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Abstract The investigation of very complex dynamical systems like the human metabolism

requires the comprehension of important subsystems. The present paper deals with energy

supply chains as subsystems of the metabolism on the molecular, cellular, and individual

levels. We form a mathematical model of ordinary differential equations and we show

fundamental properties by Fourier techniques. The results are supported by a transition

from a system of ordinary differential equations to a partial differential equation, namely,

a transport equation. In particular, the behavior of supply chains with dominant pull

components is discussed. A special focus lies on the role of buffer compartments.

Keywords Supply chains · Transport equation · Metabolism model · Buffer compartment ·
Selfish brain · Fourier techniques

1 Introduction

Energy supply plays a key important role in metabolic systems. A systemic understanding

of the energy metabolism is the key to the investigation of obesity, diabetes, and other

metabolic diseases [1].

A central element in metabolic systems is the supply chain, which is found on the

molecular level, e.g., in glycolysis [2], on the cellular level, e.g., in the energy-on-

demand mechanism of neurons [3], and on the individual level in the investigation of the
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development of obesity [4]. During the transport of energy, the supporting substances are

transformed in a chain of biochemical reactions.

The consideration presented here introduces ideas established in logistics and socio-

dynamics into biomathematical investigations of the human metabolism. A very early

discussion of general supply chains is found in [5], which focuses on industrial applications

in logistics. Already there, the bullwhip effect is investigated, which means the retrograde

propagation and amplification of perturbations in pull-dominated supply chains. Further

applications are managerial science in [6] and sociodynamical applications in vehicle traffic

and pedestrian behavior in [7, 8].

More modern literature on general supply chains like [9] considers life-science appli-

cations like metabolic networks and food webs. Biochemical pathways are interpreted as

supply chains or more branched networks. Such large systems ask for an abstraction, which

is, for example, found in [10], as well as in [7], where a large system of ordinary differential

equations governing the system’s behavior is transformed into a partial differential equation,

i.e., a transport equation. Another aspect is the selection of reasonable submodels determin-

ing characteristic parts of the system’s behavior, which includes a hierarchical order of

submodels, cf. [11].

Supply chains in the context of metabolism models [12] are mathematically investigated

in [13]. Furthermore, new systemic approaches like the energy-on-demand concept [3]

encourage mathematical modeling and simulation in life-science applications.

The application of supply chains for the discussion and investigation of energy delivery

in metabolism on the individual level is derived from the selfish-brain theory [1, 14], which

was founded by Achim Peters. A mathematical core model of the human metabolism is

presented in [12]. Furthermore, [15] introduces the technique of a deductive functional

assignment of elements in the signaling system of appetite regulation. An aspect of this

work is the determination of a set of dynamical systems within a fixed framework, which

assures certain qualitative properties of the system independently of the particular shapes of

the kinetics. Finally, [16] deals with related modeling in metabolic learning.

The present investigation is based on this research, and concentrates on the special role

of buffer or side compartments in abstract supply chains. This particular focus gives a

qualitative insight into the influence of buffers on the behavior of a supply chain.

On these levels, various supply chains are accompanied by buffers, which store energy

for a relatively short time. These buffers are glycogen in glycolysis or phosphocreatine

in ATP delivery in neurons. On the individual level, the liver is a buffer compartment, as

well as the short-time fat storage compartment [1, 12]. In periods with abundant energy,

energy enters these buffers, and in periods of energy deficiency, energy is pulled out of the

buffers. Thus, the buffers act like dampers in the supply chain, and they assure a constant

energy supply of the final consumers.

The brain has a very restricted storage ability, and it is supplied permanently and

constantly by the metabolism [1] even if disturbances in energy needs or in the external

availability of energy occur [17]. The energy supply mechanism is supported by numerous

buffers, like, the liver, as a short-time buffer and the visceral fat compartment, as a long-

term buffer on the individual level. The systemic understanding of this mechanism with its

buffers is a central requirement in research on the causes of obesity and other metabolic

diseases.

The present paper starts with a presentation of supply chains and respective buffer com-

partments in Section 2. Here, Subsection 2.1 mentions glycolysis on the molecular level,

Subsection 2.2 briefly addresses the astrocyte–neuron lactate shuttle for the energy supply
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on the cellular level, and 2.3 deals with selected aspects of supply chains in the human

metabolism. Before the mathematical considerations of supply chains are introduced,

Subsection 2.4 gives some general remarks about tolerant and robust mathematical models

in life-science applications.

Supply chains without buffer compartments are briefly discussed in Section 3. We will

give a mathematical formulation of the problem, develop the dynamical system describing a

supply chain and show central properties of pure push and pure pull systems. Furthermore,

we will provide the transition from the system of ordinary differential equations to a

partial differential equation while conserving the qualitative system behavior. A main result

consists in the retrograde propagation of all perturbations in systems with a dominant pull

component, which gives a hint of the mechanisms assuring a constant energy supply into

the brain.

