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Abstract A mathematical model is presented for the emergence of perceptual-cognitive-
behavioral modes in psychophysical experiments in which participants are confronted with
two alternatives. The model is based on the theory of self-organization and, in particular,
the order parameter concept such that the emergence of a mode is conceptualized as an
instability leading to the emergence of an appropriately defined order parameter. The order
parameter model is merged with a second model that describes adaptation in terms of a
system parameter dynamics. It is shown that the two-component model predicts hysteretic
mode-mode transitions when control parameters are increased or decreased beyond critical
values. The two-component model can account for both positive and negative hysteresis
effects due to the interaction between order parameter and system parameter dynamics.
Moreover, the model-based analysis reveals that response time curves look rather flat when
response times are relatively decoupled from the mode-mode transition phenomenon. In
general, response time curves exhibit a peaked close to the mode-mode transition point. In
this context, the possibility is discussed that such peaked response time curves belong to the
class of critical phenomena of self-organizing systems. In order to illustrate the relevance
of peaked response time curves for future research and research reported in the past, results
from a perceptual judgment experiment are reported, in which participants judged their
ability to stand on a tilted slope for various angles of inclination. Response time curves
were found that exhibited a peak around the mode-mode-transition points between “yes”
and “no” responses.
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1 Introduction

Fundamental aspects of human perceptual and cognitive processes as well as human behav-
ioral responses can be tested in laboratory settings in tasks that confront participants with
two alternatives. Perception tasks of ambivalent figures [1], certain grasping tasks [2–6],
problem-solving tasks featuring two different solution methods [7], stair-climbing tasks in
which participants judge their own ability to perform the task and either reject or execute the
required performance [8] exemplify problems studied in the literature to conduct research
into this direction.

Let us introduce the notion of perceptual-cognitive-behavioral processes in general and
how they can be understood from a self-organization perspective. Human activities may be
broken down in different processes such as perception, cognition, and behavior. A given
activity might be considered as the result of a sequential process that starts with the per-
ception of a stimulus, proceeds with a cognitive evaluation of the perceived information,
and is completed by a motor response depending on the outcome of the cognitive evalu-
ation. For example, when a human actor catches a flying ball, we may say that the actor
perceives the approaching ball, evaluates the situation at hand, and subsequently responds
with an appropriate motor action [9]. However, human activities may not only be the result
of such feed-forward sequences. For example, body movement may affect perception and
cognition (embodied cognition). That is, there might be relevant feedback loops. Likewise,
the human performance under consideration might not involve a cognitive component in the
sense of a computational element. Action might be guided directly by perception (direct per-
ception [10]). Consequently, in a first step, we introduce a perceptual-cognitive-behavioral
process without any theoretical framework in mind (i.e., as a catch-all phrase). Accordingly,
in what follows, we will refer to a perceptual-cognitive-behavioral process as a process
that involves at least either perception, cognition, or behavior or involves more than one
category. In doing so, we do not specifying whether these components are connected by
feed-forward connections or exhibit feedback loops. Neither do we make a statement about
the relevance of computational components. In contrast, in a second step, we specify the
theoretical framework and assume that the theory of self-organization can be applied to the
perceptual-cognitive-behavioral process underconsideration.

In this context, note that perceptual-cognitive-behavioral processes can be studied on
various levels such as the cellular level, the neural level, the level of muscle activity,
and the behavioral level. In general, such processes are associated with the emergence of
certain neuro-biological patterns. In what follows, we assume that the processes from a phe-
nomenological point of view and the physical, spatio-temporal patterns from a mechanistic
modeling point of view arise due to self-organization [11–16]. In this context, a pattern
exhibits order. The order emerges via bifurcations. The emergence of a pattern, in turn, is
captured by the dynamics of certain amplitudes that have been called order parameters [17].
While the order parameter dynamics is a useful concept for the understanding of the self-
organization of psychological processes [18–20], another concept is needed to account for
the plasticity of the human brain in general and learning and adaptation in particular. This
concept is the notion of system parameters that change, that is, the notion of a system
parameter dynamics, see Table 1. We will show that a comprehensive understanding of hys-
teretic transitions between different modes of a given psychological process can be achieved
by means of a combination of the two aforementioned concepts: the order parameter
dynamics and the system parameter dynamics.

According to the order parameter concept [17], different modes of perceptual-cognitive-
behavioral processes are associated with different physical, spatio-temporal patterns. Such
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Table 1 The two key concepts under consideration and phenomena that have been addressed by these
concepts

Phenomena/Subtopics Mathematical key variables

Self-organization and emergence of modes Order parameter dynamics [14]

of perceptual-cognitive-behavioral processes

and mode-mode transitions

Human brain plasticity System parameter dynamics [21]

patterns, in turn, can be described by a field variable q(x, t). In general, q has several com-
ponents and corresponds to a vector-valued field variable. Likewise, x is a spatial coordinate
in a N -dimensional space and represents a vector. Here, for clarity of presentation, we will
consider q as a scalar variable and x is a coordinate in a one-dimensional space. Moreover,
t is time. The spatio-temporal pattern q(x, t) can be expressed by means of a set of ele-
mentary spatio-temporal patterns (or physical modes) vk(x, t) that satisfy the task-related
boundary conditions. The pattern decomposition reads

q(x, t) =
M∑

k=1

ξk(t)vk(x, t) + other terms. (1)

The variables ξk are the amplitudes of the elementary patterns vk(x, t). The amplitudes ξk

depend on time t again. In (1) we have written out explicitly the first M terms given in
terms of products of elementary patterns and amplitudes. The term denoted “other terms”
involves additional terms that come with additional patterns and amplitudes. In principle,
the set of patterns and amplitudes is infinite. If only one of the amplitudes ξk is finite,
say ξj , whereas all other amplitudes ξk are zero (i.e., ξk = 0 for k = 1, . . . , j − 1, j +
1, . . . , M) and if in addition the term ”other terms” is negligibly small, then the pattern vj

and the corresponding perceptual-cognitive-behavioral mode j can be observed. We may
assume that an experiment is designed such that in the experiment M modes of a certain
perceptual-cognitive-behavioral process can be observed. Without loss of generality, we can
assign them to the first M patterns listed in the pattern decomposition (1). Then, the M

amplitudes ξ1, . . . , ξM are the order parameters of the system. Note that this terminology
strictly speaking only holds when a particular symmetry condition is satisfied as considered
by Haken [18]. This symmetric case can be observed in non-equilibrium, inanimate systems
such as fluid dynamical systems operating at the Rayleigh–Benard instability and exhibiting
roll patterns [18]. Below we will consider the asymmetric case. In this case, we may refer to
the amplitudes as “order parameter candidates” or “potential order parameters”. We will not
dwell on this subtlety and simply refer to ξk as order parameters or amplitudes. In particular,
in tasks involving two alternative modes as described above, we may put M = 2 and refer
to ξ1 and ξ2 as the two order parameters or amplitudes of the task-related modes under
consideration.

According to the theory of self-organizing systems, a pattern vk emerges via a bifurca-
tion [14, 17, 18]. At that bifurcation point, the terms “other terms” can be eliminated by
means of adiabatic elimination and the relevant dynamics is given by the order parameters
ξk only. In doing so, the system that in principle is described by an infinitely large set of
patterns can adequately be described by means of a few patterns only involving a relatively
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small set of amplitudes. For a certain, general class of systems that operate far from ther-
mal equilibrium (non-equilibrium systems), the evolution equations of ξk can be determined
explicitly. These evolution equations are the pattern formation and pattern recognition
amplitude equations introduced by Haken [18], see Section 2. They have various applica-
tions both in the inanimate world and the life sciences [18, 22]. For example, they describe
the emergence of roll patterns [18, 23] and rotating wave patterns [24] in fluid dynamical
systems in Rayleigh–Benard convection. They have been used to describe oscillatory visual
perception of ambivalent figures (e.g., Necker cube) [1] and behavioral switching between
two alternative modes of grasping when the to-be-grasped objects increase in size [6, 25,
26]. They have been used to describe action-selection in the context of child development
[25, 27] and to discuss the impact of priming on recognition times [28, 29]. In the field
of artificial intelligence, they have been used as a pattern recognition algorithm mimicking
associative-memory neural networks [18, 30–35]. They have also been applied to solve job
assignment problems [36–39] and to model settlement dynamics [40].

In this context, note that the theory of dynamical systems allows us to make predictions
about the behavior of dynamical systems in general and self-organizing systems in particu-
lar at bifurcation points. It can be shown that the emergence of a pattern vk via a bifurcation
involves critical phenomena such a critical slowing down and critical fluctuations [17, 41–
45]. In experimental studies, such critical phenomena have been found in the inanimate
world and the life sciences. For example, critical phenomena have been observed during
the emergence of roll patterns in fluid layers heated from below [46–48] and in optical sys-
tems in which so-called dissipative solitons emerge due to self-organization [49]. Likewise,
they have been found in experiments on human motor coordination, in which participants
switched between two distinct motor coordination modes [50–55]. In Section 3.3 it will
be argued that such critical phenomena may give rise to peaked response time curves of
participants performing in the aforementioned two-choice tasks.

As mentioned above and illustrated in Table 1, in addition to the concept of order param-
eters, there is another useful concept that is tailored to address the plasticity of the human
brain. Although the phrase “order parameters” refers to “parameters”, order parameters are
in fact time-dependent variables (amplitudes), see (1). They should be considered as vari-
ables that describe the state (or type of order) of a system and consequently belong to the
class of state variables. The state variables and order parameters evolve in a certain way
for fixed internal and external conditions of the systems or human agents under consid-
eration. These conditions are typically described by parameters. In order to highlight the
conceptual difference between those parameters and order parameter, we may refer to the
former as “system parameters”. In summary, we may distinguish between order parameters
and systems parameters or between state variables and system parameters [21]. The system
parameters that are assumed to be time-independent in the first place may become time-
dependent under certain circumstances, for example, during learning and adaptation. In this
case, the distinction between state variables/order parameters, on the one hand, and system
parameters, on the other, becomes less clear. However, one may consider the case in which
system parameters evolve slowly relative to the state variables/order parameters [6, 30, 56].
Such a time-scale separation (see Appendix A) can then be exploited for classification pur-
poses. In general, learning of neural networks via changes of synaptic weights [14] may
be considered as a system parameter dynamics. Moreover, the concept of dynamical dis-
eases [57–59] and the recently developed proposal of therapy success as a bifurcation [20,
60] that is, the notion that certain disease patterns emerge and disappear via bifurcations
due to disease-related and therapy-related changes of system parameters, assumes that
system parameters are (slowly evolving) time-dependent variables rather than fixed con-
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stants. In addition, the learning of new coordination patterns [13, 61], motor performance
during prism adaptation [62, 63], and recently the adaptive interaction between humans and
a virtual partner in dyadic rhythmic movement tasks [64] have been modeled using sys-
tem parameter dynamics. In a similar vein, other phenomena such as attention [18, 30],
priming [62, 63], and child development [25, 27] have been considered. In our context,
the studies on visual perceptual oscillations [1], negative hysteresis [56, 65], and relapse
due to medical non-adherence [66] are of particular interest. While a drift (change) of the
values of system parameters in general affects the dynamics of state variables and order
parameters, in these studies the idea has been entertained that the opposite can be true as
well: a switch between order parameters (indicating a mode-mode transition of the ongoing
perceptual-cognitive-behavioral process) may affect the evolution of system parameters.

