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Abstract Scientific formalizations of the notion of growth and measurement of the rate of
growth in living organisms are age-old problems. The most frequently used metric, “Aver-
age Relative Growth Rate” is invariant under the choice of the underlying growth model.
Theoretically, the estimated rate parameter and relative growth rate remain constant for all
mutually exclusive and exhaustive time intervals if the underlying law is exponential but not
for other common growth laws (e.g., logistic, Gompertz, power, general logistic). We pro-
pose a new growth metric specific to a particular growth law and show that it is capable of
identifying the underlying growth model. The metric remains constant over different time
intervals if the underlying law is true, while the extent of its variation reflects the depar-
ture of the assumed model from the true one. We propose a new estimator of the relative
growth rate, which is more sensitive to the true underlying model than the existing one. The
advantage of using this is that it can detect crucial intervals where the growth process is
erratic and unusual. It may help experimental scientists to study more closely the effect of
the parameters responsible for the growth of the organism/population under study.
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1 Introduction

Scientific formalization of the notion of growth in living organisms is an age-old problem.
For a long time it has been a challenging issue for scientists to develop appropriate measures
of growth or the rate of growth for living organisms. Such measures are receiving renewed
importance in applied sciences, e.g., in zoology [1], botany [2], ecology [3], population
dynamics [4], demography [5], cell dynamics [6], bacterial growth [7], finance [5] etc.

The sigmoid functions, Gompertz, General Logistic and General von Bertalanffy and
their associate differential equations have applications to model self-limited population
growth in diverse fields, e.g., sociology [8], fish growth [9], plant growth [10] and tumor
growth [11]. Particularly in the fisheries literature much has been discussed on models using
von Bertalanffy growth law, including criticisms [12, 13], testing for parameter differences
[14, 15], bioenergetic applications [16] and re-parameterizations (see also [17, 18]). There
have also been theoretical approaches to define a general framework to study growth models
and a new family of sigmoid growth functions has been introduced, namely, Trans-General
Logistic, Trans-General von Bertalanffy and Trans-Gompertz [19, 20].

Growth curve models are increasingly used in several areas of interdisciplinary research.
For example, growth models play an important role in modeling the density regulation
in abundance of natural populations. The growth models such as logistic, theta-logistic,
Gompertz etc. have potential applications in population dynamics that may be used for
predictions and forecasting extinctions. We shall mention some important applications of
growth curve models in population ecology. Sibly et al. [3] fitted theta-logistic law to model
the population growth rate with density to 1780 time series of 674 species belonging to
four taxonomic groups, namely, birds, mammals, bony fishes and insects from the Global
Population Dynamics Database [21]. Similar studies have been carried out using other
growth functions as well, e.g., theta-Ricker model and Gompertz model [22]; theta-Ricker
[23]; Gompertz [24]. The theta-logistic models are often collectively used in applied ecol-
ogy to estimate maximum sustainable yield targets [25], temporal abundance patterns [26],
the most effective wildlife management interventions [27], extinction risk [28] and epidemi-
ological patterns [29]. But, the selection of the true model is still inconclusive [30, 31].

To understand the phenomenon of growth it is essential to understand the rate of growth
associated with the process. Let us consider a growth process (Xt ), (t being time), which
could be cell evolution over time, time series data of population size/density, measurement
of some phenotypic traits of plants/animals etc. In a particular time interval, we may distin-
guish two metrics associated with the growth process viz. “Absolute Growth Rate” (AGR)
and “Relative Growth Rate” (RGR). AGR and RGR are defined as the rate of increment
and the rate of relative increment respectively, between two time points (mathematically
denoted by ΔXt

Δt
and 1

Xt

ΔXt

Δt
respectively). When they refer to a particular small instant of

time (i.e., Δt → 0) they are expressed as dXt

dt and d logXt

dt .
A large number of growth processes are available in the quantitative theory of growth;

(see [32] for a fairly comprehensive review, also see [17, 33]). Based on the RGR growth
equations are usually classified into three broad categories: (a) RGR is constant (e.g., the
exponential model); (b) RGR is decreasing with time (e.g., the Gompertz model); (c) RGR
is decreasing with size (e.g., the logistic model). In real life, growth curves exhibit many
other structures not covered by the above. Bhattacharya et al. [34] reported a fish growth
experiment with a bell-shaped RGR that does not fall into the above three categories. Banik
et al. [35] presented a barley biomass growth example with another unusual shape. Some
other uncommon trends are observed in the demographic growth pattern in the census data
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from India, China and West Bengal, a state of eastern India. All these growth patterns can
be captured through a generic framework, Exponential Polynomial Growth Curve Models
[36, 37].

The first systematic attempt to interpret the meaning of RGR, probably the most impor-
tant tool to visualize the growth phenomenon, was proposed by [38], following some earlier
attempts made by [39–42]. Fisher [38] showed that whatever form of the growth curve may
take, the average RGR (henceforth, ARGR) is given by the logarithmic increment of size
measured at two consecutive time points. Ball and Jones [43] and [44] used the same ARGR
metric but named differently, in their studies of two different growth processes. Fisher [38]
proved that whatever form the growth law may take, the mathematical expression for ARGR
remains unaltered.

Even in a controlled experiment, the rate of growth is rarely uniform and in general is a
complicated function of time [45]. As an example Rao [45] considered AGR as a monotonic
decreasing function of time during the period of growth, but replaced the original observa-
tion by initial size (X0) and gain in growth (increments, ΔXt ). But, by the definition in most
of the common growth laws, viz. Gompertz law [46], logistic law [47], Ricker growth law
[48], the RGR is some monotone decreasing function of time. Thus the metric seems more
appropriate if the first observation and successive differences are replaced by log(X0) and

log
(
Xt+1
Xt

)
respectively. Rao [45] transformed the original time scale by a function in such

a way that the growth rate is uniform with respect to the chosen time parameter.
The key observations with Fisher’s ARGR are,

– It remains invariant under any choice of the growth law and hence may fail to identify
the underlying growth model best fitted to a given data set. It depends only on the
increments of the process and does not depend on the parameters of the underlying
model. So, ARGR is unable to indicate the extent of proximity of the given data to a
particular model.