Section 4 focusses on the role of buffer compartments, and in particular on their damping

property. Again, we present a dynamical system and discuss its behavior. First, a single

compartment with a buffer is discussed by Fourier techniques, and filter functions are

given explicitly. The properties found by Fourier techniques are again supported by the

transformation of the ordinary differential equations into a general transport equation. This

transport equation has two sets of characteristics representing transport in the supply chain

itself and the interaction of the supply chain with the buffers. The supply chains conserve

basic properties as a hierarchically subordinate model while the buffers are added.

The paper finishes with a conclusion in Section 5, where the qualitative mathematical

results for general supply chains are set into the context of the examples mentioned above.

The systemic understanding of supply chains as an important subsystem of metabolic

networks opens a growing field of interdisciplinary research.

2 Buffer compartments on different levels

We present supply chains and respective buffers on the molecular, the cellular, and the

individual level, and we illustrate the supply chains by an example for each level. These

examples are glycolysis on the molecular level, the astrocyte–neuron lactate shuttle for the

energy supply of the neuron on the cellular level, and integrated glucose metabolism as an

example for a supply chain on the individual level.

The section finishes with general remarks on the mathematical modeling of supply

chains, given in Subsection 2.4. Applications of the mathematical results are discussed in

Section 5.

2.1 Molecular level—glycolysis

Glycolysis [2] is a supply chain on the molecular level [13]. It is buffered by glycogen.

Glycogen is a glucose polymer that provides short-term energy storage in the cells of

animals. It can be found mainly in the liver and in muscle, but also in astrocytes in the

brain, cf. Subsection 2.2. The biochemical details of glycogen synthesis and breakdown

are well known and can be found in textbooks like [18]. In times of energy abundance,

characterized by high levels of glucose in the blood or ATP in the cell, glucose is converted

to glycogen. If energy is needed, glycogen is used to generate glucose.

The starting point for the synthesis of glycogen is glucose, which is first converted

to glucose 6-phosphate (G6P) and thereby trapped in the cell. G6P becomes glucose 1-
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phosphate (G1P) in an intermediate reaction, which is activated with uridine triphosphate

and becomes uridine diphosphate glucose. This compound can then be added to existing

glycogen molecules.

In the breakdown of glycogen, single glucose molecules are removed from the glycogen

chains and converted to G1P and eventually to G6P, which can be used as a starting point for

glycolysis and thereby for the production of energy. In liver cells, G6P can also be converted

to glucose and transported back into the blood. This is a mechanism that enables the liver

to serve as an energy buffer for the whole body. Muscle cells lack the necessary enzymes;

their use of glycogen is strictly local.

Due to their importance for the energy metabolism of the body, the glycogen pathways

are under strong hormonal regulation by the insulin–glucagon system. However, allosteric

mechanisms also play an important role on the single-cell level [19].

2.2 Cellular level—astrocyte–neuron lactate shuttle

Neurons have no direct contact with the blood vessels but are surrounded by glial cells, most

which are being astrocytes. Since the middle of the last decade, there has been evidence that

the astrocytes play a major role in regulating the energy supply of neurons [3].

The basic idea behind the astrocyte–neuron lactate shuttle theory is that neuronal activity

leads to increased glycolysis and glycogenolysis activity in astrocytes. One of the products

is lactate, which is used as fuel by the neurons [20]. By this mechanism, active neurons

stimulate their supply of energy, which is called energy on demand. Astrocytes are even

able to increase perfusion locally in regions with high activity to meet the needs of the

neurons [21], which supports the idea of a strong pull component in the energy metabolism

of neurons.

As mentioned before, glycogen is used in astrocytes as a storage molecule [22]. Although

the absolute content of glycogen is not as high in the brain as in the liver or in muscle, it is

an important source of glucose and, thereby, of lactate. In particular, it enables astrocytes to

buffer times with very high activity and low glucose blood levels and it ensures the supply

of neurons with energy.

2.3 Individual level—metabolism

On the individual level, the human energy metabolism is a prominent example of a supply

chain. Energy enters the individual by cyclic food intake, and the brain and the muscles

permanently consume energy [1, 14]. The question of how the brain regulates its constant

energy level is of great importance for the systemic understanding of human metabolism

and the development of metabolic diseases [4]

The main compartments of the individual metabolic supply chain are the stomach, the

liver, the blood glucose, the brain, and the body periphery including the muscles. Of course,

a large number of intermediate states can be regarded as separate compartments. Buffers

in this metabolic supply chain are the stomach and the liver, which change the cyclic food

intake into an oscillating but still permanent supply. In particular, the liver is able to store

energy in the form of glycogen and to transform it back into blood glucose. It is the prototype

of a buffer compartment.

But the most interesting buffer or side compartment is the body fat, occurring in various

forms and in various locations. Energy enters and leaves the body fat via different pathways
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and in different forms, but in the following, we abstract to the deviation from an assumed

flux balance.

All fluxes between the different compartments are regulated by a considerable number

of partly redundant signaling mechanisms. In the present paper, we concentrate on the role

of buffer compartments for the energy supply of the final consumers, here the brain and the

body periphery. A more detailed model is found in [23].

