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Abstract Gene regulatory networks in cells allow transitions between gene expression states
under the influence of both intrinsic and extrinsic noise. Here we introduce a new theoretical
method to study the dynamics of switching in a two-state gene expression model with positive
feedback by explicitly accounting for the transcriptional noise. Within this theoretical frame-
work, we employ a semi-classical path integral technique to calculate the mean switching time
starting from either an active or inactive promoter state. Our analytical predictions are in good
agreement with Monte Carlo simulations and experimental observations.
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1 Introduction

Variability of gene expression can be used to develop a quantitative understanding of the
underlying gene regulation [1]. Single-cell observations and stochastic analyses have revealed
qualitative and quantitative features of gene regulation in both prokaryotes [2] and eukaryotes
[3]. Biochemical noise drives stochastic switching between bistable states in genetic networks
[4]. Such switching can hence lead to different phenotypic changes for a cellular population.
Theoretical modeling of stochastic gene expression [5–7] has been a subject of intense studies
in the last few years and has helped us to develop our understanding of the effect of noise on
gene regulation. Such models mostly focus on describing intrinsic fluctuations that arise from
randomness in time of individual chemical reactions. Theoretical methods such as generating
functions [6–8], Langevin and Fokker-Planck equations [9], linear noise approximation [10],
many-body theory [11], as well as stochastic simulations using the Gillespie algorithm [12]
have been used to study such models of gene expression. Shahrezaei and Swain [6] developed
an analytical theory of gene expression to calculate the steady-state protein distributions for a
three-stage model where the gene containing the promoter fluctuates between active and
inactive states at a constant rate. By considering the protein burst model, which is based under
the assumption that mRNA lifetimes are shorter than protein lifetimes, they could derive the
master equation for proteins, which implicitly includes mRNA fluctuations. Recently, it has
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been shown that including mRNA noise in master equations plays a strong role in determining
switching rates [13, 14]. Employing the WKB theory [15] to treat the underlying chemical
master equations, Assaf et al. [16] provided a theoretical framework to obtain the quasi-
stationary probability distributions of mRNA/protein copy numbers for a genetic network with
positive feedback and also to calculate the mean switching time from either of these active/
inactive states.

In this work, we present a different analytical method to investigate the stability of genetic
switches in gene expression. We apply this method to a simple gene expression model where
the two-state promoter switches between the active and inactive states and the switching rate
depends on the transcription factor, which in this case is the protein. We calculate the noise
characteristics for the mRNA/protein distribution as well as the switching time between the
active and inactive states of the promoter. Lastly, we extend our calculations to noise in more
complex promoter architectures by introducing more than two promoter states using our
proposed theoretical recipe.

2 Methods

We start by considering a simple two-state gene expression model as shown in Fig. 1a. In this
model, the transition between the inactive and active states of the promoter gene is no longer
constant but is controlled by protein number n via positive feedback, the protein thereby
inducing its own expression. This two-state model with positive feedback is identical to the
model treated by Assaf et al. [16]. This two-state positive feedback switch has been shown to
describe biological switching experimentally [17]. The transition rates between active and
inactive states are kon(n)≡ f (n), koff (n)≡g(n) where n is the protein copy number. f (n) and
g(n) are considered to be Hill-type functions, f nð Þ ¼ kmin

0 þ kmax
0 −kmin

0

� �
nh1= nh150 þ nh1

� �
and g nð Þ ¼ kmax

1 − kmax
1 −kmin

1

� �
nh2= nh250 þ nh2

� �
where n50 is the curve’s midpoint and h1=

h2=h. To account for the stochastic behavior of the genetic switches, Assaf et al. [16] used
this simple model and employed two coupled chemical master equations that can describe

the probability distribution functions, P˙m,n and Q˙m;n of having m mRNAs and n proteins at
time twith the promoter DNA being in the inactive and active state, respectively. They used
the WKB approximation method [18] to obtain a quasi-stationary solution to the master
equation. The WKB ansatz [15] is given as Pm,n≃exp[−S(m,n)], where S is the action. This
ansatz has been used extensively to study population switches between metastable states

[19–21]. Then, by considering stationary distributions P˙m;n ¼ Q˙m;n ¼ 0 and employing the
WKB ansatz they arrived at the stationary Hamiltonian Jacobi equation, H ¼ H

m; ∂S∂m; n;
∂S
∂n

� � ¼ 0. Here we can draw an analogy to classical mechanics and introduce momenta

and χn ¼ ∂S
∂n such that m

˙ ¼ ∂H
∂χm

, n˙ ¼ ∂H
∂χn

, χṁ ¼ −∂H
∂m, χṅ ¼ −∂H

∂n .