– As ARGR is invariant whatever the proximity of the given data to a particular model,
the measurement errors affect the ARGR of different growth laws in the same amount.
So the study of sensitivity of different growth laws under measurement error is not
possible through ARGR.

The primary and most important aim of this paper is to construct a new metric that can
be used for the characterization of the underlying true growth curve model that fits the data
best (statistically) and also provide an estimate of the rate parameter corresponding to the
identified model in specific time intervals. This is in contrast to employing the usual R2-
criterion, which can only serve the former purpose. Recall that, ARGR may be used as an
estimate of RGR, when the underlying growth law between the two given time points is
exponential; since RGR remains constant for all the mutually exclusive and exhaustive time
intervals. Thus it is not reasonable to use it to estimate RGR for other growth laws e.g.,
Power, Gompertz, Logistic, Richards etc. where RGR at any instant of time is a decreasing
function of time. So, when our new metric identifies the growth law to be a differing one
from the exponential, we would need a new estimator of RGR.

The problem is to obtain some law which provides a specific, analogous version of the
RGR metric that remains constant for all the time intervals with respect to the choice of the
underlying model. We thus seek such a metric dependant on the parameters of the assumed
growth law. This metric should also be able to characterize different growth laws, which
was not possible so far through Fisher’s ARGR. Thus, it should be constant over different
time intervals if the underlying law is true while the extent of its variation should reflect the
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departure of the assumed model from the true one. We also provide a new estimator of RGR
based on the underlying true model.

The different sections of the article are organized as follows: In Section 2 we develop
and propose a metric of RGR and a corresponding mathematical formulation to identify
the true model. We propose a general method of constructing a new estimator for RGR
dictated by the adopted model. This approach is illustrated and examined using two popular
growth laws, Gompertz and logistic on the data from a real life experiment of fish growth
(Section 3). In addition, two new growth models are proposed that are shown to have better
performance on the real data sets than Gompertz and logistic using the proposed metric
(Section 4). A confirmatory check for the proposed method is provided in Section 5 using
bootstrap. We discuss the effect of measurement errors on the new metric (Section 6). In
Section 7 we discuss the usefulness and limitations of the proposed metric and conclude our
discussion in Section 8.

2 An extended metric

The differential equation representing any growth law can be written as,

1

Xt

dXt

dt
= bg(t) or g(Xt ) (1)

Fisher showed that ARGR i.e.,
∫ t2

t1

(
1

Xt

dXt

dt

)
dt reduces to 1

Δt
log

(
Xt2
Xt1

)
irrespective

of the choice of the growth law (whatever the form of g(t) or g(Xt )). Recall that, for
the exponential growth law, RGR is constant for all the time intervals and it is termed
the rate parameter of the process. Hence, in this case, both RGR and ARGR have the
same identical mathematical expressions. Now if we replace g(t) or g(Xt ) by 1, then
the solution of the (1) leads to the exponential growth law that has the form, Xt =
X0 exp (bt). This occurs because, b is identical to Fisher’s ARGR for an exponential model
in any specific time interval [t1, t2). Observe that, if we consider the estimate of b in
the right-hand side of (1) for different time intervals, then it should be theoretically con-
stant if the underlying model is true and this can be taken as an analogue of ARGR
for other growth laws. We will use this simple extension to characterize different growth
laws.

Definition 1 b in (1) is defined as the “Overall Rate Parameter” (ORP) when computed for
the entire interval for the experimental time frame.

Definition 2 “Overall Rate Parameter” estimated on the basis of one specific time inter-
val is called the “Interval Specific Rate Parameter” (ISRP) for that interval, which will be
denoted by b(Δt).

2.1 Definition of the new metric

Richards [49] was probably the first to realize the utility of using a growth law dependent
metric to measure the growth rate. He introduced a metric that depends on his well-known
Richards model. He derived the growth rate as an “Average Absolute Growth Rate” per unit
change of size over the entire growth process. We extend this idea by simply replacing the
above AGR by RGR that yields another measure as defined below:
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Definition 3 We define the “Average Rate of Relative Growth Rate (ARRGR)” over a new

transformed time axis τ , defined as

∫ τ2
τ1

(
dRt
dτ

)
dτ

τ2−τ1
, where Rt = 1

Xt

dXt

dt = RGR and [τ1, τ2) is
the transformed time interval from [t1, t2) when we consider RGR as a function of time but
not size.

Definition 4 We consider the ISRP or b(Δt) specific to the model, as the weighted
sum of RGR over the unit time interval and can be expressed as b(Δt) =
1
Δt

∫ t2

t1

w(t)

(
1

Xt

dXt

dt

)
dt , where w(t) = g(t)−1 or g(Xt )

−1; g(t) or g(Xt ) is defined as

in (1) and Δt = t2 − t1.

2.2 Calculation of ISRP

1. There are some growth laws that can be represented in the form,

Xt = aebφ(t) (2)

Then ISRP can be computed as,

b(Δt) = 1

φ(t +Δt)− φ(t)
ln

(
Xt+Δt

Xt

)
(3)

This immediately follows from the expression lnXt = ln a + bφ(t) obtained by taking
the logarithm of (2). Using Taylor’s series expansion for φ(.) up to the first and second
degree terms in (3), we obtain the following approximation of ISRP,

(a)
1

Δtφ′(t)
ln

(
Xt+Δt

Xt

)
(4)

(b)
2

Δt(2φ′(t)+ φ′′(t))
ln

(
Xt+Δt

Xt

)
(5)

We can easily check that, exponential, power and Gompertz laws are of the form (2)
and the expression for ISRP can be obtained easily.

