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Abstract The use of single-case effect sizes (SCESs) has increased in the inter-

vention literature. Meta-analyses based on single-case data have also increased in

popularity. However, few researchers who have adopted these metrics have pro-

vided an adequate rationale for their selection. We review several important sta-

tistical assumptions that should be considered prior to calculating and interpreting

SCESs. We then more closely investigate a sampling of these newer procedures and

conclude with critical analysis of the potential utility of these metrics.
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Introduction

Advances in technology in combination with a push for empirically justified

outcomes [e.g., No Child Left Behind Act of 2001 (2002); Individuals with

Disabilities Improvement Act of 2004 (2003); What Works Clearinghouse] have

resulted in renewed research in single-case effect sizes (SCESs). The purpose of

SCESs is to supplement visual analysis with a universally understandable metric
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that is resistant to bias and can potentially be combined across studies or individuals

within a study. Recent iterations of these metrics attempt to address the observed

complexities and assumption violations inherent in statistical analysis of single-case

data (SCD) including autocorrelation, slope, non-normality, and random growth

trajectories across participants (e.g., Maggin et al. 2011; Manolov and Solanas

2013; Parker et al. 2011b; Shadish et al. 2013). However, at the expense of

addressing these data features, these newer procedures incur novel assumption

violations readers may not be familiar with.

With this in mind, the current study has two purposes. The primary purpose is to

explicitly outline assumptions that pertain to SCESs, using a handful of these newer

metrics to anchor this discussion, and to strongly encourage readers to review

assumptions in their own work so as to increase the validity of their findings. These

assumptions generalize to many other SCESs that are not discussed presently. The

secondary purpose of this paper is to address issues of scale and distribution by

examining this sample of metrics more closely while accommodating certain

assumption violations.

Recent Developments in SCESs

Suggestions for the extension of statistical analysis to SCD have been forthcoming

for over 40 years, however, few, if any, methods have achieved both durability and

empirical robustness (Allison and Gorman 1993; Shadish et al. 2008; Wolery 2013).

Present in the literature are methods with foundations in non-overlap criteria (e.g.,

Ma 2006; Parker et al. 2007, 2011a), multiple regression (e.g., Allison and Gorman

1993; Gorsuch 1983), econometrics (Manolov and Solanas 2013), the modeling of

autocorrelation (e.g., Gotman and Glass 1978; Swaminathan et al. 2010), and multi-

level modeling (e.g., Shadish et al. 2013; Van de Noortgate and Onghena 2003).

Such variety speaks to the continued philosophical issues regarding how single-case

data should be interpreted and the difficulty in selecting which undesirable data

characteristics should be controlled for, expending what is often a small pool of

degrees of freedom (e.g., number of observations of behavior).

Nonetheless, more focused discussion of what a robust SCES should accomplish

(e.g., Horner et al. 2009; Wolery 2013) has encouraged the development of

contemporary methods that potentially control for multiple threats and may be more

readily interpretable. These techniques were designed to accommodate violations of

basic parametric assumptions. Non-normality is frequent in SCD (Solomon 2014) as

is heterogeneity. The violation of independence—one of the defining characteristics

of SCD—often results in baseline trend contributing most often to false positives

when visual analysis (Mercer and Sterling 2012) or mean-level approaches are

applied. A violation of independence also leads to potential autocorrelation (i.e.,

serial dependency), typically resulting in inflated summary statistics and overly

optimistic visual analysis (Busk and Marascuilo 1988; Jones et al. 1978; Manalov

and Solanas 2008; Matyas and Greenwood 1990; Shadish and Sullivan 2011).

Autocorrelation is defined as how well a dataset can be explained by a lagged

version of itself; one observation ideally does not predict the magnitude of the next
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datum point (Bence 1995; Huitema and McKean 1991). The finding that visual

analysis is influenced by these violations further justifies the use of SCESs as a

supplement.

