦(F⊥⊥) = ♦((♦F)⊥⊥) (80)

or
F⊥⊥⊥c = F⊥c⊥⊥⊥c (81)

or, from M7
F⊥c = F⊥c⊥c (82)

So
♦F = ♦♦F (83)

or
F⊥ = (♦F)⊥. (84)

This proves the assertion (2).
(2) implies (3). First we note that for any subset E ⊆ W

(♦E)c = E⊥ (85)

from M3. So if (84) holds we have

(♦E)c = (♦E)⊥. (86)

So if E is a proposition

E = �♦E (87)

= (♦E)c⊥ from M3 (88)

= (♦E)⊥⊥ from (86). (89)

But then

♦E ⊆ (♦E)⊥⊥ from M5 (90)

= E from (89) (91)

⊆ ♦E. (92)
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Thus E = ♦E if E is a proposition. But then, since E is a proposition

E = �♦E = �E. (93)

Since, for any proposition E,
E = ♦E = E⊥c (94)

we have
Ec = E⊥. (95)

Then the join (
) in R(〈W,⊥〉) is given by
E 
 F = (E⊥ ∩ F⊥)⊥ (96)

= (Ec ∩ Fc)c by the above and proposition 2(4), subsection A.2 (97)

= E ∪ F (98)

so that R(〈W,⊥〉) is just a Boolean lattice of subsets of W .
This proves (3).
Assertion (1), hence the theorem, follows immediately.

A.4 Proof of Corollary 1, section 5

IfR(〈W,⊥〉) is Boolean then we have shown above (95) that for any propositionE, we have
E⊥ = Ec. Then, since for any F ⊆ W , F⊥ is a proposition (proposition 2(3)), we have

F⊥⊥ = F⊥c (99)

which was to be proved.

A.5 Proof of Corollary 2, section 5

First note again that for elements E,F of R(〈W,⊥〉), from M10,

E 
 F = (E⊥ ∩ F⊥)⊥ = (E ∪ F)⊥⊥ ⊇ E ∪ F. (100)

Now suppose that for all propositions E in R(〈W,⊥〉) we have E 
 E⊥ = E ∪ E⊥. Since
E 
 E⊥ = W this entails E⊥ = Ec. Then it follows as in the proof of theorem 5(3) that

 = ∪ on the whole of R(〈W,⊥〉) so that the latter lattice is a Boolean sublattice of 2W ,
contradicting our assumption. Consequently there exists a proposition, F , say, such that

W = F 
 F⊥ �= F ∪ F⊥ (101)

so that the inclusion F ∪ F⊥ ⊂ F 
 F⊥ = W is strict and F cannot be empty (since
otherwise (101) would not hold). Now consider the orthotheorem a 
 ∼ a where a is an
atomic formula, and define �(a) to be F with any other assignments to the other atoms,
extending this assignment to formulas inductively in the usual way.

Then

W = �(a 
 ∼ a) (102)

= �(a) 
 �(a)⊥ (103)

= F 
 F⊥ (104)

⊃ F ∪ F⊥ (105)

= �(a) ∪ �(a)⊥. (106)

So, there exists a w ∈ W such that
w �M a 
 ∼ a but w �M a and w �M ∼ a.
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Conversely, if there exists an orthotheorem of the form 
n
i αi such that

⊔n
i �(αi) �=⋃n

i �(αi) then R(〈W,⊥〉) cannot be Boolean by theorem 5(3).
This proves the corollary.

A.6 Proof of Corollary 3, section 5

From corollary 2 there exists a modal theorem of the form (α1 
 α2)
◦, by theorem 2, and a

Kripkean model M = 〈W, ≈, �〉. Define, for atomic formulas ai , and w ∈ W

ϑ(ai, w) :=
{
1 if w ∈ �(ai)

0 if w /∈ �(ai)
(107)

and inductively extend it to all modal formulas via V1–V4 in Section 3. Then B = 〈W, ≈,

ϑ〉 is a B-model and it is easily proved that for any orthoformula α

‖α◦‖B = �(α) (108)

(cf. [17], proposition 2.5.1). Consequently (dropping the B subscripts),

‖(α1 
 α2)
◦‖ = �(α1 
 α2) (109)

= �(α1) 
 �(α2) (110)

⊃ �(α1) ∪ �(α2) (111)

= ‖α◦
1‖ ∪ ‖α◦

2‖ (112)

since from corollary 2 there exists a w ∈ W such that w ∈ �(α1) 
 �(α2) = ‖(α1 
 α2)
◦‖

but w /∈ �(α1) ∪ �(α2) and thus w |=B (α1 
 α2)
◦ but w �B α◦

1 and w �B α◦
2 which was

to be proved.
Conversely, suppose B = 〈W, ≈, ϑ〉 is a B-model, that there exists a modal theorem of

the type (
n
i αi)

◦ and a w ∈ W satisfying the stated condition. Define � on atoms ai by

�(ai) := ‖a◦
i ‖B = ‖ai‖⊥⊥

B (113)

and extend it inductively to all formulas. Then, for any formula α it follows from an easy
induction on complexity that:

�(α) = ‖α◦‖B. (114)

Then M = 〈W, ≈, �〉 is a Kripkean model forOL, and since it is assumed that �B (
n
i αi)

◦
we have also �O 
n

i αi by theorem 2. Now it is clear that for all i, w �M αi , for otherwise
there would be an i0 say, such that w ∈ �(αi0) = ‖α◦

i0‖, i.e. w |=B α◦
i0 contrary to our

hypotheses. The non-Booleanness ofR(〈W,⊥〉) now follows from the converse to corollary
2.