2. From general differential equation (1) we have the following integrated form,

Xt = f (b, θ, t) (6)

where b is the ORP and θ represents other interpretable parameters determined by
growth equation (6), implying that Xt+Δt = f (b, θ, t +Δt), which yields,

b(Δt) = ψ(Xt ,Xt+Δt , θ, t) (7)

for some function ψ(.)

3. ISRP can be calculated in the following way also. From (1) it is implied that,
∫ t2

t1

1

Xt

dXt

dt
dt = b

∫ t2

t1

g(t) dt

⇒ b(Δt) =

∫ t2

t1

(
1

Xt

dXt

dt

)
dt

∫ t2

t1

g(t) dt

(8)
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2.2.1 Remarks

1. It is to be noted that ISRP estimated from the general differential equation (1) is
mathematically identical to the Average Rate of Relative Growth Rate.

2. The ISRP defined above is interval specific and does not depend on the overall rate of
the process. The major advantage of using this is that it can detect the crucial inter-
val where the growth process is erratic and unusual. It helps experimental scientists
to study more closely the effect of the parameters responsible for the growth of the
organism/population under study [34].

In the following we evaluate the expression of ISRP for some commonly used growth
laws, Table 1.

2.3 Relation between ISRP and ARGR

ISRP in general can be written in the form,

ISRP = φ(θ, t)(ARGR) or φ(θ, t)+ (ARGR)

where θ is a scalar or a vector valued parameter, excluding the ORP (b) of the law consi-
dered. ISRP takes different forms for different laws through the function φ(.), called the
link function as it links the ISRP of a particular growth law to Fisher’s ARGR. These two
parts play opposite roles to produce a combined effect towards the constant b. If we consider
a growth law with decreasing RGR, then ARGR should be a decreasing function of time.
This means that φ(θ, t) must be an increasing function of t to make ISRP a constant for all

Table 1 ISRP for different growth laws

Growth law d ln Xt

dt Xt ISRP

Exponential b X0e
bt ISRPE =

1

Δt
ln

(
X2

X1

)

Linear b
X̄

Xt

X̄bt +X0 ISRPL =
2

(X2 +X1)

(X2 −X1)

(t2 − t1)

Power
b

1 + at
X0(1 + at)b ISRPP =

a ln

(
X2

X1

)

ln

[
1 + a(t +Δt)

1 + at

]

Gompertz be−ct X0e

b(1 − exp(−ct))

c ISRPG =
cect2

ecΔt − 1
ln

(
X2

X1

)

General Logistic b

⎛
⎜⎝1 −

(
Xt

a

) 1

d

⎞
⎟⎠ a

⎛
⎝1 +X0e

−
bt

d

⎞
⎠

−d

ISRPGLC =
1

Δt
ln

⎡
⎢⎢⎢⎢⎢⎢⎣

(
a

X1

) 1

d − 1

(
a

X2

) 1

d − 1

⎤
⎥⎥⎥⎥⎥⎥⎦

d

Logistic b

(
1 − Xt

a

)
a

1 + eb(c−t)
ISRPLC =

ln

⎡
⎢⎣

a

X1
− 1

a

X2
− 1

⎤
⎥⎦

Δt
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the time intervals (if the considered model is true). The irregularity or variations in ISRP are
due to the ARGR component, not the link function. The link function is calculated from the
estimated model and so it should be an increasing function of t . On the other hand, ARGR
is calculated from the data, hence may not be a strictly decreasing function of time.

2.4 Modified estimate of RGR under the true model

Assuming linearity in growth of an organism between two consecutive time points, the
estimated RGR is defined as,

1

Xt

dXt

dt
= 1

Δt

[Xt+Δt − Xt ]
Xt

(9)

and assuming exponential growth between two consecutive time points, it is defined as,

1

Xt

dXt

dt
= 1

Δt
ln

(
Xt+Δt

Xt

)
(10)

which is the ARGR as defined by [38]. So when the underlying model is logistic or
Gompertz, then we can search for a better estimate of RGR that describes the true growth
rate without any upward or downward bias. When the underlying model is identified through
the extended metric, then there is a need to construct another set of estimates of RGR, based
on the model. To derive this estimate for any time point we need the data not for just two but
for three consecutive time points, since both Gompertz and logistic as described has three
parameters.

1. The Gompertz model is described by the differential equation:

1

Xt

dXt

dt
= be−ct (11)

Now substituting the estimates of b and c we obtain the following new estimate of RGR

1

Δt

[ln(d1)]2 ln
[

ln(d1)
ln(d2)

]

ln
(
d1
d2

) (12)

where d1 and d2 are defined by,

d1 = 1

Xt

− 1

Xt+Δt

, d2 = 1

Xt+Δt

− 1

Xt+2Δt

2. The logistic model is described by the differential equation:

1

Xt

dXt

dt
= b

(
1 − Xt

a

)
(13)

Now substituting the estimate of a, we obtain the following new estimate of RGR

1

Δt

(
d∗2

1

d∗1 − d∗2

)
ln

(
d∗1
d∗2

)
(14)

where d1 and d2 are defined by, d∗1 = ln
(
Xt+Δt

Xt

)
, d∗1 = ln

(
Xt+2Δt

Xt+Δt

)
,

The derivation is given in Appendix A.
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(a) Simulated data with logistic 
      growth (15) as true model

