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Abstract Knowledge regarding the 3D structure of a protein provides useful information
about the protein’s functional properties. Particularly, structural similarity between proteins can
be used as a good predictor of functional similarity. One method that uses the 3D geometrical
structure of proteins in order to compare them is the similarity value (SV). In this paper, we
introduce a new definition of the SV measure for comparing two proteins. To this end, we
consider the mass of the protein’s atoms and concentrate on the number of protein’s atoms to
be compared. This defines a new measure, called the weighted similarity value (WSV), adding
physical properties to geometrical properties. We also show that our results are in good
agreement with the results obtained by TM-SCORE and DALILITE. WSV can be of use in
protein classification and in drug discovery.

Keywords Protein .Weighted similarity value . RMSD .Wigner-D functions

1 Introduction

In a quantitative manner, comparing two protein tertiary structures to evaluate their similarity
is a major challenge. A successful comparison can provide answers to some important
questions in structural biology, cell biology, and biochemistry [1]. In particular, it is believed
that functional similarity can be predicted from the structural similarity between proteins. The
3D structure of a protein is obtained by various experimental methods such as X-ray or
electron crystallography and sometimes NMR [2]. If there is no crystallographic structure of a
protein, computational structure prediction methods exist that use sequence similarity. In
sequence similarity, a technique called homology modeling is used based on the structure of
a known protein as a template to predict the structure of an unknown protein [3]. If structural
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information of the protein exists, there are methods that have been developed to compare the
structures [4–13].

Examples of methods based on numerical techniques to predict structural information are:
SCOP (Structural Classification of Proteins) [9, 10], CATH (Class, Architecture, Topology and
Homologous superfamily) [13], TM-SCORE [14, 15], STRUCTAL software [16], FSSP
(Families of Structurally Similar Proteins) [17] and DALILITE [18].

Recently, in Ref. [19], the similarity value (SV), as a geometrical-based structural property,
was introduced as a new protein similarity measure. The SV is an alternative measure to the
root-mean-square deviation (RMSD). ‘SV’ is defined as a normalized RMSD of the protein
distances in reciprocal space so that the protein’s atomic coordinates are mapped into the
corresponding Fourier space. There are theorems in mathematics that allow us to perform this
task by using Wigner-D functions and then by using crystallography concepts to arrive at the
structure factor [19]. The advantage of defining SV in the reciprocal space is that it solves the
known problem of different sizes of two compared proteins. Thus, there is no need to use
partial or local similarity tests. An example of using a method that relies on the partial RMSD
for computing the similarity value is STRUCTAL software [16]. SV is also sensitive to protein
topology (for a brief explanation regarding the differences between SVand other methods see
[19]).

In this paper, we propose an improved SV definition, called the ‘weighted similarity value’
(WSV) in order to add some important physical properties required to adequately compare any
two proteins. We define WSV by adding a lower limit on the reciprocal space dimension for
the two proteins that are being compared. This constraint ensures that we do not lose any
information in mapping from the protein’s spatial space to the reciprocal space. We also
consider the masses of the atoms as a physical property in the protein shape function. The
importance of adding mass to the shape function comes from the structure factors in X-ray
scattering data [20]. Thus, adding the atomic masses to the shape function provides more
reliable computed structure factors as we show later in this paper.

We compare the results regarding protein similarity obtained by WSV with NRMSD,
DALILITE, and TM-SCORE, and we show that our results are in good agreement with these
methods. DALILITE is a multiple alignment method, which is based on the alignment of the
amino acid sequences and the secondary structure states (helix, sheet, coil) of the two proteins
being compared [18]. Since DALILITE is a multiple alignment method, the results given by
DALILITE have multi-valued z-scores and corresponding similarity values between two
proteins [18].

The template modeling score (TM-SCORE) is a global fold similarity measure between two
protein structures with different tertiary structures and it is independent of proteins sizes. The
TM-SCORE is a normalized measure and has a value in the [0,1] range; when it is equal to 1,
the two proteins are similar [21].