In fact, the objective of the present effort is to study from a theoretical point of view the
interplay between order parameter and system parameter dynamics and to discuss in this
context hysteresis effects and response times. To this end, in Section 2 the model outlined
in Fig. 1 will be developed. Accordingly to this model, a switch between order parameters
ξk reflecting a transition between alternative modes of a perceptual-cognitive-behavioral
process may affect the evolution of certain system parameters Lk . The relevant coupling
parameters will be denoted by sk , see Section 2. Vice versa, a change in the values of the
system parameters Lk may affect the evolution of the order parameters ξk and may even
induce bifurcations corresponding to transitions between alternative perceptual-cognitive-
behavioral modes. The relevant coupling parameters will be denoted by λk , see Section 2.
The coupling parameters λk take also environmental impacts into account as captured by
the parameter α. In doing so, the scheme described in Fig. 1 allows to discuss how environ-
mental impacts are mediated by means of the interplay between order parameter dynamics
and system parameter dynamics.

Fig. 1 Outline of a generalized order parameter model for switches between alternative modes of perceptual-
cognitive-behavioral processes. The generalized model is based on Haken’s synergetic order parameter model
for non-equilibrium pattern formation and pattern recognition systems [14]. The model takes the interplay
between order parameter dynamics and system parameter dynamics into account. Variables: ξk order param-
eters, Lk system parameters, α (experimentally accessible) control parameter reflecting properties of the
environment, sk and λk coupling parameters. See text for details. Mathematical details can be found in
Section 2
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In Section 3, the model outlined in Fig. 1 will be exploited to make predictions about
response times. In this context, the response time reflects the time it takes for a physical,
neuro-biological pattern to emerge that is associated to a certain mode of a perceptual-
cognitive-behavioral process. This “build-up” time is assumed to be positively correlated
to the decision-making times or reaction times observed in laboratory experiments. For the
sake of simplicity, we will refer to these times as response times. We will demonstrate
that the model sketched in Fig. 1 allows for two fundamental scenarios. Response times
may exhibit little variations in the regions before and after transitions between perceptual-
cognitive-behavioral modes. In this scenario, a relative flat response time curve can be
found. In contrast, response times may increase monotonically if the transition point is
approached gradually. In this second scenario, a peaked response time curve can be found.
Furthermore, it will be shown that peaked response time curves may arise from the critical
slowing down phenomenon reviewed above.

The main objective of the present study is to discuss the interplay between order param-
eter dynamics and system parameter dynamics based on theoretical considerations, to make
predictions about transitions between perceptual-cognitive-behavioral modes and the shape
of response time curves, and to point out a possible link between peaked response time
curves and the phenomena of critical slowing down. In order to highlight the relevance of
modeling peaked response time curves, in Section 3.4 we will also present results from an
experimental study. In this study, participants were asked to judge their ability to stand on a
tilted platform. In fact, it has been shown that participants are well aware of their limits of
motor abilities in this task and consequently respond that they are able to stand on the slope
for relatively small angles of inclination but would not be able to perform the task for rela-
tively large angles of inclination. Yes-to-No and No-to-Yes transitions in the responses can
be observed in ascending and descending conditions, respectively [67]. Moreover, response
times increase when angles of inclination approach the critical angles at which the response
switches. This experiment can be conducted with different sensory modalities such as vision
and touch [67] and can be used to identify general principles of perception [67]. Moreover, it
might be considered as a useful control experiment for studying the development of percep-
tion and action-selection during infancy. Several experiments targeting child development
have been conducted in which infants and toddlers are put into a situation that requires to
crawl or walk down a slope. From the circumstances under which children reject or com-
ply to perform the required task researchers hope to get insights into child development.
Therefore, the experiment is of interest both in its specific and broader context.

2 Order parameter equations of hysteretic perceptual-behavioral transitions in two
choice tasks

2.1 Basic model

The order parameter equations for competing and mutually exclusive modes are described
in detail in Ref. [18]. For the case of two modes described by two order parameters ξ1(t)

and ξ2(t) the order parameter equations read [26]

d

dt
ξ1 = U1ξ1 − Bξ1ξ

2
2 − Cξ1(ξ

2
1 + ξ22 ) ,

d

dt
ξ2 = U2ξ2 − Bξ2ξ

2
1 − Cξ2(ξ

2
1 + ξ22 ) (2)
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with U1, U2, B, C > 0. Note that we consider initial conditions ξk(t = 0) ≥ 0 only,
which implies that the order parameters remain positive for all times: ξk(t) ≥ 0 ∀ t ≥
0. The parameters Uk describe the rate with which the order parameters ξ1(t) and ξ2(t)

increase exponentially in time when both ξ1 and ξ2 are initially close to zero. Accordingly,
they are referred to as exponential growth parameters. The parameters B, C are coupling
constants that constitute a single effective coupling parameter, see below. Note that the
parameters have the following units: [Uk] = Time−1, [B], [C] = Time−1[ξ ]−2. Let us
derive a simplified representation of the order parameter equations (2). To this end, we put
τ = γ t , where γ is a time factor measured in a particular time unit (e.g., seconds). Then,
from (2) we obtain

d

dτ
ξ1 = U1

γ
ξ1 − B

γ
ξ1ξ

2
2 − C

γ
ξ1(ξ

2
1 + ξ22 ) ,

d

dτ
ξ2 = U2

γ
ξ2 − B

γ
ξ2ξ

2
1 − C

γ
ξ2(ξ

2
1 + ξ22 ) (3)

with λk = Uk/γ . The parameters λk are dimensionless exponential growth parameters.
Introducing the new variables ξ̃k = √

C/γ ξk , which correspond to dimensionless order
parameters, from (3) we obtain

d

dτ
ξ̃1 = λ1ξ̃1 − B

C
ξ̃1ξ̃

2
2 − ξ̃1(ξ̃

2
1 + ξ̃22 ) = λ1ξ̃1 − gξ̃1ξ̃

2
2 − ξ̃31 ,

d

dτ
ξ̃2 = λ2ξ̃2 − B

C
ξ̃2ξ̃

2
1 − ξ̃2(ξ̃

2
1 + ξ̃22 ) = λ2ξ̃2 − gξ̃2ξ̃

2
1 − ξ̃32 (4)

with g = 1+ B/C, which implies g > 1. In what follows, we will drop the tilde. Then, the
order parameter equations read

d

dτ
ξ1 = λ1ξ1 − gξ1ξ

2
2 − ξ31 ,

d

dτ
ξ2 = λ2ξ2 − gξ2ξ

2
1 − ξ32 (5)

and exhibit three parameters λ1, λ2, and g. We will refer to them as system parameters.
The parameters B and C occurring in the original equations (2) constitute the parameter
g. The parameter g describes the strength of the inhibitory interaction between the two
modes, that is, g describes the strength of the mode-mode competition. Taking an alternative
point of view, we see that g is the weight of the mixed nonlinear terms ξj ξ

2
k , whereas

the cubic nonlinear terms ξ3k exhibit weights equal to unity. The mixed nonlinear terms
ξj ξ

2
k reflect cross-inhibition between the modes. In contrast, the cubic nonlinear terms ξ3k

account for the inhibition of a mode by itself (self-inhibition). Consequently, g measures the
magnitude of cross-inhibition in units of the strength of the self-inhibition. In the limiting
case g → 1 the cross-inhibition has the same magnitude as the self-inhibition, whereas for
g > 1 cross-inhibition has a stronger impact than self-inhibition.

For fixed parameters and g > 1 the model (5) is known to describe a winner-takes-all
dynamics [18, 26]. Accordingly, for any initial condition ξ1(t = 0) > 0, ξ2(t = 0) >

0 the dynamical system (5) converges to either of two fixed points. The first fixed point
corresponds to q = v1 and exhibits an amplitude ξ1 that is “on” and an amplitude ξ2 that is
“off”. More precisely, (5) exhibits a stationary solution such that

q = v1 ⇔ ξ1 = √
λ1 ∧ ξ2 = 0 ⇒ ξ1“on”, ξ2“off” . (6)

The second winner-takes-all fixed point describes the second mode with

q = v2 ⇔ ξ1 = 0 ∧ ξ2 = √
λ2 ⇒ ξ1“off”, ξ2“on” . (7)
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The dynamical system (5) can be monostable or bistable [26]. In particular, there are critical
conditions at which a stable fixed point becomes unstable. If the ratio λ2/λ1 is increased
gradually starting with a small value λ2/λ1 ≈ 0 then the fixed point of the first mode q = v1
becomes unstable at λ2/λ1 = g. That is, we have

λ2

λ1
↑ ∧ λ2

λ1
= g ⇒ fixed point q = v1 with ξ1 “on” ∧ ξ2 “off” becomes unstable (8)

Otherwise, the fixed point q = v1 is asymptotically stable. Likewise, if the ratio λ1/λ2 is
increased gradually starting with a small value λ1/λ2 ≈ 0 then the fixed point of the second
mode q = v2 becomes unstable at λ1/λ2 = g. That is, we have

λ1

λ2
↑ ∧ λ1

λ2
= g ⇒ fixed point q = v2 with ξ1 “off” ∧ ξ2 “on” becomes unstable (9)

Otherwise, the fixed point q = v2 is asymptotically stable. (8) and (9) taken together imply
that the dynamical system is bistable for

1

g
<

λ2

λ1
< g (10)

and monostable for λ2/λ1 > g or λ1/λ2 > g. Consequently, if a perceptual-behavioral
system described by (5) is in the perceptual-behavioral mode v1 (i.e., q = v1) and λ2/λ1
is increased beyond the threshold λ2/λ1 = g, then the mode v1 becomes unstable and a
transition v1 → v2 occurs. Vice versa, if the perceptual-behavioral mode v2 is “active” and
λ2/λ1 is decreased gradually, then v2 becomes unstable at λ2/λ1 = 1/g and a transition
v2 → v1 occurs. With respect to the ratio λ2/λ1 the switching between modes 1 and 2
exhibits positive hysteresis because the thresholds g and 1/g for the 1 → 2 and 2 → 1
transitions are different and g > 1/g.

2.2 Positive and negative hysteresis

It has been shown that an order parameter model based on (5) combined with an
appropriately defined adaptation dynamics can describe transitions between modes of
perceptual-cognitive-behavioral processes that exhibit both positive and negative hystere-
sis [65]. However, the issue of response times has not yet been discussed in this context.
Let us derive next a comprehensive model that can account for the two types of hystere-
sis effects (positive and negative) and in addition addresses response times. To this end,
we will follow to a large extent [65]. However, we will simplify some relations such that
response time predictions can be made on the basis of analytical considerations. Possible
generalization involving numerical approaches will be discussed in Section 4.