(b) Simulated data with Gompertz
      growth (16) as true model

Fig. 1 Departure of ISRP from ORP under Logistic and Gompertz growth laws. The figure (a) demonstrates
that, if the data is simulated using logistic growth model, then the values of ISRP computed from logistic
model will be constant over time. However, ISRP computed from other growth law eg. Gompertz or Expo-
nential will not be constant. Similar result holds true for data if simulated using Gompertz growth model
(figure (b))

3 Performances of ISRP on data sets

3.1 An illustrative example

To study the advantages of ISRP over ARGR, we simulated growth data from the logistic
and Gompertz laws, defined as,

Xt = 6.64

1 + e.28(.62−t)
(15)

and

Xt = 2.8 exp

[(
.18

.20

)
(1 − e−.2t )

]
(16)

respectively. The ORP for logistic and Gompertz are 0.28 and 0.18 respectively. Theoret-
ically when the underlying model is logistic with the above stated parameters, then ISRP
for different time intervals should be equal to 0.28, which is clearly visible in Fig. 1a (con-
tinuous line with circles). Now, if the data, simulated using the logistic model are fitted to
some wrongly assumed law, then ISRP should vary for different time intervals. Figure 1
shows the departure of ISRP from ORP for, viz., Gompertz and exponential with logistic
as the true model (Fig. 1a) and Gompertz as the true model (Fig. 1b). For many biological
experiments, RGR is a decreasing function of size of some growth data, that automatically
implies that RGR is a decreasing function of time also. So, when the underlying model is
logistic, the Gompertz curve may also fit well in comparison to the exponential. Figure 2
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Fig. 2 The graph of a modified estimate of RGR when the underlying simulated model is known to be
logistic (dotted line). The dotted line represents the estimate of RGR assuming exponential growth between
two consecutive time intervals (a). (b): If the true model is contaminated by replacing only one observation
5.435020, at the 6th time point by 5.4, then modified estimates are shown. It is to be noted that, the modified
estimates of RGR have some bias and that these are more sensitive to the departure of data from the true
model. a Modified RGR estimate with logistic growth (15) as true model (dotted line). Estimate of ARGR
(solid line). b Sensitivity of RGR estimates if a data point is replaced with a small error

suggests that, in such a case the metric is able to identify the correct growth law reject-
ing the wrong alternatives that show non-uniformity with respect to ORP. Thus, this new
metric may work well to identify the true model when there are competing laws with similar
behavior (providing a statistically good fit).

3.2 Real data

Data were collected on length of fish, Cirrhinus mrigala, at 12 consecutive time points for
each of the four equi-spaced directions to be referred to as A, B, C and D, emanating at
45◦ from the center of the lake to its four corners. At each time point 12 measurements
were available. Fishes were combined in the hoop nets placed at an equal radial distance
from the center in each of these directions. This design enabled us to study the variations
in the growth due to variations of the directions for a specific radial distance. However, the
variations in growth due to the difference in radial distances for a specific direction will not
be addressed here.

3.2.1 Estimation of parameters in real data sets

We used the usual convention in denoting the vector valued parameter β in the space Θ

of all admissible parameter values. Let {xt }nt=1 be the observed size of the individual and
the distribution of xt+1 conditional on xt is assumed to be normally distributed with mean
f (t,β) and variance σ 2 (f denotes the functional form of the growth law). Together with
the assumption that the observations are independent, this defines a non-linear regression
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Fig. 3 All three models Gompertz, Logistic and Exponential growth are fitted to the data obtained from four
locations A, B, C and D. Red, green and blue colors denote the fit of Gompertz, logistic and exponential
models respectively. The estimate details of parameters are provided in Table 2

model. We use non-linear least squares to estimate the unknown parameter β by minimizing
the residual sum of the squares function

RSS(β) =
n∑

t=1

[xt − f (t,β)]2.

To determine an initial estimate of the parameter values close to its true value, we con-
struct grids of parameter values in a range within which the parameter estimates should
be lying. We carry out a grid search (brute force) to evaluate the residual sums-of-squares
function RSS(β̂) for a coarse grid based on the ranges supplied for the parameters and
then choose starting values of the parameters that yield the smallest value of RSS(β̂) [50].
Gompertz, logistic and exponential growth models are fitted to the data obtained from the
four locations A, B, C and D. Red, green and blue colors denote the fit of the Gompertz,
logistic and exponential models respectively (Fig. 3). The estimated parameters of the fitted
models are provided in Table 2.
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Table 2 Parameter estimates of all five models presented in this paper. Parameters are estimated using a
non-linear least square regression routine implemented in R software

Location A Location B Location C Location D

Exponential x̂0 = 3.73 (±0.31) x̂0 = 3.39(±0.21) x̂0 = 4.74(±0.33) x̂0 = 3.61(±0.25)

b̂ = 0.09( ±0.01) b̂ = 0.06(±0.01) b̂ = 0.07(±0.01) b̂ = 0.09(±0.01)

Gompertz x̂0 = 2.40(±0.38) x̂0 = 2.44(±0.23) x̂0 = 2.82(±0.14) x̂0 = 2.63(±0.35)

b̂ = 0.27 (±0.07) b̂ = 0.21(±0.05) b̂ = 0.33(±0.03) b̂ = 0.21(±0.05)

ĉ = 0.16 (±0.04) ĉ = 0.20(±0.04) ĉ = 0.25(±0.02) ĉ = 0.12(±0.04)

Logistic â = 11.22(±0.79) â = 6.75 (±0.29) â = 10.15(±0.19) â = 12.31(±1.37)

b̂ = 0.28(±0.04) b̂ = 0.28 (±0.04) b̂ = 0.34 (±0.02) b̂ = 0.23(±0.04)

ĉ = 4.42(±0.61) ĉ = 1.86(±0.33) ĉ = 2.42(±0.14) ĉ = 5.43(±1.11)