2.4 Modeling remarks

It is a very general and comprehensive question whether rather simple mathematical models

can describe processes in biochemical and other life-science applications, where, of course,

saturated kinetics and stronger non-linearities, as well as network-like structures, occur.

The present investigation aims for qualitative results, which hold true for a large variety

of supply chains and which, in particular, provide a systemic understanding of the role of

buffer compartments. On the one hand, the evolutionary selection has generated robust and

redundant mechanisms, which cannot be too sensitive against perturbations either in the

parameters or in the kinetics. We think that mechanisms, the qualitative behavior of which

is sensitively changed by exogenous influences, have not survived. On the other hand, it is

very unlikely that a complete analysis and quantification of the interaction of all redundant

submechanisms might be possible within the near future. Furthermore, the network of

specific supply mechanisms often is not completely analyzed, not even qualitatively. For

instance, the role of lactate described in Subsection 2.2 is under strong discussion, cf. [24]

and [20], while there seems to be accordance about the importance of the astrocyte for the

energy supply of the neurons.

Therefore, here we investigate abstract simplified supply chains and buffers, which can

be used as components in more complex biochemical or metabolic networks. In particular,

we assume an immediate effect of each cause, since any time delay found by measurements

is affected by subordinate mechanisms as well. Next, we linearize the kinetics near the

equilibrium or working point. Thus, we are aware that the results formally hold true only

for small perturbations. Due to evolutionary stability, the validity range is not restricted to

infinitesimally small perturbations, although it does not include extremal situations.

3 Supply chains

3.1 Model set-up

Let us consider a supply chain of n compartments with the time-dependent energy contents

uν = uν(t), ν = 1, . . . , n. The energy contents are independent of the particular manifesta-

tion of the energy or the energy-supporting substance. They are measured as deviations from

an equilibrium content u∗
ν . Hence, the total energy in the νth compartment is u∗

ν + uν(t).
The flux from the compartment ν into the compartment ν + 1 is named jν(t) + j∗, ν =

1, . . . , n − 1, where j∗ is the flux in the equilibrium of the supply chain. If the supply chain

remains in the equilibrium, then all fluxes between neighboring compartments, as well as

the inflow and the outflow of the supply chain, are identical to j∗.

The time-dependent inflow into the first compartment of the supply chain is called

jin(t) + j∗ = j0(t) + j∗ and the outflow from the nth compartment is jout(t) + j∗ = jn(t) +
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j∗, as shown in Fig. 1. The fluxes jν(t), ν = 0, . . . , n are deviations from the equilibrated

situation. In the absence of other sources and sinks in the supply chain, the continuity

equation reads

u̇ν(t) = d

dt
(u∗

ν + uν(t)) = [ jν−1(t) + j∗] − [ jν(t) − j∗] = jν−1(t) − jν(t) (1)

for ν = 1, . . . , n. An assumption about the constitutive equations is the smooth dependency

of the total flow j∗ + jν = Jν(u∗
ν + uν, u∗

ν+1
+ uν+1), ν = 1, . . . , n − 1 on the energy

contents in the linked compartments, cf. Subsection 2.4. We have already mentioned that

Jν(u∗
ν, u∗

ν+1
) = j∗, and we find

jν = ∂ Jν
∂uν

(u∗
ν, u∗

ν+1
) uν + ∂ Jν

∂uν+1

(u∗
ν, u∗

ν+1
) uν+1 + O(uν, uν+1)

2.

Since it seems natural that the flow from compartment ν into compartment ν + 1 increases

with uν and decreases with uν+1, we denote the push factor kν ≥ 0 describing the depen-

dency of jν on the content uν of the supplier or preceding compartment, and the pull factor

�ν+1 ≥ 0 describing the dependency of jν on the content uν+1 of the receiver or succeeding

compartment, by

kν = ∂

∂uν

Jν(u∗
ν, u∗

ν+1
) and �ν+1 = − ∂

∂uν+1

Jν(u∗
ν, u∗

ν+1
).

The constitutive equations for the balance law (1) are approximated by

jν = kνuν − �ν+1uν+1 for ν = 1, . . . , n − 1 (2)

for sufficiently small deviations uν , ν = 1, . . . , n. The linearized dynamical system (1,2)

reads in detail as

u̇1 = jin(t) − k1u1 + �2u2 ,

u̇ν = kν−1uν−1 − (kν + �ν)uν + �ν+1uν+1 , (3)

...

u̇n = kn−1un−1 − �nun − jout(t)

with ν = 2, . . . , n − 1.

Let us remark that a metabolic supply chain usually has a definite transport direction.

Although negative values of jν occur in the presented model equations, a sufficiently large

j∗ assures positive total fluxes. Furthermore, it is easy to see that initial conditions with

Fig. 1 Abstract supply chain with energy contents uν in the n compartments and the linking fluxes jν ,

ν = 0, . . . , n composed of a linear push and a linear pull component
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positive fluxes assure positive fluxes for all time instants if inflow and outflow are always

positive [13].