Let α denote a control parameter. Typically, α is a property of the environment. In labo-
ratory experiments, α is usually manipulated by the experimenter (e.g., acoustic parameters
in speech perception [56] or object size in experiments on grasping [4, 5]). We distinguish
between experimental trials in which α is either gradually increased (ascending condition)
or decreased (descending condition). The critical values at which switches in perception
and behavior can be observed are denoted by αc,1 for the descending case and αc,2 for the
ascending case [6].

It is useful to define
�α = αc,2 − αc,1 (11)

as a signed measure for hysteresis size. For αc,1 = αc,2, there is no hysteresis and we have
�α = 0. For αc,2 > αc,1 there is hysteresis of the ordinary type as can be found in phys-
ical system (e.g., magnetism). In particular, we have �α > 0 which is the reason why we
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will refer to this kind of hysteresis as positive hysteresis. In contrast, for αc,2 < αc,1 there
is an unconventional type of hysteresis as observed in certain decision-making and judg-
ment experiments [4, 56, 65, 67]. In this case, we have �α < 0, which is the reason why
we will refer to this effect as negative hysteresis, see Table 2. Note that in line with the
literature positive hysteresis is considered as a static phenomenon [13], where the control
parameter α is gradually increased or decreased and the state of the system under consid-
eration is observed as a function of α. In contrast, negative hysteresis cannot be explained
by a deterministic, dynamical model that involves a single control parameter [65]. It can be
explained by assuming that in addition to a first control parameter α a second parameter
is varied. If this second parameter could be controlled by the experimenter then the hys-
teresis would be a static phenomenon again. However, the psychophysics experiments in
which negative hysteresis has been found did not feature a second parameter manipulated
by the experimenter [4, 56, 65, 67]. The existence of a second parameter was conjectured
from the observed phenomenon [56, 65]. Following this work, we assume that the second
parameter varies in time during the performance of a participant in a negative hysteresis
experiment (see below in this section). Therefore, the negative hysteresis effect may be
considered as a phenomenon featuring a dynamic component. In this context, note that the
classification in Table 2 ignores the existence of the postulated second parameter. Accord-
ing to the two-parameter hypothesis negative hysteresis should be considered as a round trip
in a two-dimensional plane (see Section 3.2 and Fig. 5 below). The classification in Table 2
represent the point of view of an experimenter who typically collapses the (hypothesized)
two-parametric space onto a single parameter space.

Next, let us introduce the mean critical value αm = (αc,1 + αc,2)/2. Then, there is a
useful mapping between αc,1, αc,2, on the one hand, and αm, �α, on the other [65]:

�α = αc,2 − αc,1

αm = αc,2 + αc,1
2

}
⇔

{
αc,1 = αm − �α

2
αc,2 = αm + �α

2
(12)

In order to simplify the model proposed in [65], let us shift the control parameter axis α

by the mean critical value αm. To this end, a control parameter relative to the mean critical
value can be defined like

αrel = α − αm . (13)
Note that in this shifted framework the critical control parameter values are given by
αrel,c,1 = αc,1 − αm = (αc,1 − αc,2)/2 and αrel,c,2 = αc,2 − αm = (αc,2 − αc,1)/2 which
implies

αrel,c,1 = −αrel,c,2 (14)
Furthermore, we have

�α = αc,2 − αc,1 = αrel,c,2 − αrel,c,1 = 2αrel,c,2 = −2αrel,c,1 . (15)

Table 2 Classification into positive and negative hysteresis and no hysteresis from the point of view of an
experimenter manipulating a control parameter α

Type Relationship between critical values

Positive αc,2 > αc,1

No hysteresis αc,2 = αc,1

Negative αc,1 < αc,1

Here, αc,1 and αc,2 are the critical values in the descending (α is decreased) and ascending (α is increased)
conditions, respectively, at which transitions are observed
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That is, in the original non-shifted scale αc,2 is located by �α/2 above or below the mean
critical value αm, whereas αc,1 is by �α/2 located below or above the mean critical value
αm depending on the sign of �α.

Following earlier work [26], the growth parameters λ1 and λ2 may be related by a linear
approximation to the control parameter α. In line with this suggestion, we assume that the
parameters λk depend on αrel by means of a linear approximation around αm like

λ1 = L1 − β αrel , λ2 = L2 + β αrel . (16)

In (16) the variables L1 and L2 are considered as system parameters — just as λ1 and λ2.
Here, β is a scaling factor that scales variations in the control parameter α to variations in
the growth parameters λk . (16) describes how environmental properties (given in terms of
α) and conditions on the system parameter level (in terms of Lk) affect the order parameter
level, see Fig 1.

In order to make contact with experimental studies in which positive hysteresis has been
found we put L1 = L2 = L0, where L0 is a constant. In this case, a detailed calculation
shows that (see Appendix A)

αrel,c,2 = L0

β

g − 1

g + 1
= �α

2
> 0 , (17a)

αrel,c,1 = −αrel,c,2 = −�α

2
< 0 . (17b)

In order to address experimental studies in which negative hysteresis has been observed,
we consider the framework depicted in Fig. 1, in which there is an interplay between order
parameter dynamics and system parameter dynamics that is mediated by changes in the
environment. More precisely, when the same task is executed several times in a succession,
then it is assumed that the system adapts to the task. Alternatively, we may say that there is
a habituation with respect to the task. Mathematically speaking, we assume that the param-
eters L1 and L2 change due to the task activity reflecting the aforementioned adaptation or
habituation process. Let n = 1, . . . , M denote the M events in which in a laboratory exper-
iment the task is executed consecutively in an ascending or descending condition. Then the
system parameter dynamics for L1 and L2 can be described by an autoregressive model
(AR) of order 1 as suggested in [65]. Note that higher-order AR models or nonlinear mod-
els could be used as well without changing qualitatively the overall model properties. Let
X(n) denote a time-discrete variable. Then, in general, the AR-1 model for X(n) reads
X(n + 1) − s = a1[X(n) − s] + ε, where s is the process mean value, a1 is the first
autoregressive coefficient, and ε corresponds to a white noise process with variance σ 2

ε [68].
Accordingly, we put

L1(n + 1) − s1 =
(
1 − 1

T

)
(L1(n) − s1) + ε1 ,

L2(n + 1) − s2 =
(
1 − 1

T

)
(L2(n) − s2) + ε2 . (18)

Here, T denotes a time constant and corresponds to a real number (i.e., is not necessarily an
integer) with T ≥ 1. Equation (18) describes the system parameter dynamics that affects the
order parameter dynamics, see Fig. 1. According to the AR-1 model, Lk converges to the
mean value sk in a monotonic fashion. If T is close to 1, then the decay is fast. In contrast,
if T � 1, then the decay is slow. From T ≥ 1, it follows that we have a1 ∈ [0, 1]. It can
be shown that in this case the deterministic system parameter dynamics Lk converges in a
monotonic fashion towards the mean value sk , e.g. [68].
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In order to describe the aforementioned postulated adaptation or habituation effect, we
need to link the mean values sk to the dynamics of the order parameters ξj . In fact, it
has been shown that the observation of negative hysteresis is consistent with a habituation
effect modeled in terms of the interplay between order parameter and system parameter
dynamics [65] as defined by

sk =
{

L0 − h if ξk “on”
L0 if ξk “off”

(19)

with h ≥ 0. For h > 0 there is a “penalty” or inhibition of the “active” mode (i.e., the mode
that is “on”) in the sense that the mean sk and consequently the growth parameter λk is
decreased by h. Note that this “penalty” effect is independent of the environmental impact
α because it affects the offset parameters L1 and L2 in (16). The parameter h measures the
magnitude of the adaptation (or habituation) effect.

Note also that for h = 0 the variables L1 and L2 converge to the stationary value L0
such that after a transient period we have L1 = L2 = L0. As a result there is no interplay
between order parameter dynamics and system parameter dynamics. Therefore, the case
h = 0 corresponds to the positive hysteresis case mentioned above.

For sake of simplicity, we consider in what follows only the deterministic case in which
the noise terms of the AR-1 processes can be neglected. In the deterministic case, the evo-
lution of the two system parameters L1 and L2 can be captured by the evolution of a single,
appropriately defined parameter. In order to see this, we introduce the variables �L and Lm

like

�L = L1 − L2

Lm = L1 + L2
2

}
⇔

{
L1 = Lm + �L

2
L2 = Lm − �L

2
(20)

This implies that Lm satisfies a deterministic AR-1 model of the form

Lm(n + 1) = Lm(n) − 1

T

(
Lm(n) − L0 + h

2

)
. (21)

The dynamics of Lm exhibits a fixed point Lm,st = L0 − h/2 that is independent of the
order parameter dynamics. Therefore, we assume that Lm is at that fixed point value and put

Lm(n) = Lm,st (22)

for all n. In contrast, �L satisfies a deterministic AR-1 model that is affected by the order
parameter dynamics like

�L(n + 1) − K =
(
1 − 1

T

)
(�L(n) − K) (23)

with

K = ±h ,

{ +h if ξ1 “on”, ξ2 “off”
−h if ξ1 “off”, ξ2 “on”

(24)

The variable �L can be considered as a control parameter because it affects the parame-
ters λk (just as α, see also Fig. 1) and the parameters λk determine the bifurcation point
between the two alternatives. However, �L is not manipulated by the experiment. Rather
it is adjusted by the perceptual-cognitive-behavioral machinery between consecutive task
performances. In this sense, it is an auto-regulated or self-regulated variable and may be
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referred to as auto-regulated or self-regulated pseudo-control parameter [65]. A detailed
calculation shows that (see Appendix A)

αrel,c,2 = L0

β

g − 1

g + 1
− g

g + 1

h

β
, (25a)

αrel,c,1 = −αrel,c,2 . (25b)

In particular, the hysteresis size is given by

�α = L0

β

g − 1

g + 1
− g

g + 1

h

β
. (26)

Due to the h term in (26), it is possible that the dynamical model (5) exhibits negative
hysteresis: αrel,c,2 < 0 , αrel,c,2 > 0, and �α < 0. Explicit examples will be given in
Section 3.

2.3 Parameters g and h

As will be argued below, the parameters L0 and β can be chosen based on theoretical con-
siderations and�α might reflect experimental data. When L0, β, and�α are given, then the
question arises how to determine the remaining parameters g and h. In [65], a sophisticated
procedure was developed to obtain g(�α) and h(�α) as smooth functions (i.e., continu-
ously differentiable functions) of �α. In what follows, we consider a simplified approach in
which h(�α) is given by a piecewise linear approximation of that aforementioned smooth
function. This choice of h then implies that g satisfies a similar piecewise continuously dif-
ferentiable function (that is however nonlinear with respect to �α). In detail, for h(�α) we
use

h(�α) =
{

0 for �α ≥ 0
−�α for �α < 0

(27)

From (27) it follows that the “habituation” effect is completely absent in the case of positive
hysteresis. In contrast, in the case of negative hysteresis the parameter h increases linearly
with the magnitude of the hysteresis size. In fact, the proportional factor has been chosen to
be equal to unity such that h equals the size |�α| of the hysteresis effect. Substituting (27)
into (26), it follows that g satisfies

g(�α) =
{

1 + y
1 − y

for �α ≥ 0

1 for �α < 0
(28)

with

y = β �α

2L0
, (29)

where we assume that the parameters β and L0 are chosen such that y < 1 for �α > 0
(we will return to this issue in Section 3.2). Note that g and h are continuous functions at
�α = 0. In particular, for g(�α) we have �α > 0 ∧ �α → 0 ⇒ y → 0 ⇒ g → 1.