Prop. Model 1 x̂0 = 3.27(±0.24) x̂0 = 2.90(±0.14) x̂0 = 3.66(±0.19) x̂0 = 3.08(±0.24)

b̂ = 0.17(±0.03) b̂ = 0.14(±0.03) b̂ = 0.21(±0.03) b̂ = 0.16(±0.03)

ĉ = 0.30(±0.04) ĉ = 0.41(±0.04) ĉ = 0.46(±0.03) ĉ = 0.35(±0.04)

Prop. Model 2 x̂0 = 3.08(±0.24) x̂0 = 5.13(±0.13) x̂0 = 3.66(±0.19) x̂0 = 8.35(±0.47)

b̂ = 0.16 (±0.03) b̂ = 0.08 (±0.01) b̂ = 0.21(±0.03) b̂ = 0.06(±0.01)

ĉ = 0.35(±0.03) ĉ = 0.61(±0.03) ĉ = 0.46(±0.03) ĉ = 0.47(±0.03)

4 Two new proposed growth laws

In the RGR profile of the real data sets, RGR primarily increases and then decreases with
time. We propose two growth curve models that can capture such non-monotonic behavior:

Xt = X0 exp

[
b

c

(
1

c
− e−ct

(
t + 1

c

))]
(17)

Xt = X0 exp
[
b

c

(
2

c2
− e−ct

(
t + 2

t

c
+ 2

c2

))]
(18)

A general development of such phenomenological growth curve models has been exten-
sively studied by [51] (under preparation) and [52]. They developed a growth model where
the relative growth rate is a function of time such that, up to a certain period of time RGR
increases, attains a maximum and then decreases to zero (requires elucidation). The model
is developed to describe the growth of fish Cirrhinus mrigala. Such growth phenomena may
be observed in many natural or experimental populations where the populations may need
some time to adapt to the new environment (accelerating the growth, hence increasing RGR
at an initial phase). For example, in our data set, the fish population may need an adaptation
period prior to starting growth, then it exhibits an accelerated growth in the initial stage, that
reaches a peak and then declines to reach a steady state, or maximum size. The expressions
of ISRP for the above two growth laws are (using Appendix A):

ISRP1 = cect[
t + 1

c
− e−cΔt

(
t +Δt + 1

c

)] ln

(
Xt+Δt

Xt

)
(19)

ISRP2 = cect[(
t2 + 2

c2 + 2t
c

)
− e−c(t+Δt)

(
(t +Δt)2 + 2

c2 + 2 t+Δt
c

)] ln

(
Xt+Δt

Xt

)
(20)
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Fig. 4 Proposed models (17) and (18) are fitted to the data from locations A, B, C and D. The red and blue
lines denote the fit of models (17) and (18) respectively

Both the models are fitted to the data from locations A, B, C and D and their comparative
performances are discussed based on the ISRP metric (see Fig. 3a, b, c, d for the fit of
Gompertz, logistic and exponential models and Fig. 4a, b, c, d for the fit of proposed models
in locations A, B, C and D).

The extent of departure between the line of the constant rate parameter of the corre-
sponding growth law and the estimated ISRP reflects the deviation of the assumed model
from the true law. In Fig. 5 ISRP is plotted for Gompertz, logistic and two proposed models
(17) and (18). Figure 5 suggests that, using the ISRP metric we can rank our preferences
as model (17, 18), Gompertz and logistic. However, there is very little difference observed
between the Gompertz and logistic profiles of ISRPG and ISRPL with the correspond-
ing constant rate parameter. It can be easily observed that, model (18) is the best choice
among these set of competing models in all four locations. We also observe that, in all the
four locations ARGR, which is identical to ISRP for exponential law, is unable to provide
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Fig. 5 The four models Gompertz, Logistic, Proposed models (17) and (18) are compared with respect to
ISRP to the data obtained from four locations A, B, C and D. Black, red, green and blue colors denote the fit
of Gompertz, logistic, models (17) and (18) respectively (see text for discussion)

any message about the underlying model while the extended metric can serve this purpose
smoothly.

In a nutshell, we propose the following scheme:

1. Select the set of competing models (e.g., gi, i = 1, 2, ...,n) for a given data set.
2. Estimate the model parameters for each model (including the rate parameter, e.g., bi).
3. Compute the model specific to ISRP, b̂gi (�t)

4. Select the jth model as the best fit if b̂gj (�t) is closest to the constant line of b̂j over
time than other competing models.

5 A confirmatory test using a bootstrap technique

From the plots of ISRP (Fig. 5) for different models it is intuitively clear that, the best model
is the one that has the smallest average deviation of ISRP from the estimated rate parameter.
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However, it requires some quantitative confirmatory check to select the best model so that
researchers can adopt it as a general rule. To check the performance of different models
with respect to ISRP we adopt the following procedure. From the data information, we
have 12 independent vectors of observations on the length of 12 fishes. We denote the 12
independent observations by (X′

1,X′
2, ...,X′

12), where X′
i = (Xi,1,Xi,2, ...,Xi,12)

′ denotes
the length measurement at 12 consecutive time points of the ith individual. We draw B

bootstrap samples of size 12 from (X′
1,X′

2, ...,X′
12) with replacement. For each bootstrap

sample (X*′1,X*′2, ...,X*′12), we fit the model Xt = f (t,β) using the non-linear regression
as described in the previous section. Here Xt is the average length of 12 individuals at
time t . The functional form f (t,β) represents all four growth laws, Gompertz, logistic,
model (17) and model (18) and β denotes the model parameters. For each model, we obtain
the estimate of the rate parameter b (b̂). We also estimate ISRP(t) ( ̂ISRP(t)) over different
time points. Let us denote the deviation of ISRP(t) from b̂ by dt , i.e., dt = ̂ISRP(t) − b̂,
for t = 1, 2, 3, ..., 12. Let, σ(d) denote the standard deviation of d = (d1, d2, ..., d12)

′. We
compute σ(d) for each bootstrap sample and generate the bootstrap distribution of σ(d)
to approximate the corresponding population density of σ(d). The bootstrap distribution is
generated for each of the four models for locations A, B, C and D. We expect that, the mean
of σ(d) (σ̄ (d)) over a large bootstrap sample should be smallest for the best model.