In the particular case of a pure pull system, the push components kν are vanishing,

and every flux jν is governed by the succeeding compartment uν+1 alone. Hence, any

disturbance propagates backwards in the supply chain because the energy content in the

compartment ν does not influence the energy contents uγ with γ > ν. Then, the need jout(t)
dominates the supply chain, and the dynamical system (3) describes a retrograde wave or

retrograde information transport, while the actual energy transport is still forward due to

j∗ > 0. An analogous consideration holds true for pure push systems, where the information

is transported in the forward direction.

3.2 Transition to the transport equation

The dynamical system (3) resembles a naive semidiscretization of a partial differential

equation in v = v(t, x), where the position x is associated with the course of the supply

chain. That evokes the idea to consider a partial differential equation instead, and to discuss

the systems’s qualitative behavior by means of a single equation.

This transition is furthermore supported by the observation that most of the supply

chains in life-science applications are continuous, and that the n compartments are part

of the mathematical model—and not necessarily of the modeled mechanism. For instance,

a tremendous number of intermediate products are found in a reaction chain like glycolysis.

Also, ATP delivery in the neuron is a continuous transport process, and energy is continu-

ously transported in human metabolism on the individual level, too.

Hence, on the one hand, the description of a supply chain by a partial differential equation

is a formal step, which starts with the system of ordinary equations, but on the other hand,

it is a compartment-free model of a continuous supply chain. Now, the question occurs of

which partial differential equation yields a suitable model of a continuous supply chain.

The position is defined as x ∈ [0, n + 1], and the energy level at the points xν = ν ∈ N

may be uν(t) ≈ v(t, ν). The push components are κ(x) ≥ 0 with κ(ν) = kν , and the pull

components are λ(x) ≥ 0 with λ(ν) = �ν . Due to the different directions of the information

transport in (3), the first-order upwind scheme in the semidiscretization gives

∂

∂x
[κ(xν)v(t, xν)] ≈ kνuν(t) − kν−1uν−1(t)

and

∂

∂x
[λ(xν)v(t, xν)] ≈ �ν+1uν+1(t) − �νuν(t).

Equation 3 reads now as the formal first-order semidiscretization of the transport equation

∂

∂t
v(t, x) = − ∂

∂x
[κ(x)v(t, x)] + ∂

∂x
[λ(x)v(t, x)]. (4)

Suitable boundary conditions depend on the wave direction [25].

Let us remark that (3) can be interpreted as a semidiscretization of a second-order

differential equation, too [26]. But in general, an absolute term γ (x)u(x) is needed in

addition to the diffusion term and the convection term. Furthermore, the biochemical
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interpretation of a diffusion term in a supply chain is questionable because most biochemical

reactions have a distinct direction under physiological conditions.

We now show a fundamental property of pure pull systems.

Theorem 3.1 In the case κ(x) = 0, the waves in (4) with λ(x) > 0 propagate backwards.

Proof Equation 4 can be written as vt − [λ(x)v]x = 0 with λ(x) > 0. The characteristics

ξ = ξ(t) with the starting point (0, x0) obey the initial-value problem

ξ ′(t) = −λ(ξ(t)) < 0 with ξ(0) = x0.

Thus, λ(x)v(t, x) is constant in t, and particularly, it is

λ(ξ(t))v(t, ξ(t)) = λ(x0)v(0, x0), (5)

and any wave with the initial values v(0, x) propagates backwards with the characteristic

ξ(t) because ξ ′(t) < 0. ��

The analogous result holds true for a pure push system, where the waves propagate in the

direction of the supply chain. Forward waves can serve as a signal about the energy contents

in the preceding compartments to the final consumer [15].

The following corollary contains the increase of the perturbations during their retrograde

propagation, as illustrated in Fig. 2. It is related to the observation that the brain as final

consumer enjoys a nearly constant energy content [1, 17].

Corollary 3.2 If λ(x) is monotonously increasing, then in (4) with κ(x) = 0, the amplitudes
of the waves increase while propagating backwards.

Proof Equation 5 gives the expression

v(t, ξ(t)) = λ(x0)

λ(ξ(t))
v(0, x0),

2

1t

0
0

2
x

4

4

u 2

0

0

2
x

4
0

1
t

2

Fig. 2 Left: characteristics moving backwards in a pure pull system with λ(x) = x. Right: example solution

with an initial wave, which amplifies while moving backwards
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and the assertion follows from the fact that ξ(t) is decreasing and, hence, λ(ξ(t)) is

decreasing in t for every characteristic, too. ��

A serious problem in the transition from (3) to (4) results from the situation that the push

and pull terms can be combined in the transport equation to

∂

∂t
v(t, x) = ∂

∂x
[(λ(x) − κ(x))v(t, x)].

Thus, the qualitative behavior of a supply chain containing push and pull components is

modeled by a transport equation, the wave direction of which depends only on the sign

of α(x) = λ(x) − κ(x). So, all supply chains with identical differences λ(x) − κ(x) are

modeled by the same transport (4). In particular, small push components κ(x) 	 λ(x),
x ∈ [0, n + 1] have no influence on the qualitative behavior of the pull system in (4).

However, the push components play an important role if signaling components like appetite

are considered [15] because the push components provide information about the energy

contents in preceding compartments to the final consumer.