3 Response times as build-up times of emergent perceptual-cognitive-behavioral
patterns

3.1 General considerations on the mode skeleton

Our focus is on two alternative perceptual-cognitive modes or two alternative behavioral
patterns. As mentioned in the introduction, the perceptual-cognitive behavioral system in
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general is described by a field variable q(x, t). The mode skeleton in the case of two
perceptual-cognitive-behavioral modes reads q(x, t) = ξ1(t)v1(x, t) + ξ2(t)v2(x, t). If
q(x) = v1(x) holds then the agent is in the perceptual-cognitive-behavioral mode k = 1 and
we have ξ1 = √

λ1 > 0 ∧ ξ2 = 0, see also (8). In contrast, if q(x) = v2(x) holds then the
agent is in the perceptual-cognitive-behavioral mode k = 2 with ξ1 = 0 ∧ ξ2 = √

λ2 > 0,
see also (9).

When considering a perceptual-cognitive-behavioral system as a self-organizing pattern
formation system, then the field variable q(x, t) may converge towards a mode vk but q

can only reach the fixed point represented by that mode vk in infinitely large times. More
explicitly, the emergence of a mode vk is given in terms of the approach of the amplitude
ξk to a fixed point attractor of (5) and this approach takes an infinitely long amount of time
because the strength of the attractive “force” of the fixed-point attractor becomes weaker and
weaker in the vicinity of the attractor. Therefore, we define the emergence of a perceptual-
cognitive-behavioral mode as the event when q is sufficiently close to one of the elementary
modes vk [28]. If there is a time point t such that q(x, t) ≈ v1 then the agent is in the
perceptual-cognitive-behavioral mode k = 1 and we say that ξ1 is “on” and ξ2 is “off”.
Likewise, if there is a time point t such that q(x, t) ≈ v2 then the agent is in the perceptual-
cognitive-behavioral mode k = 2 and we say that ξ1 is “off” and ξ2 is “on”. The time
point t when either of the two events happen is considered as response time RT . We can
quantify the notion of order parameters that are “on” and “off” in an approximate sense
by introducing response thresholds. It is useful to scale these thresholds with respect to the
growth parameters [28]. Accordingly, we put

ξk ≥ θ
√

λk ⇒ “winning mode ξk is on” (30)

ξj ≤ η
√

λj ⇒ “losing mode ξj is off” , (31)

where θ and η are percentage values (i.e., θ, η ∈ [0, 1]). Note that in (30) and (31) the
expressions θ

√
λk and η

√
λj are absolute thresholds, while θ and η are relative thresholds.

When there is a choice between two perceptual-cognitive modes or two behavioral pat-
terns then the selection may be based on the winning mode or the losing mode or on
both.

In what follows, we want to proceed an analytical approach (for considerations on numer-
ical approaches see Section 4). In order to do so, we will consider the two scenarios in which
perception, cognition, and behavior is based on either the winning or the losing mode but
not on both. In the case of the winning mode scenario, the perceptual-cognitive-behavioral
mode k is emerged when (30) is satisfied and the response time of that event is defined by

RT = min
t≥0,k=1,2

{t | ξk(t) ≥ θ
√

λk} . (32)

In the case of the losing mode scenario, the perceptual-cognitive-behavioral mode k is
emerged when the alternative mode j has disappeared such that (31) is satisfied. The
response time of this event is given by

RT = min
t≥0,j=1,2

{ t |ξj (t) ≤ η
√

λj } . (33)

3.2 Flat response time curves in pre- and post-transition regions

When the control parameter α is scaled beyond a critical value then the interaction between
the two competing modes is essential and cannot be neglected. In contrast, when α is not
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too close to any critical value then the impact of one mode on the other might be rela-
tively small. We consider the winning mode scenario and derive an analytical expression
for response time RT under the idealization that the inhibitory interaction due to the losing
mode is negligibly small when α is not too close to any critical value. Let k denote the index
of the winning mode. Then, the evolution of the winning mode under the aforementioned
approximation is given by

d

dτ
ξk = λk ξk − ξ3k . (34)

Let us assume that ξk converges towards the stationary value ξk,st = √
λk from ξk = D ξk,stst

with D ∈ [0, 1] and D < θ . Then, the time to reach the threshold θ can be computed from
(32) and (34). We obtain [28]

RT = Z

λk

(35)

with

Z = ln

(
θ

D

)
− 1

2
ln

(
1 − θ2

1 − D2

)
. (36)

If Z is constant and λk varies only to a small extent as a function of the control parameter
α, then the response time RT is approximately constant except close to critical values of
α when the perception or behavior switches from one mode to the alternative mode. As a
result, the sequence of response times will be flat in the pre-transition and post-transition
regions. Let us model this situation in more detail.

Let [λmin, λmax] denote the interval1 in which growth parameters λ1 and λ2 can be found.
The range of this interval is

�λ = λmax − λmin . (37)
In line with the aforementioned considerations we assume that the range is small relative to
L0. We put

�λ

L0
≤ w , (38)

where w is a percentage value w ∈ [0, 1]. For a perceptual-cognitive-behavioral system
with a relatively small physiological range of growth parameters the parameter w is close to
zero (e.g., w = 0.01). From the linear approximation (16) it follows that (38) is satisfied if

β = wL0

2max{|αrel |} . (39)

If (39) holds then in turn it can also be shown that the auxiliary variable y as defined by
(29) satisfies the condition y < 1.

We conducted a set of simulations to illustrate the model prediction that the interplay
between order parameter and system parameter dynamics based on a winning mode sce-
nario can lead to transitions with positive and negative hysteresis and a flat response time

1In our study, growth parameters occur in the order parameter dynamics as a-priori unknown parameters
as a result of the proposed top-down modeling approach. As such the growth parameters reflect functions
of physical parameter that would occur in mechanistic, bottom-up modeling approaches. For example, for
the amplitude equations governing the emergence of roll patterns due to a Benard instability the growth
parameters can be expressed in terms of physical parameters from hydrodynamics [22]. In our context, it is
assumed that the growth parameters depend both on physical quantities of the environment (e.g., inclination
angle of a ramp or platform for standing upon), body-dimensions (body height, weight, etc) and parameters
of the neural and muscular-skeletal system (e.g., synaptic weights). For a given subject and a given task these
physical parameters may vary in a certain range which then implies that the growth parameters take on values
from a certain interval.
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curve in pre- and post-transition regions. Simulation of the order parameter dynamics ξ1 and
ξ2 via (5) and system parameter dynamics via (18) were conducted. In the computer exper-
iments, the system parameter dynamics and the environmental influences affected the order
parameter dynamics via (16). The order parameter dynamics affected the system parameter
dynamics via (19), see Fig. 1. The response was based on the winning mode scenario and
RT was determined numerically using (32). The analytical value RT defined by (35) was
calculated as well for comparison purposes with the numerical value.

Figure 2 shows two representative trajectories of ξ1(t) and ξ2(t) computed from the order
parameter equations (5) for fixed system parameters α, λ1, and λ2. In the simulation, the
trajectories converged to their respective stationary values ξ1,st and ξ2,st . The trajectories
shown in Fig. 2 are two trajectories from the first trial of several trials conducted in the afore-
mentioned computer experiments. In fact, the control parameter α was increased in steps
mimicking an ascending sequence of experimental conditions by the experimenter (e.g.,
change of object size in grasping-experiments). Subsequently, α was decreased reflecting a
descending sequence of experimental conditions. For each α the model sketched in Fig. 1
was solved numerically.

Figure 3a shows λ1 and λ2 as function of α, while Fig. 3b shows the implicit dependency
ofL1 andL2 on α via ξ1 and ξ2. The parameters λk changed as defined by (16): λ1 decreased
in the ascending condition, while λ2 increased. Vice versa, λ1 increased in the descending
condition, while λ2 decreased. Note that for the descending condition, the bottom panels in
Fig. 3 should be read from right to left rather than from left to right. Since the computer
experiments shown in Fig. 3 considered the case in which the system parameter dynamics
was decoupled from the order parameter dynamics, L1 and L2 did not change. For each
given α and the corresponding parameters λk(α) and Lk the trajectories ξ1(t) and ξ2(t)

were computed numerically—just as it is shown in Fig. 2 for the very first trial. Figure 3c
shows the stationary values ξ1,st and ξ2,st obtained from these simulations. Finally, Fig. 3d
shows the responds times RT as obtained from the numerical simulation (symbols) and
as predicted by (35). We found a good match between predicted and numerically obtained
values. The numerically obtained values were slightly larger than the predicted values due
to the inhibitory interaction between the modes. Importantly, Fig. 3d illustrates that the
response times RT were approximately constant in the pre- and post-transition regions.
That is, except for the transition point, the response times assumed more or less the same
values. Figure 3 illustrates mode-mode transitions when α was increased gradually and
subsequently decreased for the case of a system exhibiting positive hysteresis. In contrast,
Fig. 4 demonstrates the negative hysteresis case — again for the flat response time curve.

Fig. 2 Representative
trajectories of order parameters
ξ1(t) and ξ2(t) as obtained by
solving (5) numerically (Euler
forward with single time step
0.01). Parameters as in Fig. 3 for
the first trial in the ascending
sequence
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Fig. 3 Simulation results for hysteretic mode-mode transitions in the case of positive hysteresis and a flat
response time curve in the pre- and post-transition regions. Panel a λ1 (solid) and λ2 (dashed). Panel b
L1 (solid) and L2 (dashed). Both lines are on top of each other. Panel c ξ1,st (full circle) and ξ2,st (open
diamonds). Panel d response times in a logarithmic scale as obtained numerically (symbols) and as defined
by (35) (solid line). Parameters: g = 1.0168, h = 0, α = {5, 7, ..., 33}, θ = 0.95, D = 0.60, w = 0.10,
L0 = 0.7002, β = 0.0023, T = 5

The panels of Fig. 4 show the same quantities as the panels in Fig. 3. Figure 4a shows
the growth parameters λk for every trial with a given parameter α and with auto-regulated
system parameters Lk as shown in Fig. 4b. Figure 4b shows the implicit dependency of the
system parameters Lk on α via ξk . The system parameters Lk changes due to the depen-
dency on ξk and as a result of the mode-mode transitions. Figure 4c depicts again the order
parameter values ξ1,st and ξ2,st , while Fig. 4d shows the responds times RT as obtained
from the numerical simulation (symbols) and as predicted (solid line). As expected, the
response time curve was found to be flat. Figure 5 illustrates the notion of a single effec-
tive auto-regulated pseudo control parameter �L as defined above. In experimental trials in
which an external control parameter α is increased and subsequently decreased, the dynam-
ical system actually makes a round trip in the parameter space spanned by α and �L

[65].