In mathematical notation, if we compute σ̄ (d) for two models M1 and M2, then
σ̄M1 (d) < σ̄M2 (d) should imply that the model M1 is better than the model M2. To be more
precise, we compute the bootstrap confidence intervals for the population mean of σ(d) by
curtailing the lower 2.5% and the upper 2.5% observations from the ordered vectors of σ(d)
computed from B bootstrap samples. Let us suppose that for the models M1 and M2, we

obtain the confidence intervals of σ(d) as
(
dLM1

, dHM1

)
and

(
dLM2

, dHM2

)
respectively. The

inequality dHM1
< dLM2

clearly indicates the close proximity of ISRP to the rate parame-
ter for the model M1 than the model M2. Bootstrap confidence intervals are computed for
Gompertz, logistic, model (17) and model (18) based on B = 1000 bootstrap replications
(see Table 3). This procedure is carried out for all locations A, B, C and D (see Fig. 6). For
each location the confidence interval is depicted in Fig. 7. The confidence intervals clearly
suggest that the proposed model (18) gives the best fit in all locations. The bootstrap con-
fidence intervals are provided in the table for all locations for all models with different
bootstrap samples.

6 Effect of measurement errors on the extended metric

In most biological experiments it is not possible to measure the actual reading of the exper-
imental samples. Our proposed metric ISRP may lead to adopting a wrong model due to
measurement errors. So it is important to study the robustness of the metric with respect to
such error under different growth laws. By extending the idea from [53], we study here the
sensitivity of this metric to measurement errors.

When replicate measurements on a single individual for a given time point are not avail-
able, then through this extended method based on a fixed measurement error structure, we
can study the sensitivity of ISRP under different growth laws. Suppose for any two given
time points, α and β amount (unit) error is committed. To illustrate the effect or errors on
ISRP for various choices of α and β , we consider the maximum ARGR interval as described
below. This approach is non-stochastic in nature as there is no need to take the measurement
errors to be stochastic in nature.
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Fig. 6 The bootstrap distribution of σ (d) for each of the growth models for all locations A, B, C and D based
on 1000 bootstrap replications. From the bootstrap distributions of the deviations of ISRP from the constant
rate parameter it is clear that proposed model 2 ISRP is closest to the corresponding rate parameter b

6.1 Non-stochastic approach

We introduce the following notations:

X1 = size of the first experimental units
X′

1 = minimum value of X1 due to experimental errors
X′′

1 = maximum value of X1 due to experimental errors
X2 = size of the second experimental units.
X′

2 = minimum value of X2 due to experimental errors
X′′

2 = maximum value of X2 due to experimental errors
α = Relative error that affects X1

β = Relative error that affects X2

Δt = duration between two time points
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Fig. 7 Bootstrap confidence intervals of the population mean of σ (d) for locations A, B, C and D for the
four growth models. It is clear that the proposed model 2 has the lowest mean value of σ (d) for all locations

μr = ISRP for the rth law
Δμr = Absolute error that affects μr

μr1 = minimum value of μr due to experimental errors
μr2 = maximum value of μr due to experimental errors
r = growth law, e.g., exponential, linear, power, Gompertz, logistic etc.

Now let us consider that the growth law has the following product form (explained
before) defined as,

μr = φ(θ, t) (ARGR)

⇒ μr = φ(θ, t) ln

(
X2

X1

)

⇒ μr1 = φ(θ, t) ln

(
X′

2

X′′
1

)

⇒ μr2 = φ(θ, t) ln

(
(X′′

2

X′
1

)
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Following [53] let us define,

μ̄r = (μr1 + μr2 )/2

⇒ Absolute error = Δμr

⇒ μ̄r − μr1 = μr2 − μ̄r = (μr2 − μr1 )/2

Then putting X′
1 = X1(1−α),X′′

1 = X1(1+α),X′
2 = X1(1−β),X′′

2 = X1(1+β), we can
estimate the absolute error affecting the ISRP for various growth laws that is summarized in
Table 4. To compare the sensitiveness of ISRP under measurement errors for various growth
laws, we have the following theorem,

Theorem 1 Let ζ denote the class of growth laws consisting of linear, exponential,
Gompertz, logistic and power. The absolute error affecting ISRP in ζ is minimum for the
exponential except the linear, i.e.,

1. Δμe < Δμ∗, e represents exponential and ∗ represents power(p), Gompertz(g) and
logistic(lc).