Assuming that the mRNA lifetimes are much shorter than the protein degradation rates

(γ>>1), one can eliminate the mRNA degrees of freedom [22] m˙ ;χ˙ m ¼ 0Þ�
and obtain a

reduced rather effective Hamiltonian, H=H(n,χn), which describes the evolution of slow
variables only. Such a kind of separation of variables has been applied earlier in biochemical
networks consisting of reactions operating at multiple time scales [23]. Time-scale separation
between variables allows one to coarse-grain the system by integrating over fast degrees of
freedom without loss of much information about mesoscopic fluctuations of the slow vari-
ables. For example, in the context of modeling viral infection kinetics, we eliminated the virus-
related variables and calculated the extinction rate by considering the virus clearance rate to be
faster than the infected cell dynamics [24].
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In our present study, we consider the same model for the positive feedback network as
discussed in [16] but propose a different theoretical method that employs the stochastic
semi-classical path integral technique to explicitly account for the mRNA noise along
with protein fluctuations. This semi-classical method has been used earlier to calculate
rare event statistics in reaction diffusion systems [25] and it has been applied to various
epidemiological stochastic models [24, 26, 27]. In this method, we start with the eikonal
ansatz:

Z χ; tð Þ ¼ eS χ;tð Þ ¼
X∞
n¼0

Pn tð Þeinχ ð1Þ

where Z is the generating function for the number of molecules n that are formed during a
chemical process in time t. χ is a variable conjugated to n number of molecules and appears as
a ‘Lagrange multiplier’ that takes care of conservation laws during the derivation of path
integrals (see supporting information Text S1 of [24]). This eikonal approximation is used to
solve master equations and it can recast the problem in terms of an effective classical
Hamiltonian system. Here we do not provide the derivation of the semi-classical path integral
approach and refer the reader to Text S1 in [24].

By considering the trajectories that dominate the dynamics, it was found that S(χ,t) is given
by [25]:

S χC ; tð Þ ¼
Z
0

t f

χ˙ nð Þ þ H n;χð ÞÞdt� ð2Þ

where H is the Hamiltonian that can be obtained following the general method discussed in
[24]. Such a path integral representation has been derived for the case of a Michaelis-Menten
enzyme attached to the membrane of a eukaryotic cell and later generalized to a network of
reactions [23]. This theory is valid in the limit of short-lived mRNA [16–28]. Our first step is
to consider the process of mRNA generation. Let Pm

G and Pm
G * be the probabilities to generate

m mRNAmolecules at time t in the inactive and active state of the promoter, respectively. The
master equations for their evolution are [16]:

Fig. 1 a Model for the positive feedback network derived from [16]. Transcription, translation, mRNA decay,
and protein degradation are modeled as first-order processes with rates a, γb, γ, and 1, respectively (rates are
rescaled by the protein decay rate). The feedback functions kon(n) and koff (n) regulate promoter transitions. b χn

versus n showing bistability at ab=2,400, b=22.5, h=2, n50=1,000, k0
min=k1

min=a/100, k0
max=k1

max=a
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d

dt
PG
m ¼ − kon nð Þ PG

m þ koff nð Þ PG*
m

d

dt
PG*
m ¼ kon nð ÞPG

m− koff nð Þ þ a
� �

PG*
m þ aPG*

m−1

ð3Þ

Assuming that the mRNA is short-lived compared to the protein, we can solve these master
equations by introducing the generating function:

Zg χRð Þ ¼
X∞
m¼0

Pg
me

iχRm ð4Þ

with g∈{G,G*} and the total generating function is Z(χR)=ZG+ZG*. The cumulants are given
by:

mh i ¼ − i
∂lnZ χRð Þ

∂χR
χR¼0;σ

2
m ¼ m2

� �
− mh i2 ¼ −ið Þ2∂

2lnZ χRð Þ
∂χ2

R

����
����
χR¼0

F ¼ σ2
m

mh i
ð5Þ

The Fano factor F is a ratio of the variance to mean and is a measure of the noise strength
due to stochastic switching between different on and off states.