3.3 Peaked response time curves

Here we consider the case when the losing mode determines the time point when a
perceptual-cognitive mode has emerged, a behavioral response is initiated, or a behavioral
pattern is being performed. That is, response time is based on the condition described by
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Fig. 4 Simulation results for hysteretic mode-mode transitions in the case of negative hysteresis and a
response time curve that is flat in the pre- and post-transition regions. Panels as in Fig. 3. Parameters: g = 1.0,
h = 0.0219, α = {11, 13, ..., 41}, θ = 0.95, D = 0.60, w = 0.10, L0 = 0.7002, β = 0.0022, T = 5

(31) and is defined explicitly by (33). In this context, using linear stability analysis, it can
be shown that the order parameter ξj of the losing mode decays to zero like [26]

d

dτ
ξj = rξj , (40)

where r denotes the Lyapunov exponent in the direction of ξj . For r , we obtain

r = λj − gλk < 0 . (41)

Here, λk and λj are the exponential growth rates of the winning and losing modes,
respectively. When α approaches one of the critical parameters αc,1 or αc,2 then we have

Fig. 5 Illustration of the
behavior of the auto-regulated
pseudo control parameter �L

involved in mode-mode
transitions exhibiting negative
hysteresis. �L was computed
from L1 and L2, see (20), using
the values shown in Fig. 4b
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λj /λk = g, see (8) and (9). The Lyapunov exponent r goes to zero and it takes more and
more time for perturbations to decay (“critical slowing down”). Let us assume ξj (t) con-
verges from ξj (t1) = E

√
λj to ξj (t → ∞) = 0 with E ∈ [0, 1] and E > η. Then, at a

time point t2 > t1 we have ξj (t2) = η. Then the response time RT defined by (33) for the
linearized order parameter equation (40) is given by RT = t2 − t1 and reads

RT = ln(E/η)

|r| . (42)

When α → αc then r → 0, which implies RT → ∞. Note that due to the nonlinearities in
the full order parameter equations defined by (5) the response time defined by (33) will be
finite at α = αc,1 or α = αc,2 and will not go to infinity. However, since the linear “force”
described by the right hand side of (30) becomes weaker and weaker in the limiting case
α → αc, the response time RT of the full nonlinear model increases as a function of α for
α → αc and will exhibit a peak at α = αc.

Just as in Section 3.2, we conducted a set of simulations to illustrate the effect of a vanish-
ing Lyapunov exponent on the timing of recognition events and behavior. More precisely, we
computed the evolution of the order parameters ξ1 and ξ2 from (5) and the evolution of the
system parameters from (18). In these simulations, the system parameter dynamics and the
environmental influences affected the order parameter dynamics via (16). The order param-
eter dynamics had an effect on the system parameter dynamics via (19). Response time

Fig. 6 Simulation results for hysteretic mode-mode transitions in the case of positive hysteresis and a peaked
response time curve. Panels as in Fig. 3. Parameters: g = 1.0168, h = 0, α = {5, 7, ..., 33}, η = 0.10,
E = 0.20, w = 0.10, L0 = 0.7002, β = 0.0023, T = 5
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calculations were based on the losing mode scenario and RT was determined numerically
using (33). The analytical value RT defined by (42) was calculated as well for comparison
purposes with the numerical values.

Figures 6 and 7 consider the positive and negative hysteresis cases, respectively. Fig-
ures 6a and 7a show the growth parameters λk for every trial with a given parameter α.
Figures 6b and 7b illustrate the implicit dependency of the system parameters Lk on α

via ξk . While for the positive hysteresis case (Fig. 6b) the system parameters Lk did not
change, in the negative hysteresis case (Fig. 7b) they varied systematically as predicted
above reflecting a “penalty” or inhibition of the “active” mode. Figures 6c and 7c report the
order parameter values ξ1,st and ξ2,st . Figures 6d and 7d shows the responds times RT as
obtained from the numerical simulation (symbols) and as predicted (solid line). As expected,
the response times increased towards the transition points. The exact (i.e., numerically
obtained) values were found to be larger than the predicted values. Note that the predicted
value is derived by means of a linear stability analysis that assumes that the order parame-
ter ξk of the “active” mode is very close to its stationary values, while the order parameter
ξj of the mode that is “off” is very close to zero. These two conditions are only approxi-
mately satisfied. Due to the violation of these conditions, the exact (numerically obtained)
response times (symbols) were larger than the response times predicted by the linear stabil-
ity analysis. However, the linear stability analysis was still found to be useful in predicting at
least qualitatively the increase of response times when the system approaches the transition
point.

Fig. 7 Simulation results for hysteretic mode-mode transitions in the case of negative hysteresis and a peaked
response time curve. Panels as in Fig. 3. Parameters: g = 1.0, h = 0.0219, α = {11, 13, ..., 41}, η = 0.10,
E = 0.20, w = 0.10, L0 = 0.7002, β = 0.0022, T = 5
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3.4 Experimental replication of the peaked response time curve observed
by Fitzpatrick et al.

As mentioned in the introduction, a peaked response time curve was reported in the literature
in an experiment in which participants were asked to judge whether they could stand on a
tilted platform with a certain angle of inclination [67]. In order to highlight the relevance
of modeling peaked response time curves, we conducted a similar experiment in order to
replicate the response time curve. Note that the earlier study conducted by Fitzpatrick et
al. examined various aspects of the judgment task. In contrast, we were only interested in
illustrating the robustness of the phenomenon. That is, the objective was to show that with
slightly different materials and a slightly different set of inclination angles the basic pattern
of results, namely, the peaked response time curve, can be found as well.

3.4.1 Method

Participants Ten University of Connecticut undergraduate students between the ages of 18
and 26 participated in the study, in partial fulfillment of a course requirement. Six partici-
pants were male and four were female. The experiment was conducted with the approval of
the University of Connecticut Institutional Review Board.

Materials A wooden dowel 121.92 cm in length and 1.59 cm in diameter was used for
dynamic-touch trials. A felt blindfold was used on dynamic-touch trials to eliminate visual
information, and on visual trials while the experimenters adjusted the slope of the surface.
Participants wore circumaural headphones playing white noise to eliminate auditory infor-
mation while the experimenters adjusted the slope. Beeping noises were also played through
the headphones to signal the start of each trial. Participants indicated their responses by
pressing a button on a Logitech wireless presentation remote. A PC running custom software
written in Python controlled the audio and recorded participants’ responses and response
times.

Apparatus The apparatus consisted of a solid wooden 75.88 cm x 210.19 cm platform
leaned on a heavy metal block. The slope of the platform was adjusted by sliding the block
along the floor. For seven angles of inclination: 12◦, 17◦, 22◦, 27◦, 33◦, 39◦, and 45◦, the
corresponding position of the block was determined and marked on the floor so it could be
quickly recreated. The apparatus was strong and stable enough to support a person’s weight.
A rubber mat was attached to the platform in order to increase friction.

Design and procedure The participant’s task in this experiment was to determine whether a
surface would support stable upright posture, defined as maintaining balance while standing
with feet flat and parallel.

The participant perceived the slope either visually or haptically. In the haptic condition
participants were allowed to touch the slope with the tip of the dowel. In both types of
trials, participants stood with their heels 1 m away from the slope. They wore a blindfold
and listened to white noise while the experimenters adjusted the slope of the surface. For
haptic trials, the participants were instructed to hold the dowel touching the floor and the
side of their foot during this time. An experimenter pressed a button on the PC to indicate
that the slope was ready, pausing the white noise. After a random delay of 0.5–1.5 s, the
participant heard a beep indicating the start of the trial. For visual trials, the participant lifted
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the blindfold at the sound of the beep; for haptic trials, the participant lifted the dowel and
began exploring the slope.

The participants indicated their responses by pressing one of two buttons on the presen-
tation remote, that a right button press indicated that the ramp could support upright posture,
while a left button press indicated that it could not. Subsequently, participants returned their
blindfold to their eyes (visual condition) or the dowel to the initial position (haptic con-
dition). The experimenters then adjusted the angle of inclination of the slope for the next
trial.

Response time was recorded beginning with the beep and ending when a button on
the presentation remote was pressed. Participants were not asked to respond quickly; the
instructions did not address the speed of the response in any way.

Seven angles of inclination were crossed with the two perceptual modalities for a total of
14 experimental conditions. Each condition was repeated three times for a total of 42 trials
per participant. Haptic and visual trials were conducted in separate blocks. Half the partici-
pants began with the visual trials and half began with the haptic trials. Angle of inclination
was randomized within each block.

At the end of each session, the participant’s maximum angle of inclination allowing
upright posture was estimated. Beginning with the smallest angle, the participant attempted
to stand on the platform. If the participant was able to achieve stable upright posture, the
angle of inclination was increased. If the participant was not able to achieve stable upright
posture within two attempts, the previous angle was recorded as the participant’s maximum
possible angle of inclination. Note that in order to stand on the platform, participants were
allowed to bend their bodies both at the hip and the ankle. This was different from the study
by Fitzpatrick et al. [67], in which participants were only allowed to bend at the ankle. Our
procedure more closely reflects real-world standing on inclined surfaces, and is also safer.

3.4.2 Results

Data were checked for outliers. In this step, data from one participant was excluded from
any analyses because that participant dominated the results by taking more than three times
the standard deviation longer than the mean response time for almost every trial. For each
of the remaining nine participants, the proportion of “yes” responses and the mean response
time was calculated for each of the 14 experimental conditions.

Figure 8 (top panel) shows the percentage of “yes” responses as function of the inclina-
tion angle for the visual and haptic conditions. The percentage of “yes” responses decayed
more or less monotonically with increasing inclination angle. The pattern of responses were
similar between the two perceptual modalities.

The perceived maximum possible angles of inclination, defined as the angle of incli-
nation resulting in 50% yes responses, was estimated using linear interpolation. This was
estimated to be 26.04◦ for visual perception and 27.75◦ for haptic perception. The maximum
possible angle of inclination, averaged across participants, was 30.33◦.

For hypothesis testing purposes, the resulting proportions of “yes” responses were
arcsine-transformed according to p′ = arcsin

√
p, where p is the proportion of “yes”

responses. This transformation normalizes proportion data. A 2× 7 (perceptual modality ×
angle of inclination) within-subjects ANOVA revealed no significant main effect of percep-
tual modality on proportion of “yes” responses, F(1, 8) = 1.47, p > .05. The main effect
of angle of inclination on proportion of “yes” responses was significant, F(6, 48) = 29.42,
p < .0001. The effect on proportion of “yes” responses of the interaction between angle of
inclination and the perceptual modality was not significant, F(6, 48) = 0.83, p > .05.
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Fig. 8 Experimental results for
visual (solid lines) and haptic
(dashed lines) judgment tasks.
Top panel percentage of “Yes”
responses. Bottom panel
response times (linear scale)

Figure 8 (bottom panel) shows response times by inclination angle and condition. First of
all, Fig. 8 (bottom panel) indicates consistently longer response times for haptic perception
than for visual perception. Second, the graphs showed a more or less pronounced peaked.
The maximum average response times occurred at 27◦ for both haptic and visual percep-
tion, closely matching the perceived maximum possible angles of inclination of 27.75◦ and
26.04◦, respectively.

