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Abstract The amount and type of self-entanglement of DNA filaments is significantly

affected by spatial confinement, which is ubiquitous in biological systems. Motivated by

recent advancements in single DNA molecule experiments based on nanofluidic devices and

by the introduction of algorithms capable of detecting knots in open chains, we investigate

numerically the entanglement of linear, open DNA chains confined inside nano-slits. The

results regard the abundance, type, and length of occurring knots and are compared with

recent findings for DNA inside nano-channels. In both cases, the width of the confining

region, D, spans the 30 nm–1 μm range and the confined DNA chains are 1–4 μm long. It

is found that the knotting probability is maximum for slit widths in the 70–100 nm range.

However, over the considered DNA contour lengths, the maximum incidence of knots

remains below 20%, while for channel confinement it tops 50%. Further differences of the

entanglement are seen for the average contour length of the knotted region, which drops

significantly below D ∼ 100 nm for channel-confinement, while it stays approximately

constant for slit-like confinement. These properties ought to reverberate in different kinetic

properties of linear DNA depending on confinement and could be detectable experimentally

or exploitable in nano-technological applications.
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1 Introduction

Like other forms of entanglement, the abundance and type of knots in equilibrated DNA

molecules depends on both intrinsic and extrinsic properties. The former include the chain

contour length, the bending rigidity and chirality while the latter include spatial constraints

such as confinement in narrow spaces [1–3].

A notable example of spatially confined DNA is offered by the viral genome packaged

inside capsids [1]. Typically, the viral DNA contour length exceeds by orders of magnitude

the capsid diameter, resulting in a near crystalline density of the packaged genome [4–7].

Over the years, several numerical studies have accordingly tried to understand not only

how the DNA filament is packaged inside the virus [4, 7–12] but especially how it can be

ejected into the host cell through the narrow capsid exit channel without being jammed by

self-entanglement [9, 13–15]. A solution to this conundrum was proposed in ref. [13], which

reported that the ordering effect of DNA cholesteric self-interaction [16, 17] is responsible for

keeping the entanglement at a minimum and compatible with an effective ejection process.

The effects of spatial constraints on DNA self-entanglement and the possible implications

for DNA condensation, packaging, and translocation have been systematically addressed

only recently, largely because of the introduction of suitable nano-devices and micro-

manipulation techniques that allow for probing the properties of few confined molecules

at a time [18–23].

In such contexts, a still largely unexplored research avenue is the characterization of the

occurrence of knots in open, linear DNA molecules. In fact, theoretical and experimental

studies of knot occurrence have largely focused on equilibrated chains where knots are

trapped by a circularization reaction which ligates the two chain ends, thus forming a ring.

The topology of such rings is clearly maintained until they open up, and therefore their

knottedness is well defined.

This is not the case for open chains, where non-trivial entanglement cannot be perma-

nently trapped because of the two free ends. Yet, we are all familiar with the fact that knots

in open chains can be long-lived and can affect various physical and dynamical properties

of polymers. In particular, in lab-on-chip experiments, the presence of knots in linear DNAs

may interfere with the confinement elongation process of the molecules, an essential step

for the detection of protein–DNA interactions [24] and also towards genome sequencing by

pore-translocation [15, 25]. These considerations have stimulated a number of efforts aimed

at suitably extending the algorithmic notion of knottedness to linear, open chains [26–28].

Building on these theoretical advancements and motivated by the upsurge of DNA nano-

manipulation experiments [18–23], here we report on a numerical study of the knotting

properties of linear DNA chains confined in nano-slits and nano-channels.

The investigation is based on a coarse-grained model of DNA and is a follow-up of two

recent studies of the metric and entanglement properties that we carried out for closed and

open chains in nano-slits and nano-channels [29, 30]. Specifically, the properties of knotted

open chains confined in slits are reported here for the first time and are compared with the

earlier results for channel confinement.

2 Methods

The model In the following, we provide a brief, yet self-contained, description of the

coarse-grained DNA model and simulation, and of the numerical techniques used to

characterize the topological properties in slit- and channel-like confining geometries.
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By following the approach of ref. [31], linear filaments of dsDNA are modeled as semi-

flexible chains of N identical cylinders.

The cylinder’s diameter is d = 2.5 nm, corresponding to the dsDNA hydration diameter,

and its axis length is equal to b = 10 nm, i.e., a fraction of the nominal dsDNA persistence

length, l p = 50 nm.