2 Methods

RMSD is defined as a dissimilarity parameter between two proteins as follows:

RMSD2 ¼ 2

N N−1ð Þ
XN
i< j

XN
j¼2

di j−d
0
i j

� �2
¼ 2

N N−1ð Þ
XN
i< j

XN
j¼2

d2i j þ d
02
i j−2 di jd

0
i j

� �
ð1Þ

622 S. M. Saberi Fathi



where N is the number of proteins’ atoms and dij is defined as the elements of the distance
matrix between the atoms’ positions of a given protein, as is the case for dij

' . Here, we assumed
that the two proteins in question have the same number of atoms. If the numbers of atoms of
the two proteins are not equal, we should use a partial RMSD definition. RMSD is a semi-
bounded parameter (between zero and infinity). We now define ‘normalized RMSD’
(NRMSD) as a bounded similarity parameter between two proteins. First, we introduce the
following auxiliary parameter:

D2 ¼ N N−1ð Þ � RMSD2 ¼ 2
XN
i< j

XN
d2i j þ d

02
i j−2 di jd

0
i j

� �
ð2Þ

and define:

NRMSD ¼ 1

2
1−

D2

d21 þ d22

 !
ð3Þ

where d2 =2∑i<j
N ∑j=1

N dij
2 is the vector length (sum of the squares of arrays), as is the case for

d' 2. If the two proteins are not correlated, we have D2 =d2 + d' 2 and NRMSD = 0. If we have a
maximum correlation between these two proteins (two proteins are the same), i.e., D2 = 0, then,
NRMSD = 1/2. In the next step we define WSV.

The SV was defined by using the Wigner-D function in conjunction with a series
expansion of the protein’s shape functions [19]. The Wigner-D functions [22] describe
the surface of a 4-sphere and they are an extension of spherical harmonic oscillators
(SHO). The surface of a 4-sphere is a three-dimensional manifold, which can be
explored by using a set of three angles, defined as Euler angles. On the other hand,
Euler angles describe a motion in three-dimensional Euclidean space. Thus, we can
project a three-dimensional Euclidean space onto the three-dimensional manifold (4-
sphere surface). This means we project a body onto the surface of a 4-sphere. Adding
atomic masses, Matom to point coordinates gives gravitational attraction for a given
projected point. Thus, we define the protein shape function as:

f αi;β j; γk
� � ¼ M atom; if there is an atom with mass M atom

0; else where

�
ð4Þ

where i, j, k= 1, 2,…,N (N is the number of protein’s atoms) and Matom is the molar
atomic mass in the atomic mass unit (in the definition of SV for all atoms we have
Matom = 1). Here, (αi, βj, γk) are three Euler angles corresponding to the position of this
atom in the corresponding (xi, yj, zk) PDB (Protein Data Bank) entry. We now expand
a protein shape function in terms of the Wigner-D functions, Dlmn(α, β, γ), which span
a basis set as follows:

f α;β; γð Þ ¼
X∞
l¼0

Xl

m¼−l

Xl

n¼−l
ClmnDlmn α;β; γð Þ ð5Þ

where Clmns are the coefficients of the series expansion and they are unique for a
given function, f(α, β, γ). Some theorems in mathematics allow us to use the coeffi-
cients of expansion of a function by the Wigner-D function as a three-dimensional
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Table 1 A set of 48 protein structures with WSV, SV [19], and RMSD from Li et al. [1], NRMSD, TM-SCORE
[14, 15], and DALILITE [18]

First protein’s
PDB ID

Second protein’s
PDB ID

SV
[8]

RMSD
[1]