A 2 × 7 (perceptual modality × angle of inclination) within-subjects ANOVA was per-
formed on response times, finding a significant main effect of the perceptual modality,
F(1, 8) = 25.32, p < .01 and marginally significant main effect of angle of inclination,
F(6, 48) = 2.20, p = .059. The interaction between angle of inclination and perceptual
modality was not significant, F(6, 48) = 0.55, p > .05.

4 Conclusions

Using a model-based approach, we investigated the interaction between self-organizing
processes (related to perception, cognition, and behavior of humans) and learning and adap-
tion processes (related to the plasticity of the human brain). Self-organizing processes
were described by means of the evolution of order parameters. Learning and adaptation
processes were described by postulating a system parameter dynamics, see Table 1. In par-
ticular, we developed the model sketched in Fig. 1 that involves different components such
as the order parameter dynamics, system parameters dynamics, and the varying environ-
mental influences. We showed that the model can describe switches between alternative
perceptual-cognitive-behavioral modes in terms of bifurcations in an appropriately defined
dynamical system. In particular, we showed that both positive and negative hysteresis is pre-
dicted to occur in such systems. Indeed, in particular, negative hysteresis has been observed
experimentally in certain decision-making and judgment experiments [4, 56, 65, 67]. It is
important to note that our model-based analysis reveals that negative hysteresis is a conse-
quence of the interplay between order parameter dynamics and system parameter dynamics,
where system parameters act as a pseudo-control parameters, see also Ref. [65]. In particu-
lar, as argued in a previous study [65], negative hysteresis cannot be explained by means of
an order parameter model involving only a single externally manipulated control parameter.
Since a deterministic, dynamical model that features a single parameter that is controlled by
the experimenter cannot explain negative hysteresis, this also implies that the order parame-
ter model (2) where λ1 and λ2 are certain functions of a control parameter α cannot be used
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to explain a negative hysteresis effect. An extended version of the order parameter model is
required, which, for example, is given by the two-component model presented in Section 2
composed of order parameter dynamics and system parameter dynamics. In contrast, in the
case of positive hysteresis the order parameter dynamics is sufficient to capture the hys-
teretic transition [26]. In this context, we would like to point out that the case of transitions
that exhibit no hysteresis at all is included in the model as a special case for �α = 0. In
this case, the order parameter dynamics model again is sufficient to describe the observed
transitions between two alternative perceptual-cognitive-behavioral modes.

As such, the self-organization perspective of perceptual-cognitive-behavioral processes
has its own conceptual stance. However, it is consistent to some extent with other theoretical
concepts such as direct perception [10]. Let us illustrate this issue for the order parame-
ter model described in Section 2. The model involves a control parameter α that has been
related in the current study and earlier studies with physical properties of the environment.
In the experimental study presented in Section 3.4, the parameter α has been associated with
the angle of inclination of the floor. In previous studies on grasping transitions, α has been
associated with relative object size defined as the length of an object in units of the hand
span of the person intending to grasp the object [6, 25, 26]. Accordingly, cognitive processes
(e.g., perceptual judgments) and behavioral responses (e.g., grasping) depend directly on
physical quantities. Importantly, in the context of perceptual-cognitive-behavioral processes
exhibiting negative hysteresis transitions, the processes at hand depend on the circumstances
under which they takes place. In an ascending sequence, the control parameter α acts in a
different way on the decision-making process than in a descending sequence. These circum-
stances are captured by the parameter dynamics. In summary, the modeling effort focusing
on the interplay between order parameter dynamics and system parameter dynamics sup-
ports the notion of direct perception [10] and supports the hypothesis that direct perception
can be mediated by the “occasion” under which it takes place [69, 70].

Response times were conceptualized as the times it takes for building-up the physi-
cal, neuro-biological patterns corresponding to the perceptual-cognitive-behavioral modes
under consideration. We distinguished between two scenarios summarized in Table 3. If the
criterion for a mode to be emerged is based on the emergence of the elementary pattern vk

of that mode, that is, on the “winning mode” k, then the response time is determined by the
growth parameter λk of that mode. When systems parameters are changing such that the
growth parameter λk approaches its critical value at which the mode k becomes unstable and
a transition to an alternative mode j occurs, then λk does not necessarily vary in a dramatic
ways. A relative small change in λk can be sufficient. If so, the response time curve does not
exhibit pronounced variations in the pre- and post-transition regions and is relatively flat,
see Section 3. In contrast, if the criterion for a mode vk to be emerged is based on the dis-
appearance of the alternative mode vj , that is, on the “losing mode”, then the response time
is determined approximately by the Lyapunov exponent of the amplitude ξj of the mode j .
When approaching the transition point at which the mode k becomes unstable such that a

Table 3 Fundamental scenarios leading to different types of response time curves

Mode Characteristic time Shape of response time

scale parameter curve

“Winning mode” Exponential growth rate Flat response times

“Losing mode” Lyapunov exponent Peaked response times
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transition from k to j is possible, the Lyapunov exponent goes to zero and consequently the
response time increases. As a result, the response time curve exhibits a peak close to the
transition point, see Section 3. Importantly, the model predicts that as such both types of
response time curves can be observed under positive as well as negative hysteresis.

Within the framework of self-organization, response times are a direct consequence
of the time scales on which spatio-temporal patterns evolves that describe perception,
cognition, and behavior (see the Introduction for our initial hypothesis). More precisely,
response times are determined by the characteristic time scales on which order parame-
ters evolve. The reason for this is that perception, cognition, and behavior are considered
as pattern formation processes in a physical system. Therefore, an appropriate metaphor
for perceptual-cognitive-behavioral processes would be the Benard instability [18, 22]. The
Benard instability is about roll patterns (convection rolls) emerging in fluid layers that are
heated from below. The time scales on which the roll patterns emerge and in particular
the phenomenon of critical slowing down has been studied by experimental work [46–48]
and has been described mathematically by amplitude equations [18] of the kind used in
Section 2. From a physicist’s point of view, there is no doubt that the amplitude (order
parameter) equations determine the build-up of the roll patterns. Consequently, as long
as there is an agreement among scientists working in psychology, biology, and related
fields that the Benard instability is a valid and useful metaphor for the self-organization of
perceptual-cognitive-behavioral processes, then it is clear that response times are explained
by the theory of self-organization. Having said that, we would like to mention that in the
literature this point of view has been questioned [71]. Although an in-depth analysis of the
arguments developed in [71] is beyond the scope of the present study, a key step in the argu-
mentation presented in [71] is that a self-organization process is associated with a search
algorithm.

The notion of a search algorithm, however, is inconsistent with the aforementioned
metaphor of the Benard instability. From a physicists point of view, the emergence of a roll
pattern has little to do with a search algorithm. There is no entity (e.g., a homunculus) hid-
den somewhere inside the fluid layer searching for the correct solution. Therefore, it seems
that the considerations in [71] are based on a metaphor (search algorithm implying the exis-
tence of a homunculus) that is not appropriate for self-organizing systems2. Having said
that, a more comprehensive analysis of this issue should be carried out but is left for future
work.

As opposed to the aforementioned notion of a search algorithm, self-organization pro-
cesses described by order parameter dynamics and system parameter dynamics clearly

2In fact, the notion of a search algorithm is not useful for any physical system being self-organized or not. For
example, let us consider a diffusion process. Let us assume a closed container fill with air. The container walls
and the air molecules are at room temperature. Inside the container there is a bottle of perfume. The lid can be
opened by remote control. Let us assume we open the lid. The perfume molecules diffuse out of the bottle and
distribute themselves across the container. Eventually, the molecules are distributed uniformly in space and
exhibit a Maxwell–Boltzmann velocity distribution. In doing so, the stationary distribution corresponds to a
maximum entropy solution. Consequently, the perfume molecules effectively solve an optimization problem
under constraints. That is, the molecules configure themselves such that the entropy is maximized under given
isothermal boundary conditions and spatial boundaries given by the container walls. However, the molecules
do not perform a search for the correct solution. The molecules simply satisfy a Boltzmann transport equation
(a diffusion equation) and the time it takes to approach the stationary state will be determined by the diffusion
constant (a parameter of the transport equation). This is another example of a time scale (here the relaxation
time of the diffusion process) that is determined by the laws of physics and is not related to the performance
of a search algorithm.
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evolve in time and the evolution can be described as a trajectory or “solution path” in the
space of order parameter and system parameter variables. Focusing only on the order param-
eter dynamics such a trajectory in special cases satisfies a gradient dynamics. If so, then the
trajectory descends in an appropriately defined potential and it may look as if the process
would “search for” a potential minimum. For example, the order parameter equation (5) can
be written as a gradient dynamics like

d

dτ
ξ1 = − ∂

∂ξ1
V ,

d

dτ
ξ2 = − ∂

∂ξ2
V ,

V = −λ1

2
ξ21 − λ2

2
ξ22 + g

2
ξ21 ξ22 + 1

4

(
ξ41 + ξ42

)
. (43)

If λ1 and λ2 do not vary with time, then the trajectory ξ1(t), ξ2(t) describes a solution path
that descends in the potential V towards a local potential minimum.

Within the statistical mechanics framework of neuronal interactions proposed by Ing-
ber [72], response times are considered as the time it takes for appropriately defined
trajectories to visit and pass along certain attractors corresponding to representations of
memorized items [73]. These trajectories may be seen as counterparts to the trajectories of
order parameter variables. For example, a generalized version of (5) for three order param-
eters ξ1, ξ2, ξ3 has been used to describe the perception of letters E, F, and H [35]. For an
initial letter that is incomplete but similar to the letters E and H, the perceptual process fol-
lows a trajectory in the three-dimensional order parameter space ξ1, ξ2, ξ3 that is initially
close to the attractors that represent the letters E and H. Eventually, the perceptual process
converges to one of the two attractors (see Fig. 3 in [35] for a graphical illustration). Similar
to Ingber’s proposal and in line with the definition of response times presented in Section 3,
the time to perceive a letter would be given by the time it takes the trajectory to pass along
the attractors in the order parameter space ξ1, ξ2, ξ3 and to converge to the final attractor.
Note that since Ingber’s approach is a statistical approach, response times are computed
from averages over several possible solution paths. This statistical aspect is not addressed
in Section 3. However, we will make below some comments on stochastic generalizations
of the model discussed in Sections 2 and 3.