Regardless of the positive attributions of newer procedures, corrective techniques

still must fulfill an array of data assumptions depending on the procedure. A review

of assumptions guides selection of the statistic and can influence the confidence

placed in subsequent calculations and their interpretation. Assumption violations,

particularly when paired with small sample sizes like those typically found with

SCD (Shadish and Sullivan 2011), can have a significant effect on resulting

parameters (Grissom 2000; Lix et al. 1996; Manalov and Solanas 2008). In our

experience, we have found few researchers have provided any rationale for their

selection of SCES beyond describing the theoretical virtues of the parameters

themselves, overlooking the nature of the data to which the estimator is being

applied. Several of these articles, including single-case meta-analyses, have

appeared in the Journal of Behavioral Education.

Assumptions Related to SCES Estimation and Interpretation

Throughout this article, we draw upon a large database of synthesized data. This

convenience sample included populations of studies focused on school-wide

positive behavior support, teacher performance feedback, math interventions, and

classroom-based individual behavior interventions originally used in Solomon et al.

(2012a, b), Poncy et al. (in press) and Solomon (2014), respectively, for the purpose

of SCD synthesis (see Table 1). We direct readers to these sources for further

information on methods for study inclusion. All datasets were updated specifically

for this study in January of 2014 using identical methods to those reported. We also

included an additional five studies focused on individual elementary-level reading

interventions, amounting to another 15 graphs. These articles were selected to

broaden our overall pool and were the first five peer-reviewed articles that utilized a

single-case framework focusing on elementary reading acquisition that appeared on

EBSCO.

Table 1 Summary of included studies

# studies # graphs Avg. baseline # Avg. intervention #

SWPBS 23 71 8.31 (5.75) 11.45 (6.95)

PF 54 369 10.43 (8.94) 10.34 (8.48)

MI 24 125 5.99 (3.79) 8.31 (4.42)

BI 25 109 7.83 (3.27) 10.00 (5.09)

Totala 131 689 8.94 (7.31) 9.98 (7.22)

SWPBS, school-wide positive behavior support, Solomon et al. (2012a); PF, performance feedback,

Solomon et al. (2012b); MI, math interventions; Poncy et al. (in press); BI, behavior interventions.

Solomon (2014)
a Includes fluency studies
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We begin with one of the most venerable effect sizes, Cohen’s d, which, despite

limitations when applied to SCD, has been used frequently for single-case analysis

(Beretvas and Chung 2008). Shadish et al. (2008) argued that these drawbacks are

different, but no greater, than those of some more recently published techniques.

Cohen’s d requires traditional group assumptions of basic parametric tests, and these

conventions carry over to many of the more elaborate SCESs subsequently

developed and reported presently.

Cohen’s d

Cohen’s d is a parametric effect size that standardizes the average difference

between two independent groups, or in the single-subject case, between two

adjacent phases. Cohen’s d assumes normality, homogeneity (constant variance

across phases), and independence. Because independence is violated, researchers

should assess its effect by evaluating data trend and autocorrelation. Cohen’s d for

SCD can be defined as the difference between two adjacent phases in original scale

units, divided by a within-phase standard deviation (SD) term, where d ¼ ð �XB �
�XAÞ=S�: S* can be a pooled term, where the SD of both phases is combined, which

will be more precise when homogeneity has been fulfilled and can also be adjusted

for small sample bias, resulting in Hedges’ g (see Borenstein 2009). S* can also be

defined as the SD of Phase A when homogeneity is violated, resulting in Glass’s D.
Busk and Serlin (1992) refer to D in the SCD case as the ‘‘no assumption effect

size’’ (NAES). A review of the literature suggests the NAES was popular up until

several years ago when nonparametrics appear to have increased in prevalence.

Despite its title, the NAES is not assumption free and assumes normality and

independence, while d also assumes homogeneity. It appears Busk and Serlin (1992)

presented this statistic with the belief that researchers would frame interpretation of

the effect within the limits of violations of non-normality, although this generally

has not been the case.