A chain configuration is fully specified by the location in space of the normalised

cylinder’s axes, t1, t2 . . . tN and, in the unconstrained case, its energy is given by the sum

of two terms:

E = Eexcl−vol + Eb . (1)

The first term accounts for the excluded volume interaction of the cylinders. It is equal

to “infinity” if two non-consecutive cylinders overlap, and zero otherwise. The second

term is the bending energy, Eb = −KBT lp
b

∑
i ti · ti+1 with T = 300 K being the system

temperature and KB the Boltzmann constant. It is assumed that the DNA is in a solution

with a high concentration of monovalent counterions, so that its electrostatic self-repulsion

is effectively screened. Because non-local self-contacts of the DNA molecule are infrequent

for two- and one-dimensional confinement we neglect both desolvation effects and the DNA

cholesteric interaction [13, 32]. Finally, because linear chains can effectively relax torsion,

the DNA torsional rigidity is neglected too.

The confinement of the DNA inside slits is enforced by requiring that the chain

maximum span perpendicular to the slit plane, �, is lower than a preassigned value, D.

Likewise, for channel confinement, it is required that the maximum caliper (diameter), �,

measured perpendicularly to the channel axis is smaller than D.

The conformational space of confined chains was explored by means of a Monte

Carlo scheme employing standard local and global moves (crankshaft and pivot moves).

Following the Metropolis criterion, a newly generated trial conformation is accepted or

rejected with probability given by min(1, exp[−(E − μ�)/KBT]. In the latter expression,

μ represents an auxiliary parameter that couples to the chain span (or caliper size), �.

Accordingly, by using different values of μ it is possible to bias the sampling of the

configurations towards configurations with different average values of �. Next, because

the biasing weight is set a priori, it is possible to remove it by using thermodynamic

reweighting techniques and recover the canonical expectation values of the observables

of interest. Advanced sampling and reweighting techniques (which are reviewed in detail in

ref. [2]) are adopted here because a direct enforcement of the geometrical constraints in the

Monte Carlo sampling would be inefficient due to the high Metropolis rejection rate.

We considered chains of N =120, 240, 360, 400, and 480 cylinders, corresponding to

contour lengths Lc = Nb in the range 1–4.8 μm. Across the various values of μ we collected

∼10
5

uncorrelated configurations of chains that could be accommodated inside channels or

slits with width D in the 40 nm–1 μm range. Notice that, because of excluded volume

effects, the minimal width achievable by slits and channels in the presence of a linear

chain is d. It is therefore convenient to profile all properties in terms of the effective width

Deff = D − d.

Chain size and knot detection To characterize the average size of the chain we consider its

root mean square radius of gyration

Rg =
√
√
√
√ 1

N

〈 N∑

i=1

∑

α=x,y,z

(
ri,α − r̄α

)2

〉

, (2)
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Fig. 1 Linear knotted chain of length Lc = 2.4 μm confined inside a slit and a channel. In both cases, the

confinement width is D = 70 nm and the chains accommodate a trefoil knot (highlighted in red)

where α runs over the three Cartesian components of the position vector ri of the center

of the ith cylinder of the chain, r̄ = 1

N
∑N

i=1
ri is the center of mass of the chain, and the

brackets 〈· · · 〉 denote the canonical average over chains in equilibrium and confined in slits

or channels.

Profiling the knot spectrum The entanglement properties of the confined model DNA

filaments were characterized by establishing the knotted state of the open chains and by

measuring the knot contour length.

From a mathematical point of view, only circular chains have a well-defined topological

knotted state since it cannot be altered by distorting or changing the chain geometry as long

as the chain connectivity is preserved. To extend the concept of knottedness to open chains,

it is therefore necessary to close them in a ring with an auxiliary arc [26, 27]. The knotted

state of the closed ring is then assigned to the open chain. The auxiliary arc must clearly be

suitably defined to ensure the robustness of the topological assignment; in particular, it must

avoid interfering with the self-entanglement of the open chain. To this purpose we adopted

the minimally interfering closure scheme introduced in ref. [27].

The position of the knot along the chain is next established by identifying the shortest

chain portion that, upon closure, has the same knotted state as the whole chain. To minimize

the chance of detecting slipknots [26], it is also required that the complementary arc on the

closed chain is unknotted.