In Section 3 the two scenarios were worked out analytically. Numerical solutions were
used for illustration purposes only. In general, the criterion that determines the time point
at which a mode has emerged (e.g., a decision is made or a behavioral response is initiated
or executed) can be based on complicated rules or mechanisms that go beyond the two
scenarios listed in Table 3. In particular, we may imaging that both the “winning mode” has
to be emerged and the “losing mode” must have been disappeared such that both threshold
conditions (30) and (31) must be satisfied at the same time. Such a scenario and other
more comprehensive situations may be studied using extensive simulations of the model
sketched in Fig. 1. However, this is beyond the scope of the present effort and might be
investigated in future work. Likewise, future efforts may extend the model developed above
by taking aspects of perceptual-cognitive-behavioral processes into account that have not
been considered so far. For example, when measuring a behavioral response (e.g., pressing
a button) there might be a motor delay between the verbal response and the emergence of
a neuro-biological pattern in a certain brain area that triggers the behavioral response. A
famous model in this regard that roughly speaking involves a motor delay component in
addition to some kind of decision-making component is the Wing-Kristofferson model for
timing of repetitive movements [74].
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We directed special attention to the scenario that involves peaked response time curves.
On the one hand, we argued in Section 3.3 that peaked response time curves are consis-
tent with a fundamental phenomenon of equilibrium and non-equilibrium phase transitions:
the phenomenon of critical slowing down. One the other hand, we conducted a small-
scaled experimental study to replicate a peaked response time curve reported earlier by
Fitzpatrick et al. [67] and reported the results in Section 3.4. In particular, we found inverted
U-shaped response time curves with peaks close to the transition points of “yes” and “no”
responses. This is consistent with the response time graphs reported in the original study by
Fitzpatrick et al. [67]. Following the protocol of the original study, in order to determine the
response times of the participants inclination angles were presented in random sequences.
Consequently, the hysteresis size and the type of hysteresis could not be determined in the
experiment reported in Section 3.4. However, the hysteresis size and type was determined
in the study by Fitzpatrick et al. [67] by means of an additional experiment. They found
transitions with negative hysteresis. Taken our observations and the results of the previ-
ous study together,we are inclined to say that in the experiment on judging one’s ability
to stand on tilted platforms the judgments are subjected to hysteretic transitions and fea-
ture peaked response time curves. That is, that participant behavior features one of the four
cases addressed by the generalized order parameter model sketched in Fig. 1. Recall that as
pointed out above negative hysteresis is consistent with an interplay between order parame-
ter dynamics and systems parameter dynamics and peaked response times may arise due to
critical slowing down. Therefore, according to the model sketched in Fig. 1, the underlying
principles that lead to the observed negative hysteresis and the observed peaked response
time curves in the Fitzpatrick et al. experiment are the interaction between order parame-
ter and system parameter dynamics reflecting some kind of (short term) plasticity of the
human brain and the critical slowing down phenomenon that classifies the observed transi-
tions between behavior responses as non-equilibrium phase transitions of a self-organizing
system.

Noise can affect various components of perceptual-cognitive-behavioral processes [9].
It might affect perception, neural information processing related to cognition, or motor
responses executed on the muscular-skeletal level. Typically, noise leads to performance
variability. That is, a task that is performed several times is not performed each time in
exactly the same way. The model outlined in Sections 2 and 3 might be generalized to
account for the impact of noise sources. For sake of brevity, we will address only two
issues in this context: the definition of response times and implications for the observa-
tion of peaked response time curves related to critical slowing down. Due to the impact
of noise on perceptual-cognitive-behavioral processes certain thresholds as defined in Sec-
tion 3 may be reached at different time points when a task is repeated several times. In
the literature of stochastic processes, these time points represent first passage times [75].
An ensemble of first passage times constitutes a distribution. Consequently, response times
constitute a distribution function. However, for sake of clarity it is often preferred to report
a single numerical value rather than a whole curve. In this context, the mean value of the
first passage times, the so-called mean first passage time has been studied extensively in
physics [75]. Importantly, the mean first passage time has also been applied in motor con-
trol problems described by order parameter equations [76]. Having identified the mean
first passage time as a possible replacement for the response times defined in Section 3
when noise is taken into account, let us briefly address a implication of strong noise for
the observation of peaked response time curves. In order to simplify the argument let us
consider an extension of the model described in Sections 2 and 3 in line with the afore-
mentionedWing-Kristofferson model for timing of repetitive movements [74]. Accordingly,
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let us assume that the two-component model composed of order parameter dynamics and
system parameter dynamics is not subjected to noise. However, there is a motor delay com-
ponent subjected to strong motor noise. Let us assume that the deterministic two-component
model yields a peaked response time curve with a peak that exceeds by Z time units the
response times that can be observed far away from the bifurcation point. If the noise in the
motor delay is strong relative to the effective peak size Z (i.e., standard deviation of the
noise is comparable or much larger than Z) then it will be difficult to identify the peak. That
is, based on a small sample of observations we will not be able to arrive at the conclusion
that the response time curve exhibits a statistically significant peak. From these considera-
tions it follows that when experimentally observed response times do not exhibit a “clear”
peaked at a bifurcation point, then this does not necessarily rule out the peaked response
times model proposed in Section 3.

The model developed in Section 2 is similar to a model discussed earlier by Lopresti-
Goodman et al. [65] but also features some differences. In order to highlight the similarities
and differences, we may refer to Fig. 1 again. The model presented here as well as the ear-
lier model feature the same three components: order parameter dynamics, system parameter
dynamics, and environmental influences. In particular, the evolution equations for the order
parameter dynamics and systems parameter dynamics are identical across the two studies.
In addition, the coupling parameters sk depend in the order parameters ξk in the same way
in both studies. However, the coupling parameters λk have been treated differently in Sec-
tion 2. Qualitatively, in both models λk depend in the same way on the control parameter α

(e.g., relative object size or angle of inclination). However, in the sections above we intro-
duced a relative control parameter αrel normalized with respect to mean critical control
parameter values, whereas in the study by Lopresti-Goodman et al. the control parameter
was used as it is. Moreover, in the sections above, we introduced a scaling parameter β

that determines the extent to which variations in αrel induce variations in λk , see (16). In
contrast, in the study by Lopresti-Goodman et al. such a proportionality factor was not con-
sidered (because it was not in line with the main objective of the Lopresti-Goodman et al.
study). The normalization and the proportionality factor allowed us the make predictions
about response times based on theoretical considerations. These predictions were confirmed
in Section 3 by numerical solution methods. The question arises whether these modifica-
tions are necessary in order to predict flat and peaked response time curves. An answer to
this question cannot be given at this stage. Extensive numerical work may be conducted
to show that the original model can produce flat response time curves for an appropriate
chosen set of model parameters and peaked response time curves for other sets of model
parameters. If such parameter sets could be found, we would be inclined to say that the dif-
ferences between the models suggested here and in the Lopresti-Goodman et al. study are
not essential.

In the previous sections, perceptual-cognitive-behavioral processes that exhibit transi-
tions between two alternatives were considered. These considerations may be generalized to
take more than two alternative into account. In fact, the originally proposed order parame-
ter equations by Haken [18] describe pattern recognition of an arbitrary number of patterns.
Likewise, an order parameter model for four behavioral grasping modes featuring growth
parameters that depend on two different control parameters was discussed in the context of
infant development [25]. However, for human actors confronted with several alternatives to
choose from, the Hick-Hyman law has been established in the literature [77, 78]. The law
states that response times increases in a logarithmic function with the number of alterna-
tives. The Hick-Hyman law is derived from an information theoretical perspective, where
information refers to statistical information as defined by Shannon’s information theory. A
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detailed discussion about response times predicted by the order parameter model presented
in Section 3 and the Hick-Hyman law goes beyond the scope of this paper. We will restrict
our considerations only to two aspects.

First, the response times defined by (35) and (36) apply to the situation in which the alter-
native patterns (i.e., options for decision-making) do not interact with each other. Therefore,
based on (35) and (36) we immediately arrive at (a somewhat trivial) prediction for a gen-
eralized order parameter model that involves more than two alternatives. If the alternatives
to be considered in the task do not interact with each other, then the response time is pre-
dicted by (35) and (36) and does not depend on the number of alternatives. In particular, if
there are several control parameters (or a single one) that induce bifurcations between the
alternatives (i.e., make the actor to chose between different options), then ”sufficiently” far
away from the bifurcation points the response times do not depend on the number of alter-
natives. Note that this prediction is not in conflict with the aforementioned Hick-Hyman
law. From a dynamical systems perspective, the law focuses on the situation when the actor
rapidly switches between alternatives. In this case, the dynamical system underlying the
perceptual-cognitive-behavioral process at hand operates close to bifurcation points (see
also Haken [18] for some comments supporting this assumption).

Second, if the order parameter dynamics defined in Section 2 operates close to bifur-
cation points, then response times in general depend on the interactions between the order
parameters. It is not clear whether in this case analytical solutions can be derived because a
detailed mathematical analysis of the coupled set of order parameter equations (5) for more
than two order parameters is technically involved. Nevertheless the structure of the equa-
tions allows us to arrive at a scientific guess about the effect of the number of alternatives
on the response times. Recall that as stated in Section 2.1 the mixed nonlinear terms ξj ξ

2
k

describe the inhibitory interaction between two patterns j and k associated with the order
parameters ξj and ξk . That is, the nonlinear mixed terms slow down the increase of the
order parameters. In other words, they describe that the build-up of a pattern is inhibited by
another pattern. In a generalized model featuring a number M of alternative patterns each
pattern is affected by M − 1 inhibitory impacts due to the competition between patterns.
Therefore, if M increases the total inhibition may increase. In this scenario, response times
increase with the number M of alternative patterns. In fact, in a special case, it is possible to
determine an analytical solution that shows explicitly that response times predicted by the
order parameter model increase monotonically as a function of M (see Appendix B). In this
special case, the order parameter model yields predictions that are at least qualitatively con-
sistent with the Hick-Hyman law. However, in general, the relationship between response
times and the number of alternatives M under consideration depends on various details such
as the initial conditions of the order parameters and the model parameters g and λk . There-
fore, in order to obtain a comprehensive picture about predicted response times and the
number of alternative choices in a generalized order parameter model of the form (5) a more
detailed analysis is need. In any case, response times and how response times depend on
the number of alternatives (the question underlying the Hick-Hyman law) is approached in
the current study from a dynamical system perspective, whereas in the literature the Hick-
Hyman law is approached from a statistical, information theoretical perspective [73, 77,
78].

Figure 1 outlines a generalized order parameter model that involves two dynamical sys-
tems that interact with each other: the order parameter dynamics and the system parameter
dynamics. In general and in particular for our understanding of negative hysteresis, there is
a bi-directional interaction between the two dynamical systems. This implies that the gen-
eralized model features circular causality. A switch between order parameters may induce
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a change in the evolution of the system parameters. Changes in the values of the sys-
tem parameter may induce bifurcations in the order parameter dynamical systems, that is,
transitions between order parameters. On a phenomenological level this circular causal-
ity reflects that when perceptual-cognitive-behavioral processes change from one mode to
another then this may affect or induce learning and adaptation and changes the neural con-
nections of the human brain. The learning and adaptation processes in turn may affect
the perceptual-cognitive-behavioral processes and even lead to changes between different
modes of those processes. The generalized order parameter model belongs to a class of
models, where circular causality plays an important role. In this context, short-term adap-
tation to visual stimuli has been modeled within the order-parameter/system-parameter
dynamics framework outlined above and has been proposed to lead to oscillatory visual
perception of ambivalent figures (e.g., Necker cube) [1] and temporary motion-induced
blindness [79]. The concept of circular causality connecting order parameter dynamics and
system parameter dynamics may has clinical applications as well. It has been proposed
that the rituals of patients suffering from obsessive-compulsive disorders arise from the
interaction of dynamic processes taking place on both the behavioral level and the neu-
ral level. More precisely, actions that are initiated by neural trigger stimuli self-inhibit
these stimuli and at the same time excite the stimuli that trigger the appropriate follow-up
actions [80, 81]. Likewise, disease emergence and treatment of bipolar disorder patients may
be understood from an interplay between order parameter and system parameter dynam-
ics. Accordingly, mood oscillations in bipolar disorder patients emerge when a clinically
relevant control parameter exceeds a certain threshold. As a candidate for this clinically
relevant control parameter a measure for the malfunctioning of the mood-regulatory cell
signaling on synaptic cells has been considered [59]. It has been argued that if a bipolar dis-
order patient is treated with a drug therapy then the control parameter will decay below a
particular threshold level (not necessarily identical with the first one) and the pathological
mood swings will disappear. In this case, the amplitude of the mood swings is consid-
ered as an order parameter that satisfies an order parameter equation similar to (5), while
the clinically relevant control parameter is regarded as a system parameter that evolves in
time according to an appropriately defined system parameter equation [66]. Table 4 sum-
marizes these studies. Table 4 also points out that in previous studies timing aspects have
only been addressed with respect to the switching times of perceptual reversals (oscilla-
tions), whereas the efforts in Section 3 were concentrated on the discussion of response
times.