Conditions for Use

If normality is violated, Cohen’s d may not be appropriate. Non-normality can be

assessed using descriptive estimates of skew and kurtosis. Q–Q plots, boxplots, and

histograms can also be visually inspected (see ‘‘Appendix’’). Homogeneity will

determine the form used (d or D), which can be tested with a Levene’s test. If

moderate-to-high levels of trend are present, a trend-controlled procedure will be

more appropriate. The standardized trend value and its significance can be inspected

using a basic regression package (see ‘‘Appendix’’) available in nearly all

spreadsheet and statistics programs. Finally, if autocorrelation is present, d will

be biased. A general rule-of-thumb for moderate autocorrelation is .20.

As an example, we generated random samples from two normal, homogenous

population distributions representing phase A and B of a simple single-case design,

with baseline mean = 2.71, SD = 1.38, and intervention mean = 4.20, SD = .77

(Fig. 1a). In this case, it is known that the population distributions for both phases
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were normal, homogenous, and without trend or autocorrelation. We calculate

Cohen’s d, which equals 1.33. For all examples described presently, the quartile

distributions under the ‘‘Interpretative Guidelines’’ section of this article are

referenced. These benchmarks show that this value would be considered small.

Tau-U & Non-overlap of All Data (NAP)

Tau-U is a nonparametric statistic representative of the popular family of non-

overlap procedures, originally published in Parker et al. (2011a). Such procedures

are desirable for their immunity to threats to normality, higher power when

normality is violated, and ease of calculation. Tau-U accounts for trend by taking

advantage of the compatible additive properties of the overlap matrices used to

calculate the Kendall Rank Correlation (KRC; Kendall 1970) and the Mann–

Whitney U test of group/phase dominance. Because slope is measured as overlap

within phase, and only reflects rising or lowering datum points, it is defined as

monotonic slope. The procedure for comparing adjacent phase differences with

Phase A slope controlled can be summarized as follows:

1. Sum both how many phase B datum points are greater than Phase A datum

points (UL1) and how many Phase B datum points are less than Phase A datum

points (US1), where SAB = UL1 - US1 and NAB is equal to all overlap

comparisons for SAB.

Fig. 1 Sample AB contrasts. a Data for Cohen’s d, b data for NAP, c data for GLS, d data for MPD
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2. Sum both how many Phase A datum points are greater than all prior Phase A

points (UL2) and those that are inferior (US2), where SA = UL2 - US2 and NA is

equal to all overlap comparisons for SA.

3. Tau = (SAB- SA)/(NAB ? NA) and is a proportion between -1 and 1.

NAP, originally published in Parker and Vannest (2009), is calculated by

computing step 1 as described above and then dividing SAB by NAB. In other words,

NAP is equivalent to Tau-U absent trend control (Parker et al. 2011a) and is a

nonparametric alternative to Cohen’s d. NAP, and the many other non-overlap

procedures that make use of all datum points, such as the Percent of All Non-

Overlapping Data (PAND; Parker et al. 2007), were intended to improve upon the

Percent of Non-Overlapping Data (PND; Scruggs and Casto 1987). Although PND

remains popular due to its ease of calculation (Beretvas and Chung 2008; Scruggs

and Mastropieri 2013), researchers have warned of the severe limitations of this

metric and typically do not recommend its use (e.g., Allison and Gorman 1993,

1994; Parker et al. 2007; Shadish et al. 2008; White 1987). NAP can be understood

within the Common Language Effect Size framework, where .5 is equal to no effect

(chance overlap), any value[.5 is equal to a positive effect, and any value\.5 an

undesirable effect (Parker and Vannest 2009).

A critical issue pertaining to non-overlap procedures is one of validity (Wolery

et al. 2010). At the expense of overcoming non-normality, nonparametric

approaches are restricted to an ordinal interpretation. In Fig. 2, the difference in

leaving one’s seat per instructional unit across phases may have little clinical value;

however, any nonparametric ESs would be at an absolute maximum (e.g., 1).

Academic interventions in particular are probably incompatible with such

techniques, as the magnitude of improvement, a ratio metric, is of primary interest.

However, numerous such academic intervention studies and meta-analyses have

applied non-overlap procedures. In our convenience sample of math and reading

data, 46 % of reviewed phase contrasts hit the maximum NAP ceiling of one, and as

Wolery