In terms of this generating function, the master equation can be written as [29]:

d

dt
ZG ¼ − kon nð Þ ZG þ koff nð Þ ZG*

d

dt
ZG* ¼ kon nð ÞZG− koff nð Þ þ a

� �
ZG* þ aeiχRZG*

ð6Þ

Equation (6) can be considered as a Schrödinger equation:

d

dt
ZG

ZG*

� �
¼ Ĥ χRð Þ ZG

ZG*

� �
ð7Þ

where

H χRð Þ ¼ − kon nð Þ koff nð Þ
kon nð Þ a eiχR−1

� �
−koff nð Þ

� �
: ð8Þ

Assuming that the switching rates between the inactive and active transcriptional state are
faster than the time of a substantial change of protein number n or order of

ffiffiffi
n

p
, Eq. (7) can be

solved as an eigenvalue problem with:

Z χRð Þ ¼ eλ0t ð9Þ
where λ0 is the eigenvalue of the least negative real part. By diagonalizing, |H−λI|=0, we
have:

Z χRð Þ ¼ e
t
2 K χRð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K χRð Þþ4konH0 χRð Þ

p
 �
: ð10Þ

where K χRð Þ ¼ H0 χRð Þ− kon nð Þ þ koff nð Þ� �
We also assume that when the gene is in the on state, mRNAs are generated according to a

Poisson process and hence:
H0 χRð Þ ¼ a eiχR−1

� � ð11Þ
Following Eq. (5), for this two-state promoter model, we can compute the first two

moments of the mRNA distribution and calculate the Fano factor:
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mh i ¼ akon nð Þ
γ kon nð Þ þ koff nð Þ� �;σ2

m ¼ m2
� �

− mh i2 ¼ mh i 1þ 2akoff nð Þ
γ koff nð Þ þ kon nð Þ� �2

 !

FmRNA ¼ 1 þ a

γ
Δ:

ð12Þ

where γ is the degradation rate of each mRNA molecule and Δ ¼ 2koff nð Þ
kon nð Þþkoff nð Þð Þ2

This Fano factor is larger than unity and depends on the concentration of the regulatory
factor binding to the promoter, which here is the protein copy number n.

The next step is to combine Eq. (10) with the generating function of proteins translated
from a single mRNA.

Let P(τ)=γe−γτ be the probability for the mRNA to live during time τ. Then the probability
P(n|1R) to have n proteins generated by one mRNA is:

P nj1Rð Þ ¼
Z
0

∞

dτP τð Þp n τjð Þ: ð13Þ

where p njτð Þ ¼ ∫dχ0e
−inχ0þτH χ0ð Þ

The total generating function of probabilities to have n proteins generated by any single
mRNA is given by:

Z χ1 1Rjð Þ ¼
X∞
n¼−∞

P n 1Rjð Þeinχ1 ¼ 1

1−H χ1ð Þ=γ ð14Þ

where we have performed the integration over τ. Summation over n then produces a delta
function δ(χ1−χ0), which is then removed by integration over χ0.

If we assume that all mRNAs generate proteins independently, then the generating function
of protein distribution due to m mRNA is [Z(χ1|1R)]

m. Then the probability to have n proteins
generated during time t, where t>>τ is given by:

P n; tð Þ ¼ 1

2π

X∞
m¼0

Z
−π

π

dχ1

Z
−π

π

dχR Z χ1 1Rjð Þ½ �me−inχ1−imχRþtH χRð Þ

¼ 1

2π

Z
−π

π

dχ1

Z
−π

π

dχR
1

1−e−iχRZ χ1j1Rð Þ e
inχ1þtH χRð Þ ð15Þ

Then the moment generating function to generate n proteins in time t>>τ is as follows:

Zp χnð Þ ¼
X∞
n¼−∞

P njtð Þeinχn : ð16Þ

Substituting Eq. (15) into Eq. (16) and writing ∑
∞

n¼−∞
e in χn−χ1ð Þ as a delta function δ(χn−χ1),

we have:

Zp χnð Þ ¼
Z
−π

π

dχ1

Z
−π

π

dχR
1

1−e−iχRZ χ1j1Rð Þ e
tH χRð Þδ χn−χ1ð Þ ð17Þ

By integration over χ1 and using properties of the delta function, we have a path integral
over the χn variable that can be written as:
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Zp χnð Þ ¼ ∮d
eiχ Rf g
� �
2π

−i
e−iχR−Z χnj1Rð Þe

tH χRð Þ ¼ etH χRð Þ eiχR ¼ Z χn 1Rjð Þ�� : ð18Þ
Using the above equations, the Hamiltonian for protein generation and degradation can be

written as:

Hp χnð Þ ¼ 1

2
K1 χnð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 χnð Þ2 þ 4konH1 χnð Þ

q� 
þ n e−iχn−1
� � ð19Þ

where H1 χnð Þ ¼ a
γ

H χnð Þ
1−H χnð Þ=y and H χnð Þ ¼ bγ eiχn−1ð Þ where b is the burst size, i.e., the

average number of proteins translated from one mRNAmolecule. It is assumed that generation
of a protein from a single mRNA is also a Poisson process.

From Eqs. (5) and (19) and using the relation Zp χnð Þ ¼ etHp χnð Þ, the Fano factor for protein
distribution is given by:

Fprotein ¼ 1þ 2bþ bΔ
0 ð20Þ

where Δ0 ¼ a
γ Δ.

The switching between the on and off states occurs along a trajectory in the phase space of
the classical Hamiltonian known as the optimal path trajectory. The mean switching time along
the Hamiltonian trajectories that start from the metastable state and end either in the off or on
state has the form:

τon=off→off =on ¼ σexp Son=off→off =on

� � ð21Þ
where S is known as ‘action’ in classical physics. A precise estimation of the prefactor σ is a
hard task, although it can be obtained for one-dimensional systems; however it is not important
because Eq. (21) is dominated by the exponent, when the system is not too close to the
bifurcation point [25, 30]. Strong fluctuations drive the system from its equilibrium metastable
state to the on/off states along an optimal path that minimizes the action S. The optimal
Hamiltonian trajectory that describes S starts from the metastable state and ends either at the on
or off state. Since the probability of extinction is found by minimizing the action, we compute
such trajectories satisfying the zero energy condition, i.e., Hp(χn)=0 as discussed in [24]. This
simplifies our calculations because, from Hp(χn)=0, one can find how χn depends on n along
this trajectory and then the action has the form:

S ¼
Z
noff =non

n0

χndn: ð22Þ

If non and noff are the average protein number in the on and off states respectively, then at
the metastable state these points are separated by a repeller n0 such that noff<n0<non and is
obtained from the solution:

n˙
0
¼ ∂HP χnð Þ

∂χn
χn ¼ 0j ð23Þ

and χn as a function of n along the zero energy trajectory of the Hamiltonian can be obtained at
Hp(χn)=0 such that:

χn ¼ ln
−Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2−4AC

p

2A

" #
ð24Þ

where B=−n{n(1+2b)+ab+(1+b)(koff(n)+kon(n))}, A=nbkoff(n)+(ab+bn(n+kon(n))), C=
n2(1+b). Figure 1b shows this trajectory as a function of the protein number n.
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The probability of switching from the off to on state and vice versa along this trajectory is
given by Pon/off→off/on(n)~exp[−Son/off→off/on(n)].

3 Results and discussion

To check our theoretical predictions, we compare our results for MST prediction to Monte
Carlo simulations (MC) using the Gillespie algorithm [12]. Figure 2 shows the functional
dependence of τoff→on on the translation rate b at small and large gamma values. The
numerical results are fitted with MC simulations using suitable values of the prefactor σ in
Eq. (21). The MST has a superexponential dependence on b. In Fig. 2a, the burst size ranges
from 1 to 4 for large values of gamma, whereas in Fig. 2b the burst size varies from 10 to 35
for small values of gamma. This suggests that the most important parameter in this theory is bγ
instead of γ. This is the reason for obtaining good agreement with the simulation results for
small values of gamma because in that case b>>1. Figure 3 shows the MST from on to off
states for a high value of gamma and off to on states for a low value of gamma as a function of
n50. In Fig. 3a, as n50 increases, koff becomes smaller. This indicates that the switching rate
from the on to off state decreases. Conversely, in Fig. 3b as n50 increases, kon increases and the
mean switching time from the off to on state becomes faster. In both Figs. 2 and 3, the
numerical results are fitted with MC simulation by adjusting the value of the prefactor σ.