In the context of clinical applications we would like to highlight again that the system
parameter dynamics is tailored to describe processes related to the plasticity of the human
brain. In this context a model for stroke rehabilitation has been proposed that includes
among other components a behavioral component and an adaptation component captur-
ing changes in the synaptic connections of the motor cortex [82]. Accordingly, training the
limb affected by stroke results in reorganization of the motor cortex network exhibiting
the stroke-induced brain lesion such that the motor control of the affected limb improves.
Importantly, the training increases the chance that in voluntary (free choice) movements
patients will use the affected limb again which will further improve the organization of the
affected motor cortex area. In this scenario, a certain type of motor activity improves neu-
ral network connectivity. Due to the improved connectivity structure the beneficial motor
activity is performed more frequently, which supports a sustained recovery process. The
detailed mechanistic model proposed in [82] may be approximated from a top-down per-
spective using a model featuring a circular causality between order-parameter dynamics
and system-parameter dynamics. The motor actions may be described in terms of an order
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Table 4 Modeling studies involving an order parameter equation component similar to (2) coupled to a
system parameter dynamics (OCD = obsessive-compulsive-disorder)

Topic Order parameter System parameter Timing Ref.

(dynamics) aspect

∗ Oscillatory perception Perceptual Adaptation Switching [1]

of ambivalent figures experiences putatively related to times

synaptic weight changes

∗ Motion-induced Perceptual ” ” [79]

blindness experiences

∗ Tool Grasping and ” — [65]

grasping judgments

∗ Standing Judgments ” Response This study

on slopes times

∗ OCD Complex Neural triggers — [80, 81]

rituals behaviors

∗ Bipolar disorder Mania/ Malfunctioning parameter — [59, 66]

emergence and depression of mood-regulative cell

treatment signaling

parameter dynamics similar to (2), whereas the changes in the connectivity may be captured
by a systems parameter dynamics.

Other models in the psychological literature that belong to this class of models featur-
ing circular causality describe for example the interplay between perception and action as
reviewed by Warren [15] or between the state of an agent and the state of the environ-
ment [83]. Roughly speaking, perceptual inputs may guide behavioral responses, in general,
and motor actions, in particular. These behavioral responses may allow a human actor to
experience different perceptual inputs. In doing so, perception and action affect each other
in a circular way. The question arises to what extent insights obtained in such other stud-
ies focusing on psychological relevant instances of circular causality are helpful to improve
our understanding of the interaction between order parameter and system parameter dynam-
ics. Vice versa, it seems to be of interest to examine to what extent the issues discussed
in the previous sections and the mathematical methodology used throughout this study can
be helpful for other studies dealing with two interacting dynamical systems giving rise to
circular causality.
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Appendix A: Derivation of (17b) and (25b)

Recall that αrel,c,2 is the critical control parameter value at which the transition frommode 1
to mode 2 occurs when α is gradually increased (ascending condition). From (16) it follows
that an increase in α implies that the ratio λ2/λ1 increases. The critical condition for the
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ratio λ2/λ1 is defined by (8). Substituting (16) into (8) and replacing αrel by αrel,c,2, we
obtain

L0 + β αrel,c,2

g
= L0 − β αrel,c,2 . (44)

Solving for αrel,c,2 yields (17a). By analogy, the critical value αrel,c,1 can be determined.
Recall that αrel,c,1 denotes the critical control parameter value at which the transition from
mode 2 to mode 1 occurs when α is decreases gradually (descending condition). The
decrease of α implies an increase of the ratio λ1/λ2, see (16) again. The critical condition
for the ratio λ1/λ2 is given by (9) Substitute (16) into (9) and replacing αrel by αrel,c,2, we
obtain

L0 − β αrel,c,1

g
= L0 + β αrel,c,1 . (45)

Solving for αrel,c,1 yields (17b). Note that (17a) and (17b) exemplify the two control param-
eter principles given by (14) and (15) that hold for any dynamical system that exhibits
hysteresis. In particular, using (17a) and (17b) we see explicitly that

�α = αc,2 − αc,1 = αrel,c,2 − αrel,c,1 = 2αrel,c,2 = −2αrel,c,1 (46)

holds, which is (15). Consequently, we have αrel,c,2 = �α/2 and αrel,c,1 = −�α/2, as
stated see (17b) again.

The critical control parameter values in the case of negative hysteresis can be determined
by a similar argumentation. To this end, however, we need to assume that a time scale
separation holds for the variables involved in the order parameter and system parameter
model. The characteristic time scales are summarized in Table 5.

First of all, it is assumed that order parameters ξk evolve quickly every time a percep-
tual process or behavioral response is required. The Lk(n) system parameters evolve slowly
relative to ξk(t). However, they evolve quickly on the time scale of the repetitively per-
formed judgment tasks or executed behavioral responses. That is, they are considered as
fast evolving variables relative to changes of the control parameter α. Consequently, at the
bifurcation point as defined by the critical control parameter values αc,1 and αc,2 the system
parameters Lk are in good approximation at their respective stationary values.

Let us determined the critical control parameter value αrel,c,2 for transitions from mode
1 to mode 2 when α is increased (ascending condition) provided that mode “1” has been
“on” or active in several previous behavioral responses. Increasing α implies that the ratio
λ2/λ1 increases. In (16) we replace αrel by αrel,c,2 such that λk = Lk − β αrel,c,2 For Lk

we use the corresponding stationary values sk: L1 = s1 and L2 = s2. That is, as mentioned
above, we assume that at the transition point the system parameter dynamics is close to its

Table 5 Key variables used in the model sketched in Fig. 1 and their characteristic time scales

Variables Characteristic time scales

Amplitudes not corresponding Remain terms Very fast

to order parameters of mode skeleton

Order parameters ξk(t) Fast

System parameters Lk(n) Medium

External changes α(n) Slow
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fixed point. From (19) we obtain L1 = s1 = L0 − h and L2 = s2 = L0. Substituting these
results into (8), we obtain

L0 + β αrel,c,2

g
= L0 − h β αrel,c,2 . (47)

Solving for αrel,c,2 yields (25a). By analogy, (25b) can be derived.

Appendix B: More than two alternatives for the special case of a set of almost
indistinguishable stimuli

In the conclusions (Section 4), a generalized order parameter model involving more than
two alternatives has been discussed and a heuristic argument has been developed that
suggests that increasing the number of alternatives or choices will increase the response
times predicted by that generalized model. This argument can be worked out in detail for
a decision-making process in the special case when all order parameters evolve in exactly
the same way for most of the time of the process. That is, we consider M alternatives or
choices, where each alternative is described by an order parameter ξk . Based on certain
stimuli decisions have to be made (e.g., in an experiment on associative memory involv-
ing stimulus-response pairs the learned associations are tested by presenting the stimuli
in an random order). The stimuli are assumed to be almost indistinguishable such that all
ξk assume that same values for most of the decision-making processes: ξk(t) = z(t) for
k = 1, . . . , M . Note that in this context we also assume that λk = λ holds for k = 1, . . . , M .
That is, all growth parameters are identical. Eventually, the order parameters ξk will diverge
(i.e., ξk �= ξj for all k �= j ) due to the impact of fluctuations and only one order parameter
will ”survive” (winner-takes-all dynamics, see Section 2.1). In the following calculations,
we do not account for this final phase and assume that the final phase does not qualitatively
affect the relationship between the number of choices M and the response times.

For ξk(t) = z(t) > 0 we need to take the interaction terms gξkξ
2
j into consideration.

That is, (34) has to be supplemented with M − 1 interaction terms describing the inhibitory
impacts of the other patterns or choices on the pattern (choice) of consideration. Since we
have ξk(t) = z(t) for all k it follows that all interaction terms have the same form and are
equal to gz3(t). Adding M−1 terms gz3(t) to the right-hand side of (34) and using ξk rather
than z as variable (for sake of consistency with our presentation in Section 3), we obtain

d

dτ
ξk = λ ξk − g(M − 1)ξ3k − ξ3k = λ ξk − Gξ3k (48)

with
G = g(M − 1) + 1 > 1 . (49)

Note that as long as ξk(t) = z(t) for all k holds, the trajectories converge to an unstable
saddle point with ξk = √

λ/G ∀ k. Therefore, we assume that the trajectories ξk converge
from ξk = ξ0 at t = 0 towards a value ξk = ξT at time T with ξT > ξ0 and ξT <

√
λ/G.

After that point the trajectories start to diverge and one of the trajectories will approach the
finite value ξk = √

λ >
√

λ/G, while all others will converge to zero. Consequently, the
response time RT exceeds the time point T : RT > T . The time T can be calculated just as
in Section 2.1. We obtain

T = 1

2λ

{
ln

(
ξ2T

ξ20

)
+ ln

(
λ − Gξ20

λ − Gξ2T

)}
= 1

λ

{
ln

(
ξT

ξ0

)
− 1

2
ln

(
λ − Gξ2T

λ − Gξ20

)}
. (50)
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Note that for G = 1 and ξ0 = D
√

λ, ξT = θ
√

λ we re-obtain (35). Importantly, the
auxiliary parameter G increases with the number of choices M , see (49). Therefore, the
question arises how does the time T depend on the factor G. Differentiating T with respect
to G yields

dT

dG
= 1

2W

(
ξ2T − ξ20

)
> 0 (51)

with W = (λ−Gξ20 )(λ−Gξ2T ) > 0. We see that the duration T contributing to the response
time RT increases when G increases. This implies that T increases when the number M of
choices increases. As mentioned above, this calculation is a crude estimate for the response
time RT . The response time includes a final phase in which ξj �= ξk holds. In fact, the
assumption ξk(t) = z(t) for t < T and ξj �= ξk for t > T should be considered as
a simplified two-phases scenario that is used to derive by analytical methods an estimate
for the lower bound T of the response time RT . Nevertheless, this estimate suggests that
the response time RT increases as a function of M . More detailed calculations (involving
simulation studies) are needed to obtain an advanced understanding of this issue but are left
to the future.
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