2. Δμe = Δμl if (α = β = 1)
3. Δμe > Δμl , l represents linear

(a) X2
X1

> 1 > α
β

(b) α
β
>

X2
X1

> 1

(c) X2
X1

> α
β
> 1

Table 4 Absolute errors affecting the ISRP for different growth laws

Laws Absolute Errors (Δμ)

Exponential
1

2Δt
ln

[
(1 + α)(1 + β)

(1 − α)(1 − β)

]

Linear
(
α + β

Δt

) [
4X1X2

(X2 +X1)2 − (X2β −X1α)2

]

Power
1

2 ln
(

1 + a(t1 +Δt)

1 + at1

) ln

[
(1 + α)(1 + β)

(1 − α)(1 − β)

]

Gompertz
cect2

2(ecΔt − 1)
ln

[
(1 + α)(1 + β)

(1 − α)(1 − β)

]

General Logistic
1

2Δt
ln

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝a

1

d − (X1(1 − α))

1

d

⎞
⎠

⎛
⎝a

1

d − (X2(1 − β))

1

d

⎞
⎠

⎛
⎝a

1

d − (X1(1 + α))

1

d

⎞
⎠

⎛
⎝a

1

d − (X2(1 + β))

1

d

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ 1

2Δt
ln

[
(1 + α)(1 + β)

(1 − α)(1 − β)

]

Logistic
1

2Δt
ln

[
(a −X1(1 − α))(a −X2(1 − β))

(a −X1(1 + α))(a −X2(1 + β))

]
+ 1

2Δt
ln

[
(1 + α)(1 + β)

(1 − α)(1 − β)

]
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Fig. 8 Absolute error affecting the ISRP for (a) exponential, (b) linear and (c) Gompertz growth laws with
respect to relative errors α and β

4. Δμe > Δμl if 1/2 � m < 1 and n � 2, where,

Δμl

Δμe
=

⎡
⎢⎢⎣

2(α + β)

ln

(
(1 + α)(1 + β)

(1 − α)(1 − β)

)

⎤
⎥⎥⎦

[
(X2 +X1)

2 − (X2 −X1)
2

(X2 +X1)2 − (X2β −X1α)2

]
= m.n

Proof A sketch of the proof is given in Appendix B.

Theorem 1 shows that, for any set of growth data of interest (in the class ζ ), the absolute
error affecting the ISRP for exponential growth law is less than that for other laws, whatever
the relative error α and β may be. So when the underlying model is exponential and linear,
the chance of wrong identification is minimal in comparison to the other laws in ζ , through
the extended ISRP metric. The effect on the absolute error for different levels of relative
errors α and β is depicted in Fig. 8 for exponential, linear and Gompertz growth laws.
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7 Discussion

A long history of literature is available on analyzing data using growth curve models and
several advanced statistical methods have been developed to identify the true growth pat-
tern (see [9, 54–59]). Although our scrutiny on model based ISRP looks fairly simple,
we observe some important utilities (explained below) that may be employed as a model
selection criterion, which are simple to implement with a powerful signature.

7.1 Utility

If the variations of the metric in different time intervals are more or less constant then
it implies that the assumed underlying law is valid. So with this metric it is possible to
characterize different growth laws (see illustrative example).

Along with the detection of the best fitting model for a given data set, this metric can
indicate where the growth rate is erratic and unusual in the entire growth process. Such
behaviors will, in turn expose the intervals where the growth process deviates from the
assumed model. Based on the selected model, the proposed estimates of RGR may work
better relaxing the classical linear and exponential assumptions between two time points.

RGR has one fewer parameter than its corresponding difference equation counterpart
and hence may be more useful for estimation purposes. But if the plot of RGR shows high
variability it may not be suitable for selecting a set of models [22]. When there is substantial
variability one may require to see R2 in multiple regression to select the best model but a
similar measure is not available for non-linear models [60]. Using the extended metric it may
be possible to rank them by investigating the RGR profile of the corresponding growth laws.
This may demonstrate a suitable model selection criterion. The model selection criterion
based on ISRP estimates for a specific model depends on the deviation of ISRP from the
constant rate parameter of the process.

7.2 Limitations

From the computation of the model based estimates of RGR, we observe that this method is
biased towards a growth process measured continuously over time, i.e., the measured units
grow monotonically over time from an initial size towards a maximum value. If the process
is monotonic decreasing starting with an initial value greater than the maximum value, then
modified estimates of RGR according to the method described here cannot be computed,
for example, logistic (due to the logarithm in differences of population sizes, see Table 1).
However, this limitation arises only in logistic and generalized logistic growth functions.
Also for Gompertz law, we can always estimate ISRP for a given data set but modified RGR
estimates may not be obtained due to the same reason as explained.

For growth functions where the size variable is not expressible as a function of time
alone, the computation of modified RGR may not be possible. Moreover, if the growth
process is driven by stochastic fluctuation, then measurements taken over time may not be
monotonic in nature throughout the experiment. In this case, a modified estimate of RGR
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may not be computed for all intervals. Although a suitable model can be selected using
non-linear regression and associated goodness of fit.

8 Conclusion

The identification of true growth law from observed data is one of the primary objectives
of any growth study. Currently used ARGR metrics (linearized/ exponential) to measure
the growth rate are invariant under any model. They only depend on the increment of the
process. In the present work, we have proposed a metric of the growth rate that can be used
to characterize the growth curve models and simultaneously provide a description on the
behavior of the rate. For an exponential growth curve model, RGR is theoretically constant
for all mutually exclusive and exhaustive time intervals. But, this is not the case for other
more sophisticated laws where RGR is not constant (function of time /size). So, instead of
RGR, some analogous quantity of RGR should be constant over time for the growth laws
where RGR is a decreasing function of time. As far as we are aware, there is no literature
that specifically provides a model specific estimate of RGR.

By suitably defining the ORP and ISRP we conclude that the proposed metric ISRP
(with specified form) remains constant for true growth law that dictates the data being con-
sidered. Using real data sets we have illustrated this fact clearly. We have shown that, this
ISRP is able to detect the time intervals where the rate is not uniform but erratic. This
can help experimental scientists to detect time intervals of unusual growth that may be
attributed to some fluctuations in external/ exogenous factors. The usual estimate of RGR
assuming linearity or an exponential between two consecutive time points, is extended by
assuming other growth models in the considered time frame. When data show proximity
to a specific law then this can be treated as a more realistic and meaningful estimate of
RGR.

