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Abstract A three-component model consisting on one-prey and two-predator populations

is considered with a Holling type II response function incorporating a constant proportion

of prey refuge. We also consider the competition among predators for their food (prey) and

shelter. The essential mathematical features of the model have been analyzed thoroughly

in terms of stability and bifurcations arising in some selected situations. Threshold values

for some parameters indicating the feasibility and stability conditions of some equilibria are

determined. The range of significant parameters under which the system admits different

types of bifurcations is investigated. Numerical illustrations are performed in order to

validate the applicability of the model under consideration.

Keywords Population models · Prey refuge · Persistence · Local stability ·
Global stability · Limit cycles · Switching of periodic solutions

Mathematics Subject Classifications (2010) 92D25 · 92D30 · 92D40

S. Sarwardi

Department of Mathematics, Aliah University, DN-41, Sector-V,

Salt Lake City, Kolkata 700 091, West Bengal, India

e-mail: s.sarwardi@gmail.com

P. K. Mandal (B)

Department of Mathematics, Visva-Bharati,

Santiniketan 731 235, West Bengal, India

e-mail: prashantakumar.mandal@visva-bharati.ac.in

S. Ray

Department of Zoology (Centre for Advanced Studies,

recognized by the University Grants Commission),

Visva-Bharati, Santiniketan 731 235, West Bengal, India

e-mail: sray@visva-bharati.ac.in



702 S. Sarwardi et al.

1 Introduction

Ecological traits that describe animal behaviours such as habitat usage and foraging

strategies are the objects and results of natural selection. Therefore, studies on the stability

of an ecological system considering evolutionary perturbation are extremely important.

When a system contains many interacting species, the fitness of one will depend on its own

ecotype as well as on those of the other interacting individuals that coexist in this ecosystem

(cf. Cressman and Garay [1]).

The Hoogly–Matla estuarine complex, with its luxuriant mangroves is a unique ecosys-

tem. This ecosystem is considered as one of the best detritus-based ecosystems (cf. Ray

and Straskraba [2]). One of the important biological components in the estuary is the

detritivorous fish community. This mangrove ecosystem is composed of several islands,

which are criss-crossed by numerous creeks originating from the main rivers. These creeks

are supplied with rich detritus loads originating from an adjacent mangrove litter. The rich

detritus of these creeks supports the most important detritivorous fish, namely Liza parsia.

In these creeks, two important predator fish of these detritivorous fish are also abundant,

viz. Sciaena miles and Otolithoides pama. These two species are in competition for food

and shelter and feed mainly on the same detritivorous fish, viz. Liza parsia. These two

competing predators can coexist because they exploit their environment differently. The

prey species also exist in the same environment by avoiding predation pressure in two ways.

Firstly, the competition between two predators indirectly helps the prey species survive, and

secondly, the most important part of the prey’s survival strategy is the refuge phenomenon.

The mangrove plants are extended from the supra-littoral zone to the lower-littoral zone

up to the creek bed. To avoid predation pressure during high tide (as the predator species

only visit these creeks during high tide), the prey species takes refuge into the bushy part of

the submerged mangrove plants. One of the more relevant behavioral traits that affects the

dynamics of the predator–prey system is the use of spatial refuge by the prey. This spatial

refuge is noticed where environmental heterogeneity provides less accessible sights for the

predator, which can be exploited/utilized by a given number of prey. For this reason, certain

portions of the prey species are partially protected against predators (cf. Gonzalez-Olivares

and Ramos-Jiliberto [3]).

The use of refuge has been shown to enhance predator–prey coexistence by preventing

prey extinction (cf. Connell [4], Murdoch and Oaten [5]). The study of the consequences

of prey refuge on the dynamics of predator–prey interactions can be recognized as a major

but rather challenging issue in applied mathematics and theoretical ecology (cf. Hassell

and May [6], Hassell [7], Holling [8, 9], Hoy [10], Huang et al. [11], Smith [12]). Some

of the empirical and theoretical works based on prey refuge have concluded that the

refuge used by prey has a stabilizing effect on predator–prey interactions and also the

prey species can be prevented from extinction by using this policy (cf. Gonzalez-Olivares

and Ramos-Jiliberto [3], Collings [13], Freedman [14], Hochberg and Holt [15], Kar [16],

Krivan [17], May [18], McNair [19], Ruxton [20], Sih [21], Taylor [22]). The presence

of a constant proportion of prey refuge does not change the nature of the dynamical

stability of the neutrally stable Lotka–Volterra model, while a constant refuge of any

size can replace the neutrally stable behavior with a stable equilibrium (cf. Smith [12]).

Hassell and May [6] have shown that the addition of a large refuge to a model, which

in the absence of prey refuge exhibits a divergent oscillation, can replace the oscillatory

behavior with a stable equilibrium. Based on the above, an attempt is made in the present

investigation to study a three-component predator–prey model in which one prey species
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takes refuge and two predator species feed on the same prey species with competition among

themselves.

The present investigation has been carried out sequentially as follows: basic assumptions

and the model formulation are proposed in Section 2. Section 3 deals with some preliminary

results. We discuss the local stability and Hopf bifurcation of the boundary equilibria and

persistence of system (3) in Sections 4 and 5, respectively. Simulation results are exhibited

in Section 6 while a final discussion and interpretation of the results are included in the

concluding Section 7.

2 One-prey and two-predator model

The model considered is based on the one-prey and two-predator system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= αx1

(
1 − x1

k

)
− β1x1x2

1 + a1x1

− β2x1x3

1 + a2x1

dx2

dt
= −d1x2 + c1β1x1x2

1 + a1x1

− σ1x2x3

dx3

dt
= −d2x3 + c2β2x1x3

1 + a2x1

− σ2x2x3

(1)

where x1 is the prey population size, and x2 and x3 are the population sizes of the first and

second predator species, respectively, at any time t. Here α, k are respectively the growth

rate and the environmental carrying capacity of the prey species, d1 and d2 are the predators’

death rates, and σ 1 and σ 2 are the rates at which the growth rate of the first predator

is annihilated by the second predator and vice versa.
β1

a1

,
β2

a2

are the respective maximum

numbers of prey that can be eaten by the first and second predators per unit time, while c1,

c2 are the conversion factors, denoting the number of newly born first and second predators

for each captured prey species, where 0 < c1, c2 < 1. All the system parameters are assumed

to be positive constants. The terms
β1x1

1+a1x1

and
β2x1

1+a2x1

denote the first and second predators’

response to the prey species, respectively. This type of predator response function is known

as the Holling type II response function (cf. Holling [23]).