4 Buffers in supply chains

We now consider a supply chain with a buffer attached to each compartment, as shown in

Fig. 3. We use the same approach as in Section 3 to get a straightforward extension of the

dynamical system (3). The deviation of the content of the νth buffer from its reference value

y ∗
ν is denoted by yν = yν(t). We introduce the flux sν = sν(t) from the chain compartment

into its buffer. Assuming that sν depends smoothly on uν and yν , a linearization gives

sν = qνuν − rν yν, with qν, rν > 0. (6)

In the equilibrium, the contents of the buffer compartments do not change, and therefore,

the flux must vanish. Therefore, the reference flux s∗
is zero.

The continuity equations for uν and yν are given by

u̇ν = jν−1 − jν − sv,

ẏν = sν

Fig. 3 Extended supply chain with buffers. The dashed box indicates one element. The in- and outflow of

the element ν consists of one part that depends on uν and one part that does not. The parameters kν and �ν

belong to the dependent part, whereas kν−1 and �ν+1 belong to the independent part
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for ν = 1, 2, . . . , n. With (2) and (6), the dynamical system reads

u̇1 = jin(t) − k1u1 + �2u2 − q1u1 + r1 y1,

u̇ν = kν−1uν−1 − (kν + �ν)uν + �ν+1uν+1 − qνuν + rν yν,

u̇n = kn−1un−1 − �nun − qnun + rn yn − jout(t), (7)

ẏγ = qγ uγ − rγ yγ

for ν = 2, . . . , n − 1 and γ = 1, . . . , n. Hence, (7) extends (3) by the buffers.

4.1 Single buffered compartment

The supply chain is built of n identical elements, each consisting of one chain compartment

and its buffer, as illustrated in Fig. 3. The coefficients kν and �ν , etc., are denoted without

the index in the discussion of a single compartment here, although they are still regarded as

dependent on ν. We find the system

u̇ = −(k + �)u − qu + ry + f(t), (8)

ẏ = qu − ry,

with non-negative parameters k, �, q, and r for the contents u(t) and y(t) of the chain

compartment and the attached buffer. The existence of the buffer is assured by q > 0.

Furthermore, we assume k + � > 0 because the compartment is active in the supply chain.

The time-dependent function f (t) represents the external in- or outflow due to the push

or pull activity of the neighboring compartments or the more general in- or outflow of the

compartments at the ends of the supply chain.

Now, our aim is the analysis of the response of the element to the input function f (t).
We are especially interested in how the contents of the main compartment and of the buffer

are influenced by f (t). Since the system (8) is linear, periodic steady states can be analyzed

by the Fourier transform. This technique, widely used in engineering and signal processing,

converts the differentiation with respect to t in the time domain to a multiplication with iω

in the frequency domain. For reference, we define the Fourier transform f̂ of a function f
as

f̂(ω) =
∞∫

−∞
f(t)eiωt

dt.

The question of the existence of the Fourier transform refers to the usage of appropriate

function spaces and is not of practical interest for the investigation of physiological supply

chains.

Theorem 4.1 Let f̂ be the Fourier transform of f in (8). Then, the Fourier transforms û
and ŷ of u and y, respectively, are û(ω) = H(ω) f̂(ω) and ŷ(ω) = G(ω) f̂(ω) with the filter
functions

H(ω) = r + iω

η
and G(ω) = q

η
,

with the common denominator η = (k + �)r − ω2 + iω(k + � + q + r).
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Proof The application of the Fourier transform to (8) gives the linear algebraic system

iω

(
û
ŷ

)
=

(−(k + � + q) r
q −r

)(
û
ŷ

)
+

(
f̂

0

)

in the frequency domain. Its solution û and ŷ yields the desired result. ��

So, if f is purely harmonic in a single frequency ω, then u and y are scaled and phase-

shifted versions of f. Of course, the response of the system, i.e., the scaling and the shift,

depends on the frequency ω. To investigate the dependency on the frequency ω, we regard

the modulus of the filter functions

|H(ω)| =
√

r2 + ω2

|η| and |G(ω)| = q
|η| .

The common denominator fulfills |η| �= 0 for all real ω because

|η|2 = (k + �)2r2 + ω4 + ω2
[
(k + �)2 + (q + r)2 + 2q(k + �)

]
. (9)

Thus, independently from the input f, no resonance effect occurs. The reason lies in the

compensating flux −(k + �)u, which drives u back to zero and, consequently, y, too. This is

reflected on the frequency side by the fact that (k + �)r is the only term in the denominator

η of the filter functions that is not multiplied by iω. Some properties of the modulus |H(ω)|
and |G(ω)| will be highlighted.

Theorem 4.2 The moduli |H(ω)| and |G(ω)| of the filter functions reach their global
maximum at ω = 0 and decrease monotonously to zero for ω → ±∞.

Proof Since η = O(ω2) for ω → ±∞, we have

lim
ω→±∞ |H(ω)| = lim

ω→±∞ |G(ω)| = 0.

Next, we differentiate |H(ω)|2 and |G(ω)|2 since both filter functions are positive for all ω.