This proves the corollary.

A.7 Counting certain families of superpositions

A proposition in Wn is its intersection with a unique non-zero subspace of Rn. Each proper
non-zero subspace of Rn determines an orthogonal complement which is also proper and
non-zero. So each proper non-zero subspace of Rn determines a proposition in Wn along
with its orthogonal complement, and each such pair determines an infinite family of super-
positions, namely elements of Wn not contained in either the proposition or its complement.
(Note that in W2 there is only one such family, depicted as the meridian in Fig. 4, since each
member of any pair of linearly independent vectors is expressible as a linear combination
of any other independent pair, so any pair of orthogonal propositions determines the same
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family of superpositions.) These pairs of propositions may of course be used to represent an
orthotheorem of the form a 
 ∼ a in any Kripkean model based on Wn. Different families
of associated superpositions will now correspond two different pairs of such propositions.
Thus, to count the number of such families in the case of this special orthotheorem, we
need only determine the number of non-zero proper subspaces of Rn and halve it, to avoid a
double count of each pair. But each k-dimensional subspace of Rn corresponds to a unique
one-dimensional subspace of

∧k Rn and there are dim(
∧k Rn) = (

n
k

)
such independent

subspaces. So the number we seek is

1

2

n−1∑

k=1

(
n

k

)
= 1

2

(
n∑

k=0

(
n

k

)
−

(
n

0

)
−

(
n

n

))
(115)

= 1

2
(2n − 2) (116)

= 2n−1 − 1. (117)

Note the for n = 2 we do indeed get just one family of superpositions.

Appendix B: Neuron structure and function

We give a very brief and impressionistic account of neuron structure and function. Although
we will use the word “neuron,” much of what is described applies to other types of cell such
as nerve cells. (For this section see [26]. For a deep mathematical study of neuron dynamics,
and to get some idea of the complexity of neuronal internal states, see [27]). A neuron is a
specialized cell that functions in a node-like manner, is networked with other neurons, and
communicates with them via the chemical mediation of electrical impulses in a manner to be
described. A neuron generally has very many input channels, but only one signal is output,
though perhaps to many recipients. The inputs are branched projections, called dendrites, of
the neuron body, or soma, that conduct electrochemical signals into the body of the neuron
from other cells and neurons. The outgoing branch is a single pseudopod-like projection,
usually on the side opposite to the dendrites, called the axon. The active site where the
axon connects to the soma is called the hillock. The axon conducts a single electrochemical
output pulse or train of pulses, but may have many branching outputs at its end, called the
axon terminals. These then provide the input signals to the dendrites of other neurons. (The
axon can be immensely long relative to the size of the cell, as in nerve cells.)

The electrochemistry underlying this activity is extremely complex. In simple terms,
electrical potentials are formed across the cell membranes via the bidirectional flows
through the membrane of various types of ion: in this case mainly sodium and potassium
ions, though there is a multitude of other ions in this environment. These ion flows are con-
trolled by clusters of proteins embedded in the cell membranes (as they are in all cells)
called ion channels, which act upon ion flows like gates, pumps and/or valves. There is a
multiplicity of varieties of ion channel.

In its “resting” state, a neuron holds a potential of about −70 mV (millivolts) reflecting a
steady state of polarization between the internal and external ion flow states. If input signals
arrive from the dendrites, or groups of them, the cell depolarizes and its potential goes
up. The cell may then rapidly repolarize without issue if the signal is not strong enough,
in which case the signal does not penetrate very far into the soma. But if the stimulus is
strong enough to enable a threshold potential to be reached (at about −55 mV) then positive
feedback kicks in and there is a rapid depolarization and concomitant rise in the potential
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to a peak of about 60 mV. At some point during this rise, the signal penetrates the soma
and reaches the hillock, and the potential profile, or a train of copies of it, begins to be
conducted along the axon via a spontaneously choreographed succession of opening and
closing ion channels along the body of the axon. This is the point at which the neuron is said
to fire. Meanwhile, the cell body rapidly repolarizes and the action potential now plunges
down to around −90 mV, which has the salutary effect of preventing the signal from being
conducted back up the axon toward the soma. After a refractory period in this territory, the
potential rises again to the resting value of −70 mV. The time scales are roughly as follows:
the duration of the “spike” is about 0.5 ms (milliseconds); the entire duration of the action
potential, including the refractory period, between the two rest states, has a duration of about
5 ms. It should be mentioned that it is only the frequency of the output signal train that is
determined by the strength of the input signal, not the amplitude, which is independent of
the input signal strength.

(A couple of remarks are in order. Firstly, a set of equations describing the progress of
the action potential, called the Hodgkin–Huxley model, was proposed in 1952 and was con-
sidered a great advance in biophysics, winning for its authors two thirds of the Nobel Prize
in Physiology and Medicine in 1963. Secondly, the mode of transmission of a signal from
an axon terminal of one neuron, to a dendrite of another neuron, is not by direct contact but
rather through a complex intermediary mechanism involving synapses (presynaptic bodies
at the ends of axon terminals, with postsynaptic receptors at the ends of dendrites) and neu-
rotransmitters which are complex molecules of a large variety of types, including serotonin,
dopamine, tryptophan, histamine, etc. The elucidation of this mechanism, by J. C. Eccles,
garnered for its author the other third of the 1963 Nobel Prize in Physiology and Medicine.)
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