NRMSD WSV TM-SCORE
[16, 17]*

DALILITE
[18]*

Lmax

1A6W 1A6U 0.198 0.34 0.459 0.438 0.9958 100 11

1MRG 1AHC 0.401 0.43 0.325 0.416 0.9958 99 12

1RNE 1BBS 0.316 0.61 0.0706 0.284 0.9567 100-14 16

1RBP 1BRQ 0.108 0.62 0.49 0.0460 0.9865 100 10

1BYB 1BYA 0.499 0.43 0.499 0.497 0.9923 100 14

1HFC 1CGE 0.399 0.37 0.335 0.49 0.9636 100-5 10

3GCH 1CHG 0.070 1.10 0.427 0.328 0.0439 100-7 11

1BLH 1DJB 0.497 0.23 0.478 0.49 0.9984 100 11

1INC 1ESA 0.397 0.21 0.499 0.224 0.2633 100-4 11

1GCA 1GCG 0.499 0.32 0.498 0.499 0.9975 100-8 13

1HEW 1HEL 0.498 0.21 0.499 0.49 0.9975 100 9

1IDA 1HSI 0.083 1.07 0.497 0.449 0.9360 100 10

1DWD 1HXF 0.150 0.27 0.461 0.212 0.8795 100-2 12

2IFB 1IFB 0.382 0.37 0.499 0.468 0.9927 100-9 9

1IMB 1IME 0.498 0.22 0.499 0.499 0.9987 100 15

2PK4 1KRN 0.445 0.39 0.409 0.432 0.0802 100 7

2TMN 1L3F 0.266 0.62 0.497 0.09 0.9911 100 12

1IVD 1NNA 0.426 1.23 0.108 0.286 0.6688 49-4 18

1HYT 1NPC 0.332 0.88 0.470 0.107 0.9825 chain_1;
0.9795 chain_2

73 12

1PDZ 1PDY 0.499 0.66 0.499 0.49 0.9933 100-8 13

1PHD 1PHC 0.499 0.17 0.499 0.499 0.9994 100 13

1PSO 1PSN 0.499 0.33 0.49 0.499 0.9976 100-17 12

1SRF 1PTS 0.498 0.26 0.480 0.499 0.9694 100-1 11

1ACJ 1QIF 0.497 0.31 0.459 0.499 0.9908 100 15

1SNC 1STN 0.495 0.70 0.480 0.49 0.9741 100 9

1STP 1SWB 0.145 0.33 0.0284 0.362 0.9770 100-4 14

1ULB 1ULA 0.474 0.79 0.498 0.498 0.9674 94 12

2YPI 1YPI 0.165 1.27 0.499 0.0840 0.9727 100-5 14

2H4N 2CBA 0.498 0.20 0.465 0.499 0.9950 100 11

2CTC 2CTB 0.499 0.15 0.495 0.499 0.9995 100 12

5CNA 2CTV 0.034 0.40 0.0219 0.0063 0.9952 100 18

1FBP 2FBP 0.494 1.06 0.499 0.467 0.9600 100-5 17

2SIM 2SIL 0.499 0.14 0.499 0.499 0.9969 100-6 13

1MTW 2TGA 0.159 0.42 0.49 0.403 0.9837 100-5 10

1APU 3APP 0.498 0.40 0.498 0.499 0.9969 100-23 12

1QPE 3LCK 0.465 0.28 0.434 0.496 0.9984 2-4 12

5P2P 3P2P 0.480 0.42 0.49 0.457 0.9893 98 11

4PHV 3PHV 0.045 1.23 0.13 0.111 0.9268 99 10

3PTB 3PTN 0.122 0.26 0.499 0.292 0.9979 100 10

1BID 3TMS 0.499 0.24 0.499 0.499 0.9984 100 11

1OKM 4CA2 0.472 0.22 0.482 0.498 0.9986 100 11

4DFR 5DFR 0.496 0.82 0.0887 0.348 0.9725 99 12

3MTH 6INS 0.381 1.09 0.437 0.479 -- -- 8

6RSA 7RAT 0.440 0.18 0.158 0.463 0.9981 100 11
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Fourier transform of this function [23, 24]. Thus, in the above expansion, the Clmns
corresponds to elements of the three-dimensional Fourier transform of f(α, β, γ). From
crystallography considerations, it is readily recognized that these are the coefficients
of the crystal shape function as a structure factor [25]. Thus, Clmns are the protein
structure factors. Now, we can see why adding the masses of atoms is so important
because in X-ray scattering the atomic masses play an important role in determining
the corresponding structure factors [26]. Clmns can be obtained by the following
relation:

Clmn ¼ 2l þ 1ð Þ
8π2

Z Z Z
f α;β; γð Þ Dlmn

* α;β; γð Þ sinβ dβ dα dγ ð6Þ

where we have used the orthogonality relation between the Wigner-D functions as
follows:

Z Z Z
Dl

0
m0n0

* α;β; γð Þ Dlmn α;β; γð Þ sinβ dβ dα dγ ¼ 8π2

2l þ 1ð Þ δll0 δmm0 δnn0 ð7Þ

Now, in the reciprocal space, the two shapes (proteins) are described with the same
dimensions [19], however, they have different numbers of atoms. This is due to the use of
Wigner-D functions. The dimension of reciprocal space, NR, is given by:

NR ¼
X
l¼0

Lmax

2l þ 1ð Þ2 ¼ 1

3
Lmax þ 1ð Þ 2Lmax þ 1ð Þ 2Lmax þ 3ð Þ ð8Þ

where Lmax is an arbitrary maximum value chosen in the computation of Clmn.
The coefficients Clmns belong to the complex space and we can embed them in the (NR×2)

-dimensional Euclidean space such that S≡(Real(Clmn), Imaginary(Clmn)) where

Table 1 (continued)

First protein’s
PDB ID

Second protein’s
PDB ID

SV
[8]

RMSD
[1]

NRMSD WSV TM-SCORE
[16, 17]*

DALILITE
[18]*

Lmax

1CDO 8ADH 0.403 1.34 0.101 0.161 0.8304 55-8 16

7CPA 5CPA 0.132 0.40 0.499 0.128 0.9956 100 12

1ROB 8RAT 0.469 0.28 0.490 0.491 0.9955 100 8

1IGJ 1A4J 0.411 0.80 0.47 0.0707 0.2793 78-4 17

* For comparison, we have used TM-SCORE server at: http://zhanglab.ccmb.med.umich.edu/TM-SCORE/
** The numbers reported here are the maximum and minimum sequence identity of aligned positions in percent.
The data are given from the Dali server: http://ekhidna.biocenter.helsinki.fi/dali_lite/start/ .