We find

d

dω
|H(ω)|2 = −2ω[(ω2 + r2)2 + qr2(2k + 2� + q + 2r)]

|η|4
and

d

dω
|G(ω)|2 = −2q2ω[2ω2 + r2 + 2qr + (k + � + q)2]

|η|4 .

Each derivative has exactly one zero at ω = 0, and both derivatives are positive for ω < 0

and negative for ω > 0 because all parameters are positive. That proves the maximum and

monotonicity property. ��

The result of the preceding theorem can be regarded as a lowpass property of the system

composed of a single compartment and a buffer. High frequencies contained in f (t) are

damped more strongly by the system than low frequencies, as illustrated in Fig. 4.

By looking at the influence of the parameters in |H(ω)| and |G(ω)|, we can state some

rough estimates. The modulus of H decreases with increasing k, �, and q, and the damping
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Fig. 4 Left: modulus of the filter functions H(ω) and G(ω) for k = � = q = r = 1. Right: �|H(ω)| in the

pure pull system for q = r = 1

effect on u is then enforced. Increasing parameters k, �, and r enhances the damping of

y, too.

In general, only the push and pull components k and � will enlarge the damping in both

compartments. This underlines their importance also in the buffered case. The damping and

the lowpass properties are critical for the application to metabolic supply chains because the

brain relies heavily on a constant energy content and, thus, on a sufficient inflow of energy.

Let us now examine the influence of the buffer on the damping of f (t). By setting q =
r = 0 in (8), we find the solutions for the compartment without buffer. The content of the

chain compartment in the case without buffer is denoted by uno(t) with the Fourier transform

ûno(ω).

Theorem 4.3 The absolute values of the filter functions |H(ω)| and |Hno(ω)| in the cases
with and without buffer fulfill

|H(0)| = |Hno(0)| and |H(ω)| < |Hno(ω)| for ω �= 0.

Proof The identity for ω = 0 follows from lim
ω→0

|H(ω)| = 1/(k + �) for all non-negative

parameters with k + � > 0.

For ω �= 0, we again consider the squared functions. Expanding |Hno(ω)|2 with ω yields

|Hno(ω)|2 = ω2

(k + �)2ω2 + ω4
.

Adding different positive terms to the numerator and denominator in the above equation

gives |H(ω)|. It holds true for general c1, c2, d1, d2 > 0 that

c1

c2

>
c1 + d1

c2 + d2

is equivalent to d2 >
c2d1

c1

, (10)

and c1 = ω2
, c2 = (k + �)2ω2 + ω4

, d1 = r2
, and d2 = (k + �)2r2 + ω2[(q + r)2 + 2q(k +

�)], cf. (9), yield the property in (10) since ω2[2q(k + � + r) + r2] > 0 with non-negative

parameters and with k + � > 0. ��
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Hence, the damping effect of the element is always enhanced by the buffer. The

qualitative property of damping enhancement is independent of the input f (t) and of

the particular parameters. This emphasizes the relevance of buffer compartments. They

diminish the influences of disturbances on the contents of the compartments in the supply

chain and help to assure a more constant delivery of energy.

4.2 Pure pull supply chain

We now assemble the supply chain of length n from single elements to find expressions for

the solution in the frequency domain. In particular, we deal with pure pull supply chains

in this subsection. These are supply chains without push components, i.e., kν = 0 for all

ν = 1, . . . , n − 1. Then, the behavior of the supply chain is governed by the receivers, only.

The hierarchically ordered receivers are all compartments i = 2, . . . , n in retrograde order.

Theorem 4.4 Let jin = jin(t) and jout = jout(t) be Fourier transformable functions with the
transforms ĵin and ĵout. Then, it holds true that

û1 = H1(ω)( ĵin + �2û2),

ûν = Hν(ω)(kν−1ûν−1 + �ν+1ûν+1),

ûn = Hn(ω)(kn−1ûn−1 − ĵout),

and

ŷ1 = G1(ω)( ĵin + �2û2),

ŷν = Gν(ω)(kν−1ûν−1 + �ν+1ûν+1),

ŷn = Gn(ω)(kn−1ûn−1 − ĵout),

for ν = 2, 3, . . . , n − 1 with

Hν(ω) = rν + iω

ην

, Gν(ω) = qν

ην

and ην = (kν + �ν)rν − ω2 + iω(kν + �ν + qν + rν) for ν = 1, 2 . . . , n.

Proof We define the time-dependent exogenous excitations fν of each compartment/buffer

pair by f1(t) = jin(t) + �2u2(t), by fν(t) = kν−1uν−1(t) + �ν+1uν+1(t) for ν = 2, 3, . . . ,

n − 1, and by fn(t) = kn−1un−1(t) − jout(t). After inserting that into (8), we have the

structure of a single element for all pairs of uν and yν . We use Theorem 4.1, and we obtain

the result. ��

Corollary 4.5 In a pure pull chain, i.e., kν = 0 for all ν in (7), it holds true that

ûν = −Hν

n∏
γ=ν+1

�γ Hγ · ĵout and ŷν = −Gν

n∏
γ=ν+1

�γ Hγ · ĵout

for ν = 2, . . . , n and

û1 = H1

⎛
⎝ ĵin −

n∏
γ=2

�γ Hγ · ĵout

⎞
⎠ and ŷ1 = G1

⎛
⎝ ĵin −

n∏
γ=2

�γ Hγ · ĵout

⎞
⎠ .
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Proof For kν = 0, the tridiagonal system in Theorem 4.4 reduces to an upper triangular

system, and the solution can be calculated by backward substitution. ��

A similar solution can be found in the case of the respective pure push chain by forward

substituting.