Figure 1 illustrates two knotted configurations of 2.4 μm-long open chains confined

inside a slit and a channel. The knotted portion of the chains is highlighted.

3 Results and discussion

The metric properties of linear DNA chains for various degrees of slit-like confinement

were systematically addressed in ref. [30]. Such study indicated that, for increasing

confinement, the two principal axes of inertia of linear molecules first orient in the slit plane

and next grow progressively as the chain spreads out in a quasi-two-dimensional geometry.

The interplay of the increase of the chain size projected in the slit plane, R||, and the

concomitant decrease of the transverse size, R⊥, results in the non-monotonic behavior of

Rg, as illustrated in Fig. 2. The data shows that Rg attains a minimum at an effective channel

width, D∗
, which is slightly larger then the average radius of gyration of the unconstrained,

bulk case.

For comparative purposes, in the same figure the average radius of gyration of equally

long linear DNA chains confined in channels is shown. In this case, too, one observes the

non-monotonic dependence of Rg on the width of the confining region, which attains its

minimum at a channel width, D∗
, slightly larger that the slit case. However, the increase of
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Fig. 2 Average radius of

gyration, Rg, of linear DNA with

contour length Lc = 4.0 μm

inside a slit and a cylindrical

channel of effective width Deff.

Black and red dashed lines mark

the location of the minimum of

Rg, respectively, for slits and

channels

Rg past the minimum is much more dramatic than for the slit case. This reflects the fact that

the chain can elongate only along one direction rather than in a plane.

A relevant question regards the extent to which the dimensionality of the confining

region (slits or channels) and its width can affect the incidence, complexity, and size of

knots in linear chains. We accordingly applied the minimally interfering closure scheme to

establish the knotted state of equilibrated linear chains and to locate the knot along their

contour.

We first discuss the overall incidence of non-trivial knot topologies. The results for

slit-confined chains are shown in Fig. 3a. As expected, for each fixed value of Deff the

knotting probability depends strongly on Lc [2]. In fact, going from Lc = 1 μm to 4.8 μm

the knotting probability increases by one order of magnitude. By comparison, the knotting

probability variations on Deff (at fixed Lc) are smaller, though noticeable. More importantly,

the knotting probability displays, as Deff decreases, a non-monotonic behavior with a

maximum enhancement peak at a width, De, that falls within the 50–100 nm range.

In particular, the knotting probability varies by a factor of 2 going from the unconstrained

case D ∼ 1 μm to De ∼ 80 nm. As consistently indicated by analogous results of slit-

confined rings [30], this knotting enhancement should be measurable experimentally by

circularizing dsDNA molecules with complementary single-stranded ends inside slits.

As shown in Fig. 3b, the confinement-induced enhancement of non-trivial knots is even

stronger for the channel case: at the largest contour length, Lc = 4.8 μm, the probability

peak value is about ten times larger than the bulk one. One may anticipate that the maximum

Fig. 3 Percentage of knotted linear DNA chains inside slits (a) and cylindrical channels (b) of transverse

effective size Deff. Different curves refer to different DNA contour lengths. The estimated relative errors on

the knotting probability are smaller than 1% for Deff > 200 nm and about of 3–4% for Deff < 200 nm. The

knotting data for linear chains inside channels are based on the study of ref. [29]
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knot enhancement is attained for the same channel width, D∗
, for which Rg is minimum (i.e.,

at the highest value of the overall chain density). This is, however, not the case since De is

about one-third of D∗
at all considered chain lengths.

Besides the overall knotting probability, it is of interest to examine in which proportion

the various types of knots contribute to the overall knot population. The results for 4.8-μm-

long chains inside slits are shown in Fig. 4. One notices that, at all explored values of Deff,

prime and composite knots with up to six crossings in their minimal diagrammatic represen-

tation account for at least 90% of the observed knot population. In particular, the simplest

knot type, the 31 or trefoil knot, is by far the most abundant. For channel confinement, the

predominance of simple knots is even stronger. In particular, the peak probability of the

trefoil knot is, at Deff = De, about 23%, which is four times larger than for the uncon-

strained, bulk case.

The result is noteworthy for several reasons. Firstly, at variance with the case of three-

dimensional isotropic confinement (cavity, capsids) of DNA rings [33], the knot spectrum of

chains in slits and channels is dominated by the simplest knot types. This fact was recently

established for closed chains in slits and channels and for open chains in channels only [29,

30]. The present results for open chains inside slits therefore complete the overall picture in

a consistent way. Secondly, the percentage of simple knots (and in particular of the simplest

one, the trefoil) found in two-dimensional confinement (slits) is at least doubled in one-

dimensional confinement (i.e., channels).