The above model has been updated by incorporating prey refuges proportionally to the

prey density viz. m1x1 and m2x1 from the first and second predator species, respectively,

where 0 ≤ m1, m2 < 1. It is considered that the first and second predator species are in

competition for food and other essential resources such as shelter. Incorporation of prey

refuges leaves the factors (1 − m1)x1 and (1 − m2)x1 of the prey population open to be

hunted by the first and second predators, respectively, and the competitive effect reduces

the growth rate of both predator species. Under these additional effects, system (1) reduces

to the following modified form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1

dt
= αx1

(
1 − x1

k

)
− β1 (1 − m1) x1x2

1 + a1 (1 − m1) x1

− β2 (1 − m2) x1x3

1 + a2 (1 − m2) x1

dx2

dt
= −d1x2 + c1β1 (1 − m1) x1x2

1 + a1 (1 − m1) x1

− σ1x2x3

dx3

dt
= −d2x3 + c2β2 (1 − m2) x1x3

1 + a2 (1 − m2) x1

− σ2x2x3

(2)

with initial conditions,
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x1(0) = x0

1
> 0, x2(0) = x0

2
> 0, x3(0) = x0

3
> 0.

By making use of the transformations given by x1 = kS, x2 = αka1 P1

β1

, x3 = αka2 P2

β2

, and t′ =
αt, the present improved dynamical system (2) reduces to the following non-dimensional

system (using t instead of t′ for notational convenience)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS
dt

= S (1 − S) − SP1

A1 + S
− SP2

A2 + S
dP1

dt
= −δ1 P1 + ε1SP1

A1 + S
− γ1 P1 P2

dP2

dt
= −δ2 P2 + ε2SP2

A2 + S
− γ2 P1 P2

, (3)

where ε1 = c1β1

αa1

, ε2 = c2β2

αa2

, γ1 = σ1ka2

β2

, γ2 = σ2ka1

β1

, δ1 = d1

α
, δ2 = d2

α
, A1 = 1

a1(1−m1)k ,

A2 = 1

a2(1−m2)k . For ecological reasons, model (3) is considered only in Int(R3+) =
{(S, P1, P2); S > 0, P1 > 0, P2 > 0}.

The corresponding model in the absence of refuges (m1 = 0, m2 = 0) is analogous to

that of (3) with differences in the non-dimensional parameters A1 and A2 only, where A0

1
=

A1|m1=0 = 1

a1k and A0

2
= A2|m2=0 = 1

a2k .

3 Some preliminary results

3.1 Existence and positive invariance

For t > 0, letting X ≡ (S, P1, P2)
T
, F : R

3 → R
3
, F = (F1, F2, F3)

T
, system (3) can be

rewritten as
dX
dt = F (X). Here Fi ∈ C∞ (R) for i = 1, 2, 3, where F1 = S (1 − S) − SP1

A1+S −
SP2

A2+S , F2 = −δ1 P1 + ε1 SP1

A1+S − γ1 P1 P2 and F3 = −δ2 P2 + ε2 SP2

A2+S − γ2 P1 P2. Since the vector

function F is a smooth function of the variables (S, P1, P2) in the positive octant � =
{(S, P1, P2) ; S > 0, P1 > 0, P2 > 0}, the local existence and uniqueness of the solution

hold.

3.2 Boundedness

Boundedness implies that the system is biologically well-behaved. The following proposi-

tions ensure the boundedness of system (3).

Proposition 1 The prey population is always bounded from above.

Proof From the first sub-equation of (3), the following inequality is found

dS
dt

≤ S (1 − S) ,
lim sup S(t)≤1

t→+∞ .

�	
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Proposition 2 If max
{

RP1
, RP2

}
< 1, where RP1

= ε1

δ1 A1

and RP2
= ε2

δ2 A2

, then the total
predator population goes into extinction.

Proof From the second and third sub-equations of (3) and recalling Proposition 1, it can be

easily shown that

dP1

dt
+ dP2

dt
≤ −δ1 P1

(
1 − RP1

)− δ2 P2

(
1 − RP2

)
.

Thus, if max
{

RP1
, RP2

}
< 1, then the predator population will go into extinction. The

parameter combinations RP1
and RP2

are similar to the reproduction ratios in epidemic

theory (cf. Hethcote et al. [24], Inaba and Nishiura [25], and Haque and Venturino [26]). �	

Proposition 3 The solutions of (3) starting in � are uniformly bounded with an ultimate
bound.

Proof Define a function X = S + P1

ε1

+ P2

ε2

. Taking its time derivative along the solutions of

(3), we have

dχ

dt
+ φχ ≤ S (1 + φ − S ) + 1

ε1

(φ − δ1) P1 + 1

ε2

(φ − δ2) P2.

Now we choose φ in such a way that φ < min {δ1, δ2}, so that the above inequality

reduces to

dχ

dt
+ φχ ≤ S (1 + φ − S )

≤ (1 + φ)2

4
≡ ρ.