The particular role of the first compartment results from the fact that its content is

governed by the inflow jin and by the second compartment as receiver, whereas all other

compartments only depend on the succeeding compartment or the outflow jout, respectively.

The general structure found for one compartment with buffer is conserved in the pull

chain. The disturbance is now the prefiltered version of jout, which travels backwards in the

supply chain as already indicated in Section 3. The solution for ν = 2, 3, . . . , n involves

only the transform of jout. For the first compartment, the independent flux is modified by

jin, which only affects the first compartment. All information transport is retrograde.

Each element in the chain possesses the lowpass property on its own. The strength

of the lowpass depends just on the parameters present at the individual element. We can

already conclude from the subsequent product that this lowpass property is enforced as the

disturbance travels in the supply chain. Next, there is also a damping effect of the transport

along the chain.

Since a pure pull chain is characterized by jν−1 = −�νuν , the filter function Hν for the

content of the compartment ν implies the filter function �ν Hν for the flux. The following

Theorem 4.6 shows a relation between the damping of the compartment contents and the

damping of the transport in the linking fluxes.

Since the filter functions Hν are direct equivalents of H for the particular compartments,

the following property is noted without the index ν.

Theorem 4.5 For � > 0 and |H(ω)| from the pure pull chain, it holds true that �|H(0)| = 1

and �|H(ω)| < 1 for all ω �= 0. Moreover, it is true that lim
�→∞ �|H(ω)| = 1.

Proof Obviously, �|H(0)| = 1, and we find

�|H(ω)| = �
√

r2 + ω2√
(�2 + ω2)r2 + (2qr + (� + q)2)ω2 + ω4

< 1

for all ω �= 0 because additional positive terms occur in the denominator. At the same time,

these expressions show lim
�→∞ �|H(ω)| = 1 and, thus, the decreasing behavior of H(ω) with

respect to �. ��

Therefore, it holds true that the product over some �ν |Hν(ω)| is smaller than 1 for ω �= 0,

and it is ever-decreasing the more terms are involved in the product. That means, the

further away in terms of the number of compartments a compartment lies from the end

of the pull chain, the weaker the signal jout(t) arrives at that compartment, i.e., the signal

suffers a damping while traveling along the supply chain. Although the specific size of the

damping depends on the parameters, the effect itself does not. Generally speaking, the more

compartments we have in a supply chain, the more strongly disturbances are damped out by

the transport process.

The second part of Theorem 4.6 shows, on the other hand, that large �ν weaken the

damping in the fluxes, as shown in Fig. 4. This is consistent with our previous statement

that increasing � decreases the magnitude of |H(ω)|.
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Fig. 5 Numerical example for

the pure pull chain with five

compartments. The parameters

were qν = rν = 1 for

ν = 1, 2, . . . , 5 and �2 = 0.1,

�3 = 1, �4 = 10, and �5 = 100.

The outflow at the right boundary

was jout = cos t
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Large pull parameters �ν lead to a strong damping on the individual level of the content of

the νth compartment but, therefore, decrease the damping of disturbances along the supply

chain. The signal just passes through, nearly without being changed in its amplitude, and

that requires variable fluxes jν , which strongly adapt to the needs in the pull components.

That means that the content of the compartments at the end of the chain is regulated,

i.e., damped, the most in the case of a pull-dominated supply chain with increasing pull

components, as found in metabolic applications. Therefore, a constant delivery of energy is

guaranteed. The fluctuation in the need at the right boundary is passed up to the beginning,

where it signals the energy demand, as shown in Fig. 5. Similar observations are made in

logistic supply chains [6, 27].

4.3 Continuous setting

This section deals with a continuous representation of the supply chain with buffers. As in

Section 3, we consider the function v(t, x) for the energy level in the chain itself and we

introduce z(t, x) for the energy level in the buffer. We take uν ≈ v(t, ν) and yν ≈ z(t, ν)

with ν ∈ N. We find the straightforward extension of (4) to be the system

vt = −(κv)x + (λv)x − μv + ρz, (11)

zt = μv − ρz.

Again, the push and pull components are κ(x) ≥ 0 and λ(x) ≥ 0 and the flux between the

supply chain and the buffer is parameterized by μ(x) > 0 and ρ(x) > 0 with μ(ν) = qν and

ρ(ν) = rν .

We put α(x) = λ(x) − κ(x), and we write (11) as

∂

∂t

(
v

z

)
= ∂

∂x

[(
α(x) 0

0 0

) (
v

z

)]
+

(−μv + ρz
μv − ρz

)
.