We can use our analytical model to determine a relationship between gene expression and
noise, which is defined as the ratio of variance to the square of the mean, μmRNA=σm

2 /〈m〉2 or
μn=σn

2/〈n〉2. From Eqs. (3) and (15), we have:

μn ¼
1þ 2b

nh i þ bΔ0

nh i : ð25Þ

The second term in Eq. (25) captures the effect of the promoter architecture. The same form
of noise is also obtained for mRNA distributions, μmRNA ¼ 1

mh i þ Δ
mh i, where both Δ and Δ ′

have been defined earlier. In Fig. 4, we plot the protein noise μn as a function of the gene
expression 〈n〉. We find that for this protein feedback loop where the on-off switching rate is

Fig. 2 MST from off to on state as a function of b for (a) γ=50 (b) γ=2. The solid lines are the numerical results
with preexponents while (●) are from MC simulations. Prefactors are 17.08 and 300 for a and b, respectively.
Here ab=2,400, h=2, k0

min=k1
min=a/100, k0

max=k1
max=a. For ,a, n50=720, b n50=1,000
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controlled by the unbinding and binding of the protein to the promoter region, the expression
increases and the noise decreases with the increase in the protein copy number n. This
relationship between mean expression and noise in response to binding of the transcription
factor (TF) to binding sites containing the promoter has also been observed experimentally by
Segal et al. [31]. The gene expression and noise were measured as a function of the TF Zap1,
which can act both as an activator and a repressor. For the experimental scenario of a Zap1-

Fig. 3 a MST as a function of Hill-type function curve’s midpoint n50 for a on to off state, γ=50, b off to on
state, γ=2. The solid lines are the numerical results with preexponents while (●) are from MC simulations.
Prefactors are 4.8 and 230 for a and b, respectively. Here ab=2,400, h=2, k0

min=k1
min=a/100, k0

max=k1
max=a. For

a, b=15, b b=22.5

Fig. 4 Mean expression versus noise for the positive feedback model as shown in Fig. 1a for b=15 (solid line)
and b=12 (dashed line), ab=2,400, h=2, k0

min=k1
min=a/100, k0

max=k1
max=a , n50=720, γ=1
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activated target gene, we can easily make a direct comparison with our two-state model
(Fig. 1a) where the positive protein feedback loop essentially acts as an activator. Our
calculations show that having a positive protein feedback loop causes an increase in gene
expression along with a decrease of noise. This in fact agrees with the experimental predictions
[31] of increased gene expression and decreased noise with the increased binding of TF Zap1
to the promoter region of the gene. The observed parallelism between our calculated results
and reported experimental observations clearly implies the practical utility of our proposed
theoretical methodology.

To test the robustness of our theoretical framework, we used our theory of stochastic
transcriptional regulation to handle further complexity in promoter architectures. Such
complexity can be introduced by varying the strength, number, and position of the
transcription factor binding sites and also the strength of the repressors or activators. It
has been reported earlier both in experiments and in theoretical studies that the promoter
architecture of the gene regulatory network affects cell-to-cell variability in gene expres-
sion [32–35]. Thermodynamic models of gene expression have been used earlier to
calculate the mean mRNA number and the protein copy number per cell [36–38].
However, these simple thermodynamic models can only compute the mean and not the
higher moments of protein/mRNA distributions. As shown in the previous section, we
can not only use our approach to calculate the mean and the variance of the protein/
mRNA distributions but to also obtain the mean switching time between active and
inactive promoter states for a complex promoter architecture such as the three-state
promoter model [39–41] as shown in Fig. 5. State 1 refers to the inaccessible promoter
(repressor bound) that makes a reversible transition to the DNA in the inactive state. The
DNA then undergoes stochastic switching between the on and off states. For this birth-
death mechanism the master equation for the mRNA probability distribution in terms of
generating functions can be written as:

Fig. 5 Three-state promoter model for positive feedback. State 1 is the inaccessible promoter that may be bound
to a repressor and k1 and k-1 are the transition rates between state 1 and inactive state of the promoter, DNAinactive.
The rest is the same as in Fig. 1a
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∂
∂t

Z1 ¼ − k1Z
1 þ k−1Z

G

∂
∂t

ZG ¼ − k−1 þ kon nð Þð ÞZG þ k1Z
1 þ koff nð ÞZG*

∂
∂t

ZG* ¼ − aþ koff nð Þ� �
ZG* þ aeiχRZG* þ kon nð ÞZG

ð26Þ

As shown previously in Eq. (6), one can recast this in the form of a Schrödinger equation
such that:

d

dt

Z1

ZG

ZG*

0
@

1
A ¼ H χRð Þ

Z1

ZG

ZG*

0
@

1
A ð27Þ

where

H χRð Þ ¼
− k1 k−1 0
k1 − k−1 þ kon nð Þð Þ koff nð Þ
0 kon nð Þ − aþ koff nð Þ−aeiχR

� �
0
@

1
A

Using the same argument used earlier, we can solve this eigenvalue problem and obtain the
generating function for mRNA production:

Z χRð Þ ¼ e
t K2 χRð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 χRð Þþ4H2 χRð Þ

p� �
2 ð28Þ

where K2(χR) = −(k1+A+B), H2(χR) = kon(n)koff(n) + k1AB − k1(A+B+kon(n)koff(n)) −AB
and A and B is given by A ¼ koff nð Þ þ a 1−eiχRð Þ� �

and B=kon(n)+2k−1, respectively.
Using Eq. (5) and from Eq. (28) we can compute the Fano factor that is given by:

FmRNA ¼ 1þ a

γ
Δ1 ð29Þ

where:

Δ1 ¼ 2
kon nð Þ=koff nð Þ

1þkon nð Þ=koff nð Þþk−1=k1
1=kon nð Þ

1þkon nð Þ=koff nð Þþk−1=k1

� �
þ k−1=k1

1þkon nð Þ=koff nð Þþk−1=k1

� �
1
k1
þ 2þk−1=k1

kon nð Þ
� �� �

In the absence of a repressor, this noise is identical to Eq. (10), which corresponds to a two-
state promoter model. We find that Δ1 is a function of the switching rates between different
promoter states. This clearly shows that although the expression of the Fano factor has the same
structural form, it will be different for different promoter architectures and is a measure of the
variability of the gene expression level in different cells. Similar findings were reported in [40]
where it was found that DNA-looping that acts as a third transcriptional state changes the
bistability properties of this stochastic model of gene expression in the lac operon. Also it was
shown in [41] that the transmission of genetic information was affected for generic promoter
models with multiple internal states including the one described in [40]. Further, we can use our
semi-classical path integral technique to obtain the on-off switching times between different
promoter states in this particular three-state promoter model.

4 Conclusions

In this work we presented an analytical method to understand the role of mRNA fluctuations in
switching stability. We find that that this semi-classical path integral is a suitable method to
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coarse-grain the system and obtain an effective model for protein/mRNA fluctuations. Also,
our technique can be used to calculate switching times, in the limit of short-lived mRNA. The
considered model is only the minimal model of protein production. However, our theoretical
model is quite unique and diverse in the sense that it can be applied to more complex models
of gene expression with multiple promoter sites. We illustrated the effective use of our
theoretical framework for a complex system, namely the three-state promoter model as shown
in Fig. 5. As reported earlier [39–41], our analysis of the three-state promoter model shows that
the gene expression level is strongly affected by the promoter architecture. Also, in the two-
state promoter model, one can introduce a non-exponential protein degradation step instead of
a simple Poisson process. It is practically impossible to capture such variations in the model
using previously known theoretical techniques but we show that these can be easily incorpo-
rated into our proposed theoretical method. As reported experimentally in the literature, we
find that promoter architecture has the same qualitative effect on cell-to-cell variability in the
noise and gene expression for both mRNA and protein distributions. In this work we only
focus on describing intrinsic noise but, in the high copy-number regime, extrinsic noise that
arises from the interactions of the system of interest with its environment is equally significant.
Extension of this theory to describe the combined effect of intrinsic and extrinsic noise on the
dynamics of stochastic genetic switches is underway.
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