Integrating the differential inequality between the limits t0 and t, (cf. Birkhoff and Rota [27]

and Haque and Venturino [28]), we find

χ (t) ≤ e−φtχ (t0) + ρ

φ

(
1 − e−φt) ≤ max

(

χ (t0) ,
ρ

φ

)

and
lim sup

t→+∞ χ (t) ≤ ρ

φ
, (4)

with the last bound independent of the initial condition. Hence, all the solutions of (3)

starting in R
3+ for any θ > 0 evolve with respect to time in the compact region

� =
{

(S, P1, P2) ∈ R
3

+ : S + P1

ε1

+ P2

ε2
≤ ρ

φ
+ θ

}

. (5)

�	
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3.3 Equilibria and their feasibility

Equilibria The equilibria of (3) are the origin (i) E0 ≡ (0, 0, 0); the boundary points (ii)

E1 ≡ (1, 0, 0), (iii) E2 ≡ (S2, P12, 0), (iv) E3 ≡ (S3, 0, P23), (v) E4 ≡ (0, P14, P24) and the

interior equilibrium (vi) E∗ ≡ (S∗, P∗
1
, P∗

2

)
, where

S2 = δ1 A1

ε1 − δ1

, P12 = A1ε1 (ε1 − δ1 (1 + A1))

(ε1 − δ1)
2

;

S3 = δ2 A2

ε2 − δ2

, P23 = A2ε2 (ε2 − δ2 (1 + A2))

(ε2 − δ2)
2

;

P14 = − δ2

γ2

, P24 = − δ1

γ1

; P∗
1

= S∗ (ε2 − δ2) − δ2 A2

γ2 (A2 + S∗)
, P∗

2
= S∗ (ε1 − δ1) − δ1 A1

γ1 (A1 + S∗)
;

in which S∗
is the positive root of the cubic equation given by

γ1γ2S∗3 + γ1γ2 (−1 + A1 + A2) S∗2 + (γ1 (ε2 − δ2) + γ2 (∈1 −δ1)

− γ1γ2 (A1 + A2 − A1 A2)) S∗ − (γ1γ2 A1 A2 + δ2γ1 A2 + δ1γ2 A1) = 0. (6)

Therefore, according to Descartes’ rule of sign, cubic (6) has exactly one positive real root

irrespective of the sign of the coefficient of S∗
if A1 + A2 > 1.

Feasibility It is clear that the equilibria E0, E1 are obviously feasible. The equilibrium

point E4 is always infeasible. E2 is feasible under the condition ε1 > δ1(1 + A1) and E3 is

feasible under the condition ε2 > δ2(1 + A2). The interior equilibrium E∗
is feasible if the

conditions (i) ε1 > δ1

(
1 + A1

S∗
)

and (ii) ε2 > δ2

(
1 + A2

S∗
)

simultaneously hold.

4 Stability and bifurcation analysis

The Jacobian of (3) at any arbitrary point

(
S̃, P̃1, P̃2

)
is J ≡ DF (X) = (bij) ∈ R

3×3
with

J = (bij
)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1−2S̃− A1 P̃1

(
A1+ S̃

)2
− A2 P̃2

(
A2+ S̃

)2

S̃
A1+ S̃

S̃
A2+ S̃

ε1 A1 P̃1

(
A1+ S̃

)2
−δ1+ ε1 S̃

A1+ S̃
− γ1 P̃2 −γ1 P̃1

ε2 A2 P̃2

(
A2+ S̃

)2
−γ2 P̃2 −δ2+ ε2 S̃

A2+ S̃
−γ2 P̃1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let this be denoted by Jk = J (Ek) =
(

b[k]

ij

)
at the equilibrium Ek, k = 0, . . ., 4 and

J∗ =
(

b[∗]

ij

)
at E*. Its characteristic equation is (λ) ≡ λ3 + κ1λ

2 + κ2λ + κ3 = 0, where

κ1 = −tr(J ), κ2 = M and κ3 = − det(J ); M being the sum of the principal minors of order

two of J.
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Note that the conditions for Hopf bifurcation to occur are that there exists a certain

bifurcation parameter ζ = ζ h such that C2 (ζh) = κ1 (ζh) κ2 (ζh) − κ3 (ζh) = 0 with κ2> 0

and
d

dζ
(Re (λ (ζ )))|ζ=ζh �= 0, where λ is given by the characteristic equation (λ) = 0.

Stability The eigenvalues of the Jacobian matrix J0 are 1, −δ1 and −δ2. Hence E0 is

unstable along the S axis. The eigenvalues of the Jacobian matrix J1 are −1, −δ1 + ε1

1+A1

and −δ2 + ε2

1+A2

. Hence the equilibrium E1 is locally asymptotically stable if the conditions

(i) ε1 < δ1(1 + A1) and ε2 < δ2(1 + A2) are satisfied.

Remark The existence of local stability of system (3) around E1 eliminates the feasibilities

of E2 as well as E3. Furthermore, it is observed that E2 → E1 as ε1 = δ1 (1 + A1) and

E3 → E1 as ε2 = δ2 (1 + A2).

4.1 Existence of transcritical bifurcation around E1

Theorem 4 The system (3) does not experience any saddle-node, pitch-fork, or Hopf
bifurcation but admits a transcritical bifurcation at the equilibrium point E1 as the
parameter ε1 crosses the critical value ε1 = δ1 (1 + A1).

Proof One of the eigenvalues of J1 will be zero iff det(J2) = b[1]

11
b[1]

22
b[1]

33
= 0, i.e., b[1]

22
=

0 or b[1]

33
= 0, which respectively gives ε1 = δ1 (1 + A1) = ε

[tc]

1
or ε2 = δ2 (1 + A2) =

ε
[tc]

2
. Now when ε1 = ε

[tc]

1
, the other two eigenvalues are given by ς1 = −1, ζ2 =

δ2 + ε2

1+A2

. These eigenvalues will be of same sign if ε2 < ε
[tc]

2
or of opposite sign

if ε2 > ε
[tc]

2
. Now we have obtained that � = (θ,− (1 + A1) θ, 0)T

, ϒ = (0, �2, 0)T
,

where �, ϒ are the eigenvectors corresponding to the eigenvalue ς1 = 0 of the ma-

trices J1 and JT
1

respectively and θ , h are any two non-zero real numbers. Note that

ϒT
[

Fε1

(
E1, ε

[tc]

1

)]
= 0 when E1 = (1, 0, 0) and hence system (3) does not experience

any saddle-node bifurcation (cf. Sotomayor [29]). Again ϒT
[

DFε1

(
E1, ε

[tc]

1

)
�
]

= �2θ �=
0 and ϒT

[
D2 F

(
E1, ε

[tc]

1

)
(�, �)

]
= − (1+ε1)

(1+A1)
A1θ

2
� �= 0, where

[
DFε1

(
E1, ε

[tc]

1

)]
=

(
αij
)