– No value reported by the site
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Table 2 A set of 86 protein structures with WSV, SV [8], and RMSD from Li et al. [1], NRMSD, TM-SCORE
[16, 17], and DALILITE [18]

First protein’s
PDB ID

Second protein’s
PDB ID

SV
[8]

RMSD
[1]

NRMSD WSV TM-SCORE
[16, 17]*

DALILITE
[18]**

Lmax

1AD4 1AD1 0.499 0.50 0.463 0.498 0.9445 100-8 14

1AHX 1AHG 0.499 0.24 0.494 0.500 0.9989 100 17

1AUR 1AUO 0.499 0.20 0.499 0.499 0.9987 100-9 13

1AXZ 1AXY 0.498 0.12 0.499 0.500 0.9995 100 11

1GN8 1B6T 0.491 0.51 0.472 0.493 0.9904 100 12

1B9Z 1B90 0.494 0.54 0.499 0.500 0.9929 100-3 15

1LRI 1BEO 0.498 1.05 0.471 0.495 0.9317 99 8

1BUL 1BUE 0.499 0.18 0.482 0.500 0.9991 100 11

1BYD 1BYA 0.499 0.43 0.499 0.498 0.9923 100-5 14

1C3R 1C3P 0.202 0.39 0.11 0.141 0.9970 99 17

1C5I 1C5H 0.494 0.13 0.499 0.500 0.9993 100 10

1QJW 1CB2 0.498 0.63 0.495 0.495 0.9898 100-3 16

1CTE 1CPJ 0.499 0.29 0.492 0.500 0.9977 100 14

1SZJ 1CRW 0.499 0.33 0.499 0.498 0.9975 100 16

1ESW 1CWY 0.498 0.38 0.499 0.499 0.9978 100-4 14

1CY7 1CY0 0.155 1.12 0.45 0.085 0.9664 99-11 15

1DED 1D7F 0.481 0.26 0.364 0.499 0.9992 100-4 22

1P7T 1D8C 0.406 0.66 0.088 0.060 0.9827 97-4 21

1DMY 1DMX 0.499 0.19 0.499 0.500 0.9988 100 14

1DQY 1DQZ 0.052 0.75 0.0962 0.306 0.9494 99 15

1LP6 1DV7 0.471 0.56 0.126 0.443 0.9447 100-6 13

1E2S 1E1Z 0.499 0.13 0.492 0.500 0.9997 100 14

1ESE 1ESC 0.499 0.19 0.499 0.500 0.9991 100-8 12

6ALD 1EWD 0.477 0.44 0.434 0.435 0.9411 95-4 21

1NLM 1F0K 0.163 1.66 0.418 0.146 0.9454 15-6 16

1F4X 1F4W 0.488 0.25 0.499 0.500 0.9981 100-6 13

1JBW 1FGS 0.430 1.48 0.451 0.292 0.9286 100-3 13

1FR8 1FGX 0.498 0.54 0.490 0.493 0.9935 100 15

1LD8 1FT1 0.416 0.92 0.480 0.048 0.9852 96-6 17

1HVC 1G6L 0.345 0.46 0.12 0.428 -- 97-96 13

1LSP 1GBS 0.360 0.26 0.499 0.483 0.9973 100 10

1LC3 1GCU 0.458 0.77 0.4 0.405 0.9774 13-7 12

1GJW 1GJU 0.499 0.29 0.499 0.500 0.9989 100-7 16

1N75 1GLN 0.422 1.47 0.49 0.095 0.9665 99 14

1GOY 1GOU 0.476 0.47 0.464 0.160 0.9727 100 11

1H46 1GPI 0.193 0.15 0.499 0.253 0.9996 100 13

1GUZ 1GV1 0.383 0.62 0.483 0.327 0.9908 13-7 19

1YDD 1HEA 0.491 0.18 0.499 0.500 0.9991 100 11

1YDA 1HEB 0.498 0.20 0.499 0.500 0.9989 100 11

1KIC 1HOZ 0.420 0.35 0.486 0.246 0.9911 100 16

1A80 1HW6 0.466 0.93 0.413 0.484 0.9540 100-11 11

1I3A 1I39 0.498 0.40 0.499 0.500 0.9946 100 10

4AIG 1IAG 0.494 0.26 0.494 0.500 0.9946 -- 10

1JZS 1ILE 0.497 0.69 0.499 0.492 0.9952 100-7 17

1JQ3 1INL 0.493 0.35 0.480 0.500 0.9996 100-99 20
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Table 2 (continued)