We also observed the effect of measurement error on the metric ISRP by extending
the idea from [53]. This may be a cautionary indication to the experimental scientists to
adopt a wrong model for a given data set. The method described in the manuscript may be
important in the study of growth measurements e.g., body mass, body length or length of
different parts of the body, where models are sigmoid with an upper asymptote. The major
purpose of a growth model with a conventional functional form is to capture the main qual-
itative features of the growth pattern and increase our conceptual understanding of how
the actual pattern may be operating. But when models are compared with data in order to
evaluate competing hypotheses about causal processes, the choice of functional forms for
each process growth rate equation is an undesirable confounding factor. In such a case the
behavior of ISRP can be examined to rank the model preferences among a set of competing
models.
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Appendix A: Modified estimate of RGR

For Gompertz law let us consider,

Xt1 = X0 exp

[
b(1 − e−ct1)

c

]

Xt2 = X0 exp

[
b(1 − e−ct2)

c

]

Xt3 = X0 exp

[
b(1 − e−ct3)

c

]

where t1, t2 and t3 are consecutive time points. Then taking the ratio of the logarithm of
Xt2
Xt1

and
Xt3
Xt2

we obtain, ln
(
Xt2
Xt1

)
/ ln

(
Xt3
Xt2

)
and this implies

c = 1

Δt
ln

[
ln(d1)

ln(d2)

]
,

where d1 and d2 are defined as in Section 2.4. Now putting this estimate into the equation of
Xt2
Xt1

, we can get the estimate of b. Putting these estimates in the RGR equation for Gompertz

law, which is be−ct1 , we can get the ISRP. Similarly for the logistic equation, the interval
estimate for RGR can be calculated.

Appendix B: Proof of Theorem 1

We have,

Δμl

Δμe

=
⎡
⎣ 2(α + β)

ln
[
(1+α)(1+β)
(1−α)(1−β)

]
⎤
⎦

[
(X2 +X1)

2 − (X2 −X1)
2

(X2 + X1)2 − (X2β −X1α)2

]
= m.n

Lemma 2 m < 1, always true.

Proof Let, ψ(β) = ln
(

1+β
1−β

)
− 2β ⇒ ψ ′(β) = 2β2

1−β2 > 0 as 0 < β < 1, which implies

ψ(β) is an increasing function in β . This implies, ψ(β) > ψ(0) and so,

ln

[
1 + β

1 − β

]
− 2β > 0 (21)

Similarly,

ln

[
1 + α

1 − α

]
− 2α > 0 (22)

Condition (21) and (22) implies
2(α + β)

ln

[
(1 + α)(1 + β)

(1 − α)(1 − β)

] < 1 ⇒ m < 1

Lemma 3 X2(1 − β) > X1(1 − α) ⇒ n < 1

Proof n < 1 ⇒ |X2 − X1| > |X2β − X1α| ⇒ X2(1 − β) > X1(1 − α)
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Lemma 2 and Lemma 3 imply that Δμe < Δμl if X2(1 − β) > X1(1 − α), i.e., if the
lowest value of X2 due to experimental errors is greater than that of X1. Let us consider the
following particular cases:

1. (α = β = 1)
Then n = 1 ⇒ Δμe = Δμl

2.
X2

X1
> 1 >

α

β
⇒ X2(1 − β) > X1(1 − α) ⇒ Δμe < Δμl

3.
α

β
>

X2

X1
> 1

⇒ X1α − X2 > X2β −X1 ⇒ X2(1 + α) > X1(1 + β) ⇒ Δμe < Δμl

4.
X2

X1
>

α

β
> 1

⇒ X2−X2β > X1−X1α ⇒ X2(1+α) > X1(1+β)⇒ Δμe < Δμl but
1

2
≤ m ≤ 1

and n ≥ 2, then Δμe > Δμl

Lemma 4
Δμe

Δμp

=
ln

(
1 + a(1 +Δt)

1 + at

)

Δt
< 1

Proof We have, Δμe

Δμp
= 1

Δt
ln

(
1+a(t1+Δt)

1+at1

)
= 1

Δt
ln

(
1 + at1

1+at1
+ aΔt

1+at1

)

≈ ln
(

1 + at1
1+at1

)
(when Δt small) < ln(2) < ln(e) = 1

Lemma 5
Δμe

Δμg

< 1

Proof
Δμe

Δμg

= exp (cΔt)− 1

Δtc exp (ct2)
Let, λ(c) = exp (cΔt) − Δtc exp (ct2) ⇒ λ′(c) =

Δt[exp (cΔt)− (1 + ct2) exp (ct2)].
Now, t2 > Δt (always true) ⇒ (1 + ct2) exp (ct2) > exp (cΔt). As t2 > 0 is always

true and c > 0 for Gompertz law, this implies, λ′(c) < 0 ⇒ λ(c) ↓ c ⇒ λ(c) < λ(0) ⇒(
exp (cΔt)− 1

Δtc exp (ct2)

)
< 1 ⇒ Δμe

Δμg

< 1

Lemma 6 Δμglc −Δμe > 0

Proof Δμglc − Δμe = 1
2Δt

lnP . To prove the lemma, we have to prove that, P > 1.

We have, (1 − α) < (1 + α) ⇒
(
a

1
d − [X1(1 − α)] 1

d

)
>

(
a

1
d − [X1(1 + α)] 1

d

)
⇒⎛

⎝
(
a

1
d −[X1(1−α)] 1

d

)

(
a

1
d −[X1(1−α)]x 1

d

)

⎞
⎠ > 1. Similarly,

⎛
⎝

(
a

1
d −[X1(1−β)] 1

d

)

(
a

1
d −[X1(1+β)] 1

d

)

⎞
⎠ > 1. This too implies that,

P > 1.

Now the proof of the theorem follows easily from Lemmas 2, 3, 4, 5 and 6.
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