3×3
and α11 = α12 = α13 = 0, α21 = 0, α22 = 1

1+A1

, α23 = 0, α31 = α32 = α33 = 0 and

[
D2 F (X, ε1)

] =
⎡

⎢
⎣

∇ ∂ F1

∂S ∇ ∂ F2

∂S ∇ ∂ F3

∂S∇ ∂ F1

∂ P1

∇ ∂ F2

∂ P1

∇ ∂ F3

∂ P1

∇ ∂ F1

∂ P2

∇ ∂ F2

∂ P2

∇ ∂ F3

∂ P2

⎤

⎥
⎦ ∈ R

3×3×3
, ∇ ∂ Fi

∂S =
(

∂2 Fi
∂S2 , ∂2 Fi

∂ P1 S,
∂2 Fi
∂ P2 S

)T
, ∇ ∂ Fi

∂ P1

=

(
∂2 Fi
∂SP1

, ∂2 Fi
∂ P2

1

, ∂2 Fi
∂ P2 P1

)T
, ∇ ∂ Fi

∂ P2

=
(

∂2 Fi
∂SP2

, ∂2 Fi

∂ PP2

1

, ∂2 Fi
∂ P2

2

)T

for i = 1, 2, 3. The expressions for

DF (U), D2 F (U, U) and D3 F (U, U, U) can be obtained analytically (cf. Rudin [30]).

Thus the system possesses a transcritical bifurcation around E1 (cf. Sotomayor [29]).

Again, since ϒT
[

D2 F
(

E1, ε
[tc]

1

)
(�, �)

]
�= 0, by the same theorem in Sotomayor [29],

the system does not have any pitch-fork bifurcation. Furthermore, as the characteristic

polynomial for the Jacobian J1 has three linear factors, no Hopf bifurcation can arise.

In a similar fashion, one can show that for ε1 = ε
[tc]

1
, system (3) possesses a trans-

critical bifurcation but does not attain any saddle-node, pitch-fork, or Hopf bifurcation at

ε2 = ε
[tc]

2
. �	
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4.2 Local stability of system (3) around the boundary equilibria

At E2, the quadratic factor of the characteristic polynomial corresponding to J2 gives

λ2 − b[2]

11
λ − b[2]

12
b[2]

21
= 0,

⇒ λ2 −
(

−S2 + S2 P12

(A1 + S2)
2

)

λ +
(

ε1 A1 + S2

(A1 + S2)
2

)

= 0.

and one explicit eigenvalue, b[2]

33
=−δ2+ ε2 S2

A2+S2

− γ2 P12, with b[2]

11A = 2S2

A1+S2

(
S2−

1−A1

2

)
. Therefore, the conditions for stability are: (i) δ2 > ε2 S2

A2+S2

− γ2 P12 and (ii)

S2 > 1−A1

2
, i.e., . Otherwise if A1 < (ε1−δ1)

(ε1+δ1)
≡ A[1H], then system (3) is unstable around E2.

In a similar way, it can be found that at E3 another quadratic factor of the characteristic

polynomial corresponding to J3 gives

λ2 − b[3]
11

λ − b[3]
13

b[3]
31

= 0,

and one eigenvalue is explicitly b[3]
22

= −δ1 + ε1 S3

A1+S3

− γ1 P23 with b[3]
13

= − S3

A2+S3

< 0, b[3]
31

=
ε2 A2 P23

(A2+S3)2 > 0 and b[3]
11

= − 2S3

A2+S3

(S3 − 1−A2

2
).

Hence, E3 is locally asymptotically stable if the conditions (i) δ1 > ε1 S3

A1+S3

− γ1 P23 and

(ii) S3 > 1−A2

2
, i.e., A2 > (ε2−δ2)

(ε2+δ2)
≡ A[2H] hold. Otherwise if A2 < A[2H], then system (3) is

unstable around E2.

Theorem 5 E1 is globally asymptotically stable if min

{
δ1 A1

ε1

, δ2 A2

ε2

}
> 2.

Proof Let R
3

+S = {(S, P1, P2) : S > 0, P1 ≥ 0, P2 ≥ 0} and consider the scalar function

LS : R
3

+S → R as

Ls(t) = 1

2
(S − 1)2 + 1

ε1

P1 + 1

ε2

P2. (7)

�	

The derivative of (7) along the solutions of system (3) is

dL2

dt
= −S (S − 1)2 −

(
P1

A1 + S
+ P2

A2 + S

)

S2 +
(

2

A1

− δ1

ε1

)

P1

+
(

2

A2

− δ2

ε2

)

P2 −
(

γ1

ε1

+ γ2

ε2

)

P1 P2

< 0, if min

{
δ1 A1

ε1

,
δ2 A2

ε2

}

> 2. (8)

Theorem 6 E2 is globally asymptotically stable if conditions (i) γ1(A1+S2)
2(1−S2)

ε1 A1

+ S2

A2

< δ2

ε2

and (ii) S2 > 1 – A1 hold.

Proof Let us consider the scalar function L2 : R
3+ → R as

L2 (t) =
(

S − S2 − S2 ln

(
S
S2

))

+ A1 + S2

ε1 A1

(

P1 − P12
− P12

ln

(
P1

P12

))

+ P2

ε2

. (9)
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The time derivative of L2(t) along the solutions of system (3) is

dL2

dt
= −

(

1 − 1 − S2

A1 + S

)

(S − S2)
2 −

(
A1 + S2

ε1 A1

+ γ2

ε2

)

P1 P2

+
(

S2

A2 + S
+ γ1 (A1 + S2) P12

ε1 A1

− δ2

ε2

)

P2

< −
(

1 − 1 − S2

A1

)

(S − S2)
2 +

(
S2

A2

+ γ1 (1 − S2) (A1 + S2)
2

ε1 A1

− δ2

ε2

)

P2

< 0, by condition (i) and (ii) . (10)

Moreover,
dLs
dt |E1

= 0. The proof follows from (10) and Lyapunov-LaSalle’s invariance

principle (cf. Hale [31]).

Hence proved. �	

Theorem 7 E3 is globally asymptotically stable if conditions (i) γ2(A2+S3)
2(1−S3)

ε2 A2

+ S3

A1

< δ1

ε1

and (ii) S3 > 1 − A2 hold.