First protein’s
PDB ID

Second protein’s
PDB ID

SV
[8]

RMSD
[1]

NRMSD WSV TM-SCORE
[16, 17]*

DALILITE
[18]**

Lmax

1JAY 1JAX 0.435 0.60 0.493 0.397 0.9884 100 13

1UEH 1JP3 0.499 0.67 0.451 0.499 0.9800 99 14

1JSO 1JSM 0.499 0.10 0 0.500 0.9998 100 14

1JYL 1JYK 0.208 0.94 0.0164 0.184 0.9724 99 18

1JVS 1K5H 0.351 1.16 0.253 0.067 0.7102 95-7 19

1K70 1K6W 0.497 1.08 0.499 0.499 0.9838 100-8 13

1M6P 1KEO 0.136 1.05 0.450 0.126 0.8779 100 12

3KIV 1KIV 0.467 0.30 0.458 0.478 0.9908 99 7

1KMP 1KMO 0.498 0.64 0.439 0.492 0.9393 97-1 16

2NGR 1KZ7 0.467 1.61 0.0536 0.233 -- 97 19

2MIN 1L5H 0.084 0.55 0.103 0.234 0.9546 99-5 24

1LL2 1LL3 0.496 0.37 0.480 0.500 0.7234 100 11

1LMC 1LMN 0.499 0.10 0.49 0.500 0.9994 100 8

1EYN 1NAW 0.208 1.02 0.112 0.221 0.9855 100-8 17

1BHT 1NK1 0.033 0.58 0.465 0.044 0.9879 100 13

1PBO 1OBP 0.143 0.38 0.343 0.277 0.9062 99 13

1OPB 1OPA 0.295 0.68 0.129 0.471 0.9808 100 15

1I75 1PAM 0.499 0.13 0.499 0.499 0.9998 100 20

1NME 1PAU 0.499 0.29 0.45 0.500 0.0643 100 11

1KEV 1PED 0.281 0.81 0.499 0.374 0.9864 100-10 20

1PIG 1PIF 0.495 0.32 0.499 0.499 0.9985 100-8 14

1PJC 1PJB 0.498 0.61 0.499 0.499 0.9942 100-9 12

1KLT 1PJP 0.168 0.97 0.358 0.409 0.9555 98-3 11

1QHG 1PJR 0.499 0.23 0.473 0.500 0.9974 100-6 16

1CEB 1PKR 0.041 0.58 0.0925 0.183 0.6458 100 9

2PK4 1PMK 0.417 0.71 0.101 0.139 0.9566 100 9

1BK9 1PSJ 0.494 0.24 0.321 0.500 0.9967 100 9

1QBB 1QBA 0.497 0.11 0.499 0.489 0.9999 100-5 22

1PYY 1QME 0.157 0.59 0.38 0.271 0.9775 99-5 15

1OSS 1SGT 0.367 0.27 0.488 0.408 0.9976 99-0 10

1SWN 1SWL 0.497 0.31 0.467 0.492 0.9941 100-1 14

1LBT 1TCA 0.440 0.24 0.0796 0.356 0.9987 100 15

1WBL 1WBF 0.371 0.39 0.122 0.197 0.9955 100 18

1YDB 1YDC 0.491 0.12 0.499 0.498 0.9996 100 11

1H0S 2DHQ 0.499 0.26 0.485 0.500 0.9856 10-5 9

1LLO 2HVM 0.498 0.12 0.499 0.500 0.9996 100-5 11

43CA 43C9 0.491 0.23 0.495 0.499 0.9965 100-22 18

5BIR 4BIR 0.487 0.61 0.0932 0.193 0.9714 100 10

5EUG 4EUG 0.498 0.21 0.499 0.500 0.9986 100 11

5EAU 5EAS 0.064 0.40 0.38 0.019 0.9976 99-3 16

7TAA 6TAA 0.499 0.24 0.499 0.500 0.9990 100-7 14

* For comparison we have used TM-SCORE server at: http://zhanglab.ccmb.med.umich.edu/TM-SCORE/
** The numbers reported here are the maximum and minimum sequence identity of aligned positions in percent.
The data are given from Dali server: http://ekhidna.biocenter.helsinki.fi/dali_lite/start/ .