To profile the finer characteristics of the chain self-entanglement, we finally analyzed

the average length of the chain portion that is spanned by the highly abundant trefoil knots,

l31
. The results shown in Fig. 5 show that, at fixed Lc, l31

is non-monotonic on Deff for

both slits and channels. However, one major difference is that the knot length decreases

dramatically after the peak for channels while for slits it appears to approach a limiting

value not dissimilar from the bulk one.

For both types of confinement, l31
depends strongly on Lc. For instance, the confinement

width associated with the maximum knot length varies noticeably with Lc. In addition, the

relative difference of the peak value of l31
with respect to the bulk case increases with Lc

too (it ranges from 10% to 22% for slits and from 16% to 36% for channels).

It is interesting to examine the observed dependence of l31
on Lc in connection with

earlier scaling studies on closed rings in various conditions (unconstrained, collapsed,

stretched, etc. [34–37]). In particular, we recall that knots in unconstrained rings are known

Fig. 4 Knot spectrum as a function of Deff for 4.8 μm-long linear DNA chains confined within slits (a) and

channels (b). The knotting data for linear chains inside channels are based on the study of ref. [29]
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Fig. 5 Average contour length of knotted arcs in linear DNA in slits (a) and channels (b) of effective

transverse dimension Deff. In (c) and (b), the data of (a) and (b) are rescaled by Lt
c for l31

and by Lν
c with

ν = 0.585 for Deff. The main panels refer to t = 0.62 ± 0.05 while for the plot in the inset t = 0.74 ± 0.01

to be weakly localized in that their contour length scales sublinearly with Lc. Specifically,

for trefoils it was shown that, for asymptotically long rings, l31
∼ Lt

c with t ≈ 0.65 [36].

Motivated by these earlier findings, we analyzed the data in Fig. 5 and rescaled them so to

collapse the l31
curves for very weak confinement (Deff > 800 nm). The optimal rescaling

was obtained for the exponent t = 0.62 ± 0.05 for both slits and channels. For stronger

confinement, the rescaled curves depart from each other. By contrast with the slit case, the

channel data show a systematic upward trend for increasing Lc. Indeed, the portion of the

curve for Deff � De shows a good collapse for t = 0.74 ± 0.01.

This suggests that, as confinement increases, the knotted subregion of the chain remains

weakly localized but it further swells along the unconstrained dimensions.

4 Conclusions

In polymer physics, there is an ongoing effort to understand the extent to which spatial

constraints affect the probability of occurrence, the complexity, and size of topological

defects in linear polymers. For DNA, this problem has various implications both for the

understanding of some biological elementary processes (such as translocation and viral
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ejection) and for the development of efficient setups for DNA nano-manipulation protocols

(such as sorting or sequencing).

Here we reported on a numerical study, based on advanced Monte Carlo simulations,

thermodynamic reweighting, and scaling analysis of the equilibrium topological properties

of a coarse-grained model of linear DNA confined in rectangular slits and cylindrical

nanochannels. The investigation was carried out for linear chains with contour lengths rang-

ing between 1.2 and 4.8 μm and confined within geometries whose transverse dimension

Deff spans continuously the 30–1,000 nm range.

We found that, both for slits and channels, the knotting probability is a non-monotonic

function of Deff with a peak that occurs at a length-dependent confinement width De. Most

importantly, and unlike DNA in capsids (i.e., under full confinement), the enhancement

of the topological entanglement in slits and channels is not followed by a corresponding

enhancement of the entanglement complexity. Indeed, despite the fact that the peak knotting

probability exceeds by several times the one in the bulk, most of the knots observed belong

to very simple knot types. This effect is particularly evident for channel confinement. This

suggests that nano-fluidic devices based on this or similar one-dimensional geometries may

be very effective for producing a good population of linear DNA molecules with a simple

knot tied in.

Finally, by using a robust algorithm for locating knots in open chains [27], we show that

the typical contour length of the knotted region displays a non-monotonic behavior similar

to the one observed for the knotting probability. Moreover, by looking at its scaling behavior

as a function of the chain contour length, it is found that for the whole range of confinement

and both for slits and channels, knots are weakly localized.
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