Proof The proof is similar to the proof of Theorem 6. �	

4.3 Local stability analysis of the system around E∗

Proposition 8 System (3) around the interior equilibrium E∗ is not stable.

Proof Interested readers are referred to Theorem 2 of Gakkhar et al. [32]. �	

4.4 Existence of Hopf bifurcation of system (3) around the boundary equilibria

In order to have Hopf bifurcation around the equilibria E2, E3, it is sufficient to show that the

coefficient of λ in the quadratic factor of the characteristic polynomial of Jk(k = 2, 3) is zero

and the constant term is positive. The conditions for which annihilation of the linear terms

in the quadratic factors of the characteristic polynomials of J2 and J3 can be made possible

are b[12]

11
= 0, b[3]

11
= 0 and eventually we obtain the critical values for Hopf bifurcation as

A1 = A[1H] and A2 = A[2H] for E2 and E3, respectively, as shown in Figs. 1 and 2.

4.5 Non-existence of periodic solutions around E∗

In this section, we prove that under some suitable conditions, there are no periodic solutions

of the system around the positive interior equilibrium E∗.
To prove this, the criterion by Li and Muldowney [33] can be applied. Consider the

general autonomous ordinary differential equation

dX
dt

= F(X ), (11)
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Fig. 1 a Hopf bifurcation behavior of the dynamical system around E2. b System (3) emits a limit cycle near

E2 for A1 = 0.6226216216 > A[1H] = 0.6216216216, other parameters are: ε1 = 0.9, ε2 = 0.6, A2 = 0.9,

δ1 = 0.21, δ2 = 0.81, γ1 = 1.0 and γ2 = 0.4. c Projection of the phase portrait on different planes. d Local

stability around E2 for larger A1 = 0.7226216216 > A[1H]
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Fig. 2 a The Hopf bifurcation behavior of the dynamical system around E3. b System (3) emits a limit

cycle near E3 for A2 = 0.7787777778 > A[2H] = 0.7777777778, other parameters are: ε1 = 0.6, ε2 = 0.8,

A1 = 0.5, δ1 = 0.1, δ2 = 0.1, γ1 = 0.5 and γ2 = 0.3. c Projection of the phase portrait on different planes.

d Local stability around E3 for larger A2 = 0.9777777778 > A[2H]
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where F is a C1
function in some open subset of R

N
. Let J = ( ∂ F

∂ X
)

be the Jacobian matrix

of system (11). Denote by J[2], the
(n

2

)× (n
2

)
matrix, which is the second compound matrix

of J (cf. Appendix A). Recalling X ∈ R
N

, then the corresponding logarithmic norm of J[2]
,

denoted by μ∞(J[2]), endowed by the vector norm |X|∞ = sup |Xi|, is given by

μ∞
(
J[2]
) = sup

⎧
⎨

⎩

∂ Fr

∂xr
+ ∂ Fs

∂xs
+
∑

j �=r,s

(∣
∣
∣
∣
∂ Fr

∂xj

∣
∣
∣
∣+
∣
∣
∣
∣
∂ Fs

∂xj

∣
∣
∣
∣

)

: 1 ≤ r < s ≤ N

⎫
⎬

⎭
, (12)

where μ∞(J [2]) < 0 implies the diagonal dominance by row matrix J[2]
(cf. Appendix B).

Therefore, we have the following theorem:

Theorem 9 A simple closed rectifiable curve that is invariant under system (3) cannot exist
if μ∞(J[2]) < 0.

Let us apply Li-Muldowney’s criterion for the non-existence of periodic solutions of

system (3). The logarithmic norm μ∞, endowed by the norm |X|∞ of the second additive

compound matrix J[2]
, associated with the Jacobian J∗

, is negative if the suprema of the

following functions satisfy

1 − δ1 + S
(

ε

A1 + S
+ 1

A2 + S
− 2

)

+ P1

(

γ1 − A1

(A1 + S )2

)

−P2

(

γ1 + A2

(A2 + S )2

)

< 0, (13)

1 − δ2 + S
(

ε

A2 + S
+ 1

A1 + S
− 2

)

+ P2

(

γ2 − A2

(A2 + S )2

)

−P1

(

γ2 + A1

(A1 + S )2

)

< 0, (14)

δ1 − δ2 + εS
(

1

A1 + S
+ 1

A2 + S

)

− P1

(

γ2 − ε A1

(A1 + S )2

)

−P2

(

γ1 + ε A2

(A2 + S )2

)

< 0. (15)

The sufficient conditions to satisfy (13), (14), and (15) are respectively,

δ1 > 1, 2A1 A2 > A1 + ε A2, and γ1 <
A1

1 + A1

; (16)

δ2 > 1, 2A1 A2 > ε A1 + A2, and γ2 <
A2

1 + A2

; (17)

max {ε1, ε2} = ε1 < min

{

A1γ2, A2γ1,
A1 A2 (δ1 + δ2)

A1 + A2

}

. (18)
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A direct application of Li-Muldowney’s method ensures that system (3) has no periodic

solution under the conditions stated in (16)–(18). However, the periodic solution for system

(3) may exist for a set of parameters not satisfying the conditions (16)–(18) as evident from

Fig. 3b.
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Fig. 3 a Existence of a periodic solution of the dynamical system around E2 for A1 = 0.006.

b The periodic solution of the dynamical system around E∗
for A1 = 0.10. c The periodic solution of the

dynamical system around E3 for A1 = 0.40. The remaining parameters are: ε1 = 3.80, ε2 = 0.3, A1 = 0.1,

A2 = 0.3, δ1 = 1.9, δ2 = 0.1, γ1 = 0.2 and γ2 = 0.02
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5 Persistence of the system

Proposition 10 System (3) is not persistent.

Proof Since system (3) is unconditionally unstable around the interior equilibrium E∗,
stability of coexistence equilibrium E∗

is never possible (cf. Gakkhar et al. [32] and

Freedman and Waltman [34]). �	

6 Numerical simulation

For the purpose of making a quantitative analysis of the present investigations, numerical

simulations have been carried out by making use of MATLAB-R2010a and Maple-12.