– No value reported by the site
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S≡{Sij}, (i=1, 2,⋯,NR and j=1, 2) is a matrix of structure factors. In this step, we can define
an (NR×NR) -distance matrix for S and then, we define the SD parameter between two proteins
as follows:

SD2 ¼ 2
X
i< j

NRX
j¼2

NR

sdi j−sd
0
i j

� �2
¼ 2
X
i< j

NRX
j¼2

NR

sd2i j þ sd
02
i j−2 sdi jsd

0
i j

� �
ð9Þ

where sdij and sdij
' are the elements of the distance matrix in the reciprocal space of each of the

two proteins that is defined by:

sd2 ¼
S11 S12
⋮ ⋮
SNR1 SNR2

0
@

1
A S11 ⋯ SNR1

S12 ⋯ SNR2

� �

¼
S211 þ S212 ⋯ S11SNR1 þ S12SNR2

⋮ ⋮ ⋮
S11SNR1 þ S12SNR2 ⋯ S2NR1

þ S2NR2

0
@

1
A ð10Þ
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Fig. 1 dif histogram between WSV and NRMSD for 48 dataset
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Here, we add a constraint on the definition of WSV by always making sure that
NR ≥max(N1,N2) where N1 and N2 are the numbers of atoms of the two compared proteins.

Then, we define Lmax ¼ N
1=3
R −1

	 

where ⌊.⌋ indicates the integer part of the number

in the brackets. Now, we introduce a direct measure to characterize the similarity
between two proteins, which depends on their geometries and physical properties
(masses and positions of their atoms). Thus we define the weighted similarity values,
WSV, as:

WSV ¼ 1

2
1−

SD2

sd2 þ sd
02

� �
ð11Þ

where sd2 ¼ 2∑NR
i< j∑

NR
j¼1cd

2
i j, is the vector length (sum of the squares of arrays), as is the case

for sd' 2. If the two proteins are not correlated, we have SD2 = sd2 + sd' 2 and then, WSV = 0. If
we have a maximum correlation between these two proteins (two proteins are the same), i.e.,
SD2 =0, then, WSV = 1/2.

The range of atomic masses for the proteins is given in the following. The heaviest atom’s
weight in a protein can be a sulfur atom, with a mass about 32.065 a.m.u. and the lightest atom
mass is for hydrogen with a mass about 1.00794 a.m.u. We have also considered the atomic
mass of some metal atoms in the liganded proteins.

We also wish to compare WSV with the other measures of protein similarity, namely
(NRMSD, TM-SCORE, and DALILITE). We use these methods separately as targets and
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observe that WSV predicts the similarity or dissimilarity in close agreement with their
predictions. To analyze it in this way, we compute ‘sensitivity’ (or the probability of prediction
similarity between two proteins), ‘specificity’ (or the probability of prediction dissimilarity
between two proteins), ‘accuracy’ (probability that the WSV measure is true or what it is
supposed to measure), ‘precision’ (probability that if a test is repeated, it gives the same result),

Table 3 Differences between WSV and the other methods by using dif

NRMSD TM-SCORE DALILITE

48 dataset
(48)*

86 dataset
(86)*

48 dataset
(47)*

86 dataset
(84)*

48 dataset
(47)*

86 dataset
(85)*

Less than 10%
differences

60.5% 59.3% 63.9% 63.1% 61.7% 63.5%

Less than 20%
differences

66.7% 69.7% 68.1% 69.1% 68.1% 67.1%

More than 80%
differences

4.1% 5.8% 8.5% 4.8% 6.4% 4.7%

More than 90%
differences

0% 2.3% 2.1% 1.2% 4.3% 1.1%

*Number of proteins pairs compared. TM-SCORE and DALILITE have not given values for all protein pair
comparisons
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Fig. 3 dif histogram between WSV and TM-SCORE [14, 15] for 48 dataset
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and ‘F-score’ (probability of giving a positive (similarity) prediction, or performance of higher
sensitivity) [27] as explained below.