Now, obviously, identical characteristics are found in the system and in the separated

equations [28]. Along ξ(t)′ = −α(ξ), we have

d

dt
v(ξ(t), t) = α′(ξ(t))v(ξ(t), t) − μ(ξ(t))v(ξ(t), t) + ρ(ξ(t))z(ξ(t), t),
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while, along ζ(t)′ = 0, i.e., with a constant ζ , we have

d

dt
z(ζ(t), t) = μ(ζ(t))v(ζ(t), t) − ρ(ζ(t))z(ζ(t), t).

The first set of characteristics (ξ ′(t) = α(ξ)) describes the transport of energy in the supply

chain. These characteristics correspond with the characteristics that we found in the case

without buffers. Therefore, again, the direction of the transport depends on the sign of α(x).
The characteristics for z are straight stationary lines. This is due to the fact that there is

no transport along x in the buffers. Each point is just connected with its corresponding point

in the supply chain. We had the same effect in the discrete model, where the solution for

Yν(ω) did not involve any filter functions from other buffers Yγ (ω), γ �= ν.

Another approach to the system (11) is to differentiate the first equation with respect to

t, which gives

vtt = (αv)xt − μvt + ρzt.

The sum of both equations in (11) is zt = (αv)x − vt. Together, we have

vtt = (αv)xt − μvt + ρ((αv)x − vt),

a partial differential equation of second order for the energy level in the supply chain with

buffers. This equations is hyperbolic for all x, because collecting terms yields

vtt − αvxt = (α′(x) − μ − ρ)vt + ρ(αv)x

and the discriminant −α2/4 is negative for all x. The equation describes the propagation of

two waves along the two sets of characteristics. One of these waves corresponds with the

transport in the supply chain and one with the exchange of energy between the chain and

the respective buffers.

5 Conclusion

As expected, the investigation of supply chains as an important element in metabolic

systems has shown that the dominance of strong pull components assures constant energy

contents in the compartments near the final receiver in the chain, which is assumed to be

the brain [1].

Furthermore, the retrograde propagation of disturbances is proven in supply chains with

dominant pull components. Therefore, the system of differential equations with linearized

constitutive functions was regarded as a discretization of a partial differential equation,

namely, a transport equation. The qualitative behavior can be found in this continuous

setting, too.

The continuous setting refers to metabolic supply chains, which are physiologically con-

tinuous and the compartments of which are a result of modeling. For instance, glycolysis,

on the molecular level, consists of numerous intermediate products, the different states of

which form a continuous transformation process from glucose to pyruvate or lactate.

Next, buffers enforce the damping property of the supply chain. In particular, all

disturbances in the inflow are damped, which assures a more constant delivery with

energy to the final consumer in the supply chain. The damping effect is enforced by

high frequencies of the disturbance; buffer compartments act like lowpass filters. On the

molecular level, buffers are found in side compartments like, e.g., glycogen. The liver and
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the fat compartment are buffers on the individual level. Independently from the quantitative

specification of these transport processes on different levels, the properties of buffered

supply chains are found in the qualitative behavior of glycolysis, the neuron–astrocyte

lactate shuttle, and human metabolism.

Finally, the relation between the damping of the compartment contents and the damping

of the fluxes is discussed. A strong damping in a compartment content requires an

unchanged propagation of the respective flux. Hence, the constancy of the brain’s energy

content can only be assured by a strong brain pull, which leads to a flux from the periphery

into the brain, which is perfectly adapted to the variable need of the brain, cf. the anticipated

energy on demand in [3].

The retrograde propagation in a pull-dominated supply chain encourages the search for

the cause of an effect in the transport direction. For instance, the different fat compartments

are short-term and long-term buffers mainly filled by abundant blood glucose via insulin-

dependent transport. The qualitative results for buffered supply chains motivate the search

for the cause of a large fat compartment in the transport direction behind blood glucose, e.g.,

in the brain as discussed in [4]. This modified point of view might enrich the established

glucostatic [29] and lipostatic theories [30], which are still taught in medicine.

Another interesting example in metabolic supply is foraging or hoarding behavior [31].

The external food storage resulting from foraging behavior can be interpreted as a buffer

in the metabolic supply chain, too. Although the molecular mechanisms are complex [32],

the systemic understanding of supply chains shows that the cause of hoarding behavior is

in the transport direction, or vice versa, that hoarding behavior is a consequent effect of a

disturbance in the food intake.

The principal behavior of the metabolic supply chain is reflected in the supply chains

on lower levels, which serve the metabolic supply chain on the individual level and which

support it by behaving in a redundant manner, cf. the evolutionary stability mentioned in

Subsection 2.4.

The transition to a system of partial differential equations modeling the continuous

buffered supply chain has shown that the properties of the unbuffered supply chain are

mainly conserved, i.e., the characteristics of the transport equation in the unbuffered case are

recognized. Furthermore, a subsequent set of characteristics is related to the added buffers.

We can regard the unbuffered supply chain as a component, which is augmented by the

buffers as subsequent components. The added components expand and slightly modify the

dynamical behavior of the supply-chain component to that of the composed system.
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