The analytical findings of the present study are summarized and presented schematically

Table 1 Schematic representation of our analytical findings: LAS = Locally asymptotically stable; GAS =
Globally asymptotically stable

Equilibria Stability conditions Equilibrium nature

E0 No condition Unstable

E1 ε1 < δ1 (1 + A1) and ε2 < δ2 (1 + A2) LAS

E1 min

{
δ1 A1

ε1

,
δ2 A2

ε2

}

> 2 GAS

E1 ε1 = ε
[tc]
1

and ε2 �= ε
[tc]
2

Transcritical bifurcation

E2 → E1

E1 ε1 = ε
[tc]
1

and ε2 �= ε
[tc]
2

Transcritical bifurcation

E3 → E1

E1 ε1 = ε
[tc]
1

and ε2 = ε
[tc]
2

Takens–Bogdanov bifurcation

(Existence of double zero eigenvalues) (Conjecture)

E2 δ2 = 0.81 >
ε2 S2

A2 + S2

− γ2 P12 = −0.986, LAS

A1 = 0.7226216216 > A[1H] = 0.6216216216

E2 δ2 >
ε2 S2

A2 + S2

− γ2 P12, A1 = 0.6226216216 > A[1H] Hopf bifurcation

E2

(i)
γ1 (A1 + S2)

2 (1 − S2)

ε1 A1

+ S2

A2

<
δ2

ε2

,

(ii) S2 > 1 − A1

GAS

E3 δ1 = 0.1 >
ε1 S3

A1 + S3

− γ1 P22 = −0.350, LAS

A2 = 0.9777777778 > A[2H] = 0.7777777778

E3 δ1 >
ε1 S3

A1 + S3

− γ1 P22, A2 = 0.7787777778 > A[2H] Hopf bifurcation

E3

(i)
γ2 (A2 + S3)

2 (1 − S3)

ε1 A1

+ S3

A1

<
δ1

ε1

,

(ii) S3 > 1 − A2

GAS

E4 Infeasible Unnecessary

– No condition System (3) is not persistent

E∗
No condition Unstable
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in Table 1. All of these results are verified by means of numerical illustrations, some of

which are exhibited in the figures. In order to compare the results of the present updated

model (3) with those of the existing one in the absence of refuge (m1 = 0, m2 = 0), the

respective values of A0

1

(
= 1

a1k

)
and A0

2

(
= 1

a2k

)
have been taken to be 0.5 and 0.8 from

Kar [16]. Global stability of system (3) at E1 is observed (not reported here) for the set of

parameters: ε1 = 0.011, ε2 = 0.01, A1 = 0.6, A2 = 0.6, δ1 = 0.2, δ2 = 0.1, γ
1

= 0.1γ2 =
0.2, which satisfies the condition min

{
δ1 A1

ε1

, δ2 A2

ε2

}
> 2. This set of parameters also satisfies

the conditions for global stability of the system around E1 (cf. Theorem 5). In fact, this

set of parameter values also satisfies the conditions ε1< δ1(1 + A1) and ε2< δ2(1 + A2)

for local asymptotic stability of system (3) around E1. The critical parameters A[1H]
and A[2H] have been determined in terms of other system parameters as: A[1H] = (ε1−δ1)

(ε1+δ1)

and A[2H] = (ε2−δ2)

(ε2+δ2)
. When the parameter A1(= 0.6226216216) exceeds the critical value

A[1H](= 0.6216216216), the present system experiences Hopf bifurcation around E2 as

displayed in Fig. 1a–c, however, the local stability around E2 attains for larger values of

A1(= 0.7216216216) (cf. Fig. 1d), which may be justified in the sense that with the increase

of A1, the behavior around the boundary equilibrium E2 changes viz. from Hopf bifurcation

to local stability. In conformity with our analytical findings (cf. Theorem 6), we found a

figure (not reported here), demonstrating the independence of initial data on the behavior of

global stability. System (3) leads to E3 (the figure is not reported here) for various initial data

(cf. Theorem 7). The system experiences Hopf bifurcation around E3 when the parameter

A2(= 0.7787777778) exceeds the critical value A[2H](= 0.7777777778) (cf. Fig. 2a–c),

however, the local stability around E3 attains for larger values of A2(= 0.9777777778) (cf.

Fig. 2d), which may be justified in the sense that with the increase of A2, the behavior

around the boundary equilibrium E3 changes as E2. The periodic solutions of the system

around E2, E∗
and E3 with the increasing values of m1 (i.e., A1) are clearly depicted in

Fig. 3a–c.

7 Conclusions and comments

Fundamental areas of ecological research include the processes by which the population

varies in abundance in space and time and identifying the mechanism through which such

processes operate, which is crucial for understanding population dynamics (cf. Anderson

[35]). The prey may avoid being killed by predators in two ways: either by defending

themselves or by escaping. One of the most important ways to escape is to move into

a refuge, where the predation risk is reduced. Different studies have shown that the

contribution of refuges to the stability of prey–predator interactions depends on numerous

factors. These factors are the relative part of the population, i.e., protected, the refuge gives

guaranteed protection against predators on the basis of predator density, i.e., absolute versus

partial refuge, whether the prey can reproduce when they are in refuge or not, and also the

density dependence on prey reproduction and mortality (cf. Magalhaes et al. [36]). Many

studies have focused on that the habitat complexity enhances the refuge of predators that

reduces the predation pressure. Menezes et al. [37] focused on that the predators interacting

with prey in the absence of refuge could not change their prey consumption dynamics as

more prey were offered. Sometimes during prey refuge, predation is drastically reduced and

predators also seek refuge to increase the predation pressure. In the mangrove ecosystem,

Ray and Straskraba [2] showed that detritivorous fish, the prey species, and different
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Fig. 4 a Different solution plots as m1 increases, i.e., A1 increases (cf. Table 2) keeping the other parameters

unchanged. b Different solution plots as m2 increases, i.e., A2 increases (cf. Table 2) keeping the other

parameters unchanged. c Different solution plots as both m1 and m2 increase, i.e., A1 and A2 increase. The

remaining parameters are: ε1 = 0.6, ε2 = 0.7, δ1 = 0.2, δ2 = 0.8, γ1 = 1.0, γ2 = 0.4
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Fig. 5 a Different solution plots as m1 increases, i.e., A1 increases (cf. Table 3) keeping the other parameters

unchanged. b Different solution plots as m2 increases, i.e., A2 increases (cf. Table 3) keeping the other

parameters unchanged. c Different solution plots as both m1 and m2 increase, i.e., A1 and A2 increase. The

remaining parameters are: ε1 = 0.6, ε2 = 0.9, δ1 = 0.11, δ2 = 0.1, γ1 = 0.5, γ2 = 0.3



718 S. Sarwardi et al.

Table 2 The parameter values of A1 and A2 corresponding to the values of m1 and m2 used in Fig. 4a–c

No. Fixed parameters m1, m2 (%)

A1 = A0

1

1−m1
,

A2 = A0

2

1−m2
.