To compute sensitivity, specificity, etc., we first normalize TM-SCORE and DALILITE
(referred to as M-score) to 0.5. Thus, when M = 0.5, the two proteins are completely similar
and when it is 0, the two proteins are completely dissimilar. Then, we assume that a measure
that predicts similarity between two proteins does so with any value greater than 0.251 and
dissimilar proteins with a value less than 0.25. We have a true positive (TP) result when
both measures predict similarity, true negative (TN) when both methods predict
dissimilarity, false positive (FP) when WSV predicts similarity, and M-score predicts
dissimilarity and false negative (FN) when WSV predicts dissimilarity and M-score
predicts similarity. The definitions of sensitivity, specificity, etc., are given in Table 4.

We also compare WSV with the other scores by introducing a relative difference
between WSV and M-score as:

di f ¼ WSV−Mj j
WSV þMð Þ ð12Þ

1 When the TM-SCORE is less than 0.2 it corresponds to randomly chosen unrelated proteins whereas with a
score higher than 0.5 we generally assume the same fold in SCOP/CATH [21]. Here we normalized the TM-
SCORE to 0.5 (i.e., we divided it by 2).
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Fig. 4 dif histogram between WSV and TM-SCORE [14, 15] for 86 dataset
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When dif= 0, the WSV and M-score have the same prediction values and when dif= 1,
this means the WSV and M-score have totally different prediction values. In other
words, one predicts that the two proteins are similar and the other predicts that they
are totally dissimilar.

3 Results and discussion

In this paper, we defined WSV as a development of SV by including some physical
properties of proteins in its definition and a constraint on the dimension of the
reciprocal space. In Tables 1 and 2, we show a comparison of the WSV with SV
[19], RMSD, NRMSD, TM-SCORE [14, 15] and DALILITE [18] values for 48 and
86 datasets, respectively, where both liganded and unliganded proteins are listed in the
supplementary material of Li et al. [1] (these sets are reported in http://dragon.bio.
purdue.edu/visgrid_suppl). We reported only minimum and maximum similarity values
between two proteins predicted by DALILITE. The data acquisition for the TM-
SCORE [14, 15] was obtained by the Zhang Lab’s server http://zhanglab.ccmb.med.
umich.edu/TM-SCORE/ for 48 and 86 datasets (only 84 data of the 86 dataset and 47
data of the 48 dataset were used; because there are no TM-SCORE values) and for
DALILITE [18] it was obtained by the Holm’s Lab’s server: http://ekhidna.biocenter.
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Fig. 5 dif histogram between WSV and DALILITE [18] for 48 dataset
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helsinki.fi/dali_lite/start) for 48 and 86 datasets (only 85 data of the 86 dataset and 47
data of the 48 dataset were used because there are no DALILITE values).

A way to see how the mass of atoms and restriction on the space dimension
perform the similarity criterion between two proteins is to compute the WSV and SV
correlation with RMSD. The correlation between WSV and RMSD for the 48 dataset
is 0.45 and for the 86 dataset is 0.55, which are better than the correlation between
SV and RMSD for these two datasets, i.e., 0.32 and 0.36, respectively. In Ref. [19], a
complete discussion is given to explain why we do not expect to see a high
correlation between RMSD and SV (WSV). This is why we defined NRMSD for
comparison with WSV. NRMSD is a bounded parameter that removes the inconve-
nience of semi-bounded RMSD. Also, both the parameters WSV and NRMSD are
similarity criteria.

Figures 1 and 2 show the histogram of dif between WSV and NRMSD for the 48
and 86 datasets. We see that 60% of WSV and NRMSD prediction for the 86 dataset
have less than 10% differences and 70% of their prediction values have less than 20%
differences. The results for the 48 dataset also show a 60% agreement between WSV
and NRMSD with less than 10% differences and 67% for 20% difference of predic-
tion values. The disagreement between WSV and NRMSD by a 80% difference of
prediction values for the 48 dataset is equal to 4.5% and for the 86 dataset is equal to
5.8% (a summary of these results is given in Table 3). Figures 3, 4, 5, and 6 show
the histogram of dif computed between WSV and TM-SCORE and also DALILITE.
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These figures and also Table 3 show good agreement between WSV and these
methods.