Figure

1 ε1 = 0.6, ε2 = 0.7, δ1 = 0.2, 0.0, 0.0 0.50, 0.80 Fig. 4a

δ2 = 0.8, γ1 = 1.0, γ2 = 0.4, (blue)

A0

1
= 0.5, and A0

2
= 0.8.

2 ..................... 15, 0.0 0.5882352941, 0.80 Cyan

3 ..................... 30, 0.0 0.7142857143, 0.80 Magenta

4 ..................... 45, 0.0 0.9090909091, 0.80 Green

5 ..................... 60, 0.0 1.2500000000, 0.80 Yellow

6 ..................... 75, 0.0 2.0000000000, 0.80 Red

7 ..................... 90, 0.0 5.0000000000, 0.80 Black

8 ..................... 0.0, 0.0 0.50,0.80 Fig. 4b

(blue)

9 ..................... 0.0, 30 0.50, 1.142857143 cyan

10 ..................... 0.0, 60 0.50, 2.000000000 Magenta

11 ..................... 0.0, 90 0.50, 8.000000000 Green

12 ..................... 0.0,→ 100 0.50, 8.0 × 10
100

Red

13 ..................... 0.0, 0.0 0.50, 0.80 Fig. 4c

(blue)

14 ..................... 15, 15 0.5882352941, 0.9411764706 Cyan

15 ..................... 30, 30 0.7142857143, 1.1428571430 Magenta

16 ..................... 45, 45 0.9090909091, 1.4545454550 Green

17 ..................... 60, 60 1.2500000000, 2.0000000000 Yellow

18 ..................... 75, 75 2.0000000000, 3.2000000000 Red

19 ..................... 90, 90 5.0000000000, 8.0000000000 Black

20 ..................... → 100 , → 100 5.0 × 10
100

, 8.0 × 10
100

Blue

predator fish coexist and their co-existence depends mainly on the minimum required

abundance of detritivorous fish.

In this paper, we consider a prey–predator system with the Holling type II response

function incorporating a constant proportion of prey refuge. Incorporation of prey refuge

and the competition effect among predator species into system (2) make it more realistic.

The smell, color, injection of some poisonous agent, size, skin, body cover, etc., may be

used as different forms of refuge, which can be used to save the prey species from their

predator. We see that many prey–predator population species face competition amongst

themselves for the limited resources of food, shelter, and other biological needs. A refuge

can be an important factor in the biological control of pests, though a higher amount of

refuge can increase prey density and lead to prey population outbreak. For example, Hoy

[10] showed that ‘hotspots’ of high spider mite densities in almond orchards can trigger

orchard-wide outbreaks. We derived the conditions for the existence of local and global

stabilities of the boundary equilibria and persistence criteria and in addition we found some

critical values of some parameters at which the system undergoes bifurcations around some

selective equilibria. Finally, a set of numerical simulations has been performed to validate

some of the important results obtained.

In the present numerical study, it is found that the principle of competitive exclusion

holds good for our present system, i.e., the fittest predator will survive and others will face

extinction. When the second predator species, viz. Otolithoides pama becomes extinct from



Dynamical behaviour of a two-predator model with prey refuge 719

Table 3 The parameter values of A1 and A2 corresponding to the values of m1 and m2 used in Fig. 5a–c

No. Fixed parameters m1, m2 (%)

A1 = A0

1

1−m1
,

A2 = A0

2

1−m2
.

Figure

1 ε1 = 0.6, ε2 = 0.9, δ1 = 0.11, 0.0, 0.0 0.50, 0.8 Fig. 5a

δ2 = 0.1, γ1 = 0.5, γ2 = 0.3, (blue)

A0

1
= 0.5, and A0

2
= 0.8.

2 ..................... 20, 0.0 0.6250000000, 0.80 Cyan

3 ..................... 40, 0.0 0.8333333333, 0.80 Magenta

4 ..................... 60, 0.0 1.250000000, 0.80 Green

5 ..................... 80, 0.0 2.500000000, 0.80 Yellow

6 ..................... → 100, 0.0 5.0 × 10
100

, 0.80 Red

7 ..................... 0.0, 0.0 0.50, 0.80 Fig. 5b

(blue)

8 ..................... 0.0, 20 0.50, 1.000000000 Cyan

9 ..................... 0.0, 40 0.50, 1.333333333 Magenta

10 ..................... 0.0, 60 0.50, 2.000000000 Green

11 ..................... 0.0, 61.5 0.50, 2.077922078 Yellow

12 ..................... 0.0, 62 0.50, 2.105263158 Red

13 ..................... 0.0,→ 100 0.50, 8.0 × 10
100

Black

14 ..................... 0.0, 0.0 0.50, 0.80 Fig. 5c

(blue)

15 ..................... 30, 30 0.7142857143, 1.1428571430 Cyan

16 ..................... 60, 60 1.2500000000, 2.0000000000 Magenta

17 ..................... 90, 90 5.0000000000, 8.0000000000 Green

18 ..................... 91, 91 5.5555555560, 8.8888888890 Yellow

19 ..................... → 100, → 100 5.0 × 10
100

, 8.0 × 10
100

Red

the system due to competition and the prey species viz. Liza parsia shows no refuge, the

system creates an unstable oscillation around the boundary equilibrium position E2 (cf.

Fig. 4, blue curve). However, in reality, when the prey species shows refuge up to a certain

limit (viz. Liza parsia shows refuge within the range 15 to 74 %), the system converges

to the stable equilibrium point from the unstable oscillation. By keeping the value of m2

(coefficient of refuge of the prey species corresponding to the second predator species)

fixed, if the refuged value of the prey resource viz. Liza parsia corresponding to the first

predator viz. Sciaena miles, is increased and exceeds the critical value (75 %), the system

appears to break down and the total predator species is eliminated from the system, i.e., the

boundary equilibrium E2 is changed to the predator free axial equilibrium E1 (cf. Fig. 4a,

red and black curves). On the contrary, in the case when the refuge value used by Liza
parsia corresponding to second predator, viz. Otolithoides pama is gradually increased to

a certain level, the system experiences no change from unstable oscillatory behavior (cf.

Fig. 4b, all curves). As the second predator species is absent in E2, the increment of the

m2 value to any extent does not affect the stability of the system and the system always

shows oscillatory behavior around E2 (cf. Fig. 4b). When the refuges of Liza parsia for

both the predator species are enhanced, then the equilibrium E2 of the system shows a

stable nature up to a certain level of refuges (viz. m1 = 60% and m2 = 60 %) (cf. Fig. 4c)

and in this case, further increment of m1(≥ 75 %) can cause the system to break down (cf.

Fig. 4c). In this case, when the level of refuge of the prey species increases, the predator

species becomes eradicated from the system as the level of refuge used by the prey exceeds

75 % (cf. Fig. 4a, c). Similar observations can be made for equilibrium E3 from Fig. 5a,
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c. Furthermore, one important result observed in Fig. 5b is that when the prey species Liza
parsia shows refuge for the second predator viz. Otolithoides pama and increases gradually,

the oscillatory nature of system (3) immediately becomes stable aroundE3 and it remains up

to the refuge value m2 = 61.5 %. However, further increment of the refuge value m2 (very

small) makes system (3) oscillatory (unstable) around E2, which was not found by Sarwardi

et al. [38]. All these percentages of refuge values used for Figs. 4 and 5 are calculated in

tabular form (cf. Tables 2 and 3).

From the above numerical observations, it is found that the coefficient of refuge (m1) of

prey species viz. Liza parsia corresponding to the first predator species viz. Sciaena miles
plays a more crucial role in stabilizing the boundary equilibrium E2. Again the coefficient

of refuge (m2) of prey species viz. Liza parsia corresponding to the second predator species

viz. Otolithoides pama plays a more crucial role in stabilizing the boundary equilibrium E3.

The survey report (cf. Roy et al. [39]) corroborates the present findings of the numerical

results of this investigation. It is very difficult to validate the model results with realistic

data so far as the refuge is concerned in the natural field.
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Appendix A

The definition of the second additive compound matrix can be found in the paper of Li and

Muldowney [33]. Let A = (aij) be an n × n matrix. The second additive compound A[2]
is

the
(n

2

)× (n
2

)
matrix defined as follows:

For any integer i = 1, . . .,
(n

2

)
, let (i) = (i1, i2) be the ith member in the lexicographic

ordering of integer pairs (i1, i2), such that, 1 ≤ i1 < i2 ≤ n.

Then the element in the ith row and jth column of A[2]
is

ai1 i1 + ai2 i2 , if (i) = ( j)
(−1)r+s air js , if exactly one entry ir of (i) doesn’t occur in ( j) and js doesn’t occur

in ( j)
0, if neither entry from (i) occurs in ( j)

For n = 3

A = (αij
)

3×3
=
⎡

⎣
α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤

⎦ , (19)

its second additive compound matrix is

A[2]

3×3
=
⎡

⎣
α11 + α22 α23 −α13

α32 α11 + α33 α12

−α31 α21 α22 + α23

⎤

⎦ . (20)

In this case, (1) = (1, 2), (2) = (1, 3), (3) = (2, 3).
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Appendix B

Theorem 11 Bendixson’s criterion in R
n (cf. Arino et al. [40]): A simple closed rectifiable

curve that is invariant with respect to (11) cannot exist if any one of the following conditions
is satisfied in R

n:

(i) sup

⎧
⎨

⎩

∂ Fr

∂xr
+ ∂ Fs

∂xs
+
∑

j �= r,s

(∣
∣
∣
∣
∂ Fj

∂xr

∣
∣
∣
∣+
∣
∣
∣
∣
∂ Fj

∂xs

∣
∣
∣
∣

)

: 1 ≤ r < s ≤ n

⎫
⎬

⎭
< 0,

(ii) sup

⎧
⎨

⎩

∂ Fr

∂xr
+ ∂ Fs

∂xs
+
∑

j �= r,s

(∣
∣
∣
∣
∂ Fr

∂xj

∣
∣
∣
∣+
∣
∣
∣
∣
∂ Fs

∂xj

∣
∣
∣
∣

)

: 1 ≤ r < s ≤ n

⎫
⎬

⎭
< 0,

(iii) λ1 + λ2 < 0,

(iv) inf

⎧
⎨

⎩

∂ Fr

∂xr
+ ∂ Fs

∂xs
+
∑

j �= r,s

(∣
∣
∣
∣
∂ Fj

∂xr

∣
∣
∣
∣+
∣
∣
∣
∣
∂ Fj

∂xs

∣
∣
∣
∣

)

: 1 ≤ r < s ≤ n

⎫
⎬

⎭
< 0,

(v) inf

⎧
⎨

⎩

∂ Fr

∂xr
+ ∂ Fs

∂xs
+
∑

j �= r,s

(∣
∣
∣
∣
∂ Fr

∂xj

∣
∣
∣
∣+
∣
∣
∣
∣
∂ Fs

∂xj

∣
∣
∣
∣

)

: 1 ≤ r < s ≤ n

⎫
⎬

⎭
< 0,

(vi) λn−1 + λn < 0,

where λ1 ≥ λ2 ≥ · · · ≥ λn are eigenvalues of 1

2

((
∂ F
/
∂x
)∗ + (∂ F

/
∂x
))

. ∂ F
/
∂x is the

Jacobian matrix of F and the asterisk denotes the transposition.
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