Table 4 shows the sensitivity, specificity, accuracy, and precision of WSV com-
pared with the other scores (NRMSD, DALILITE, TM-SCORE) as targets. In
summary, as Table 4 shows, comparing WSV with NRMSD, the ‘sensitivity’ or
the probability that two proteins are determined to be similar by WSV is about
85.7% (80.0%) for the 86(48) dataset and the ‘specificity’ or the probability that the
two proteins are determined to be dissimilar by WSV is equal to 62.5% (37.5%).
The accuracy of the method (WSV) for the 86(48) dataset is 81.4% (72.9%) and the
precision is 90.9% (86.5%), which indicates that both measures show good agree-
ment between WSV and NRMSD predictions. The F-score for the 86(48) dataset
shows that the performance to give similarity prediction is about 88.2% (83.1%),
which is an expected result because the two datasets for the proteins examined here
are closely similar. These results show that WSV could be a good alternative
parameter for RMSD (or NRMSD); it does not involve the protein size issue and provides a
normalized similarity criterion between any two proteins. The results of the comparison between
WSV and TM-SCORE [14, 15] and DALILITE [18], in the same manner as for WSV and
NRMSD and reported in Table 4, show that a good agreement exists between WSV and these
methods’ predictions and also good precision of WSV.

All of the above results show that WSV appears to be a reliable alternative parameter for
RMSD (or NRMSD). WSV is a geometrical criterion while it also includes physical properties.

Table 4 The computation of sensitivity, specificity, accuracy, precision, and F-score for the 48 and 86 datasets

Sensitivity1 Specificity2 Accuracy3 Precision4 F-Score5

NRMSD 48 dataset(i) 0.800 0.375 0.729 0.865 0.831

86 dataset(ii) 0.857 0.625 0.814 0.909 0.882

TM-SCORE* 48 dataset(iii) 0.791 0.500 0.766 0.944 0.861

86 dataset(iv) 0.771 0 0.762 0.985 0.845

DALILITE** 48 dataset(v) 0.756 0 0.723 0.944 0.839

86 dataset(vi) 0.765 0.250 0.741 0.954 0.849

(i) TP (true positive) = 32 TN (true negative) = 3 FP (false positive) = 5 FN (false negative)= 8
(ii) TP = 60, TN = 10, FP = 6, FN = 10
(iii) TP = 34, TN = 2, FP = 2, FN = 9
(iv) TP = 64 TN = 0 FP = 1 FN = 19
(v) TP = 34 TN = 0 FP = 2 FN = 11
(vi) TP = 62 TN = 1 FP = 3 FN = 19
* Because there are no TM-SCORE values for some pairs we have compared 47 and 84 pairs of the 48 and 86
datasets, respectively
**Maximum similarity values in DALILITE results are compared with WSV. Also, there are no DALILITE
values for some pairs we have compared 47 and 85 pairs of the 48 and 86 datasets, respectively
1 Sensitivity = TP/(TP+FN)
2 Specificity = TN/(TN+FP)
3 Accuracy = (TP+TN)/(Num. of total population)
4 Precision = TP/(TP+FP)
5 F-Score = 2TP/(2TP+FP+FN)
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Moreover, it does not suffer from the protein size problem and it provides a similarity criterion
between two proteins as well as other criteria.

For computing WSV, we used an i7 laptop with 8 GB RAM. The time required to complete
this computation depends on the proteins’ sizes and on average it takes about 3 min (for small
proteins it takes about 1 min and for large proteins the computation takes about 6 min). In
Tables 1 and 2, we also show the Lmax used for each pair of proteins.

4 Conclusions

In this paper, we introduced WSV, which displays two major differences compared to
SV. First, we weighted the shape function by atomic masses, which stresses the impor-
tance of the individual atoms in the computation. Second, we extended the dimensions of
the reciprocal space at least up to the largest compared proteins’ sizes (measured by the
number of atoms). This condition ensures that we do not lose any information about
the proteins when we map them onto the reciprocal space. As discussed in the Results
and discussion section, these two changes in SV improve the correlation between
WSV with RMSD relative to SV. We compared WSV with NRMSD, TM-SCORE,
and DALILITE by using statistical concepts such as sensitivity, specificity, etc. The
results show good accuracy and precision for WSV. Also, we computed a relative
difference (dif) between WSV and other methods, which also shows good agreement
between WSV predictions and other scores. Our results confirm the reliability and
usefulness of our method and show that WSV can be used alternatively with RMSD
in helping to find protein similarity in various areas of protein science and in drug
discovery.

WSV is now defined as a geometrical structural score. To develop this work in the
future, it is suggested to define a score on both the WSV- and domain-based structural
methods. Also, we wish to emphasize that WSV is a geometric-based method,
sensitive to the protein's atoms positions and their masses. Thus, if one of these
parameters changes, WSV will also change. Apparently, for two structurally similar
proteins with dissimilar sequences, WSV does not give structural homologues as a
result. This hypothesis will be examined in our future research and if it is indeed
verified, this could present an advantage of WSV relative to SV or RMSD.

Acknowledgments I thank Dr. Jack A. Tuszynski (University of Alberta) for his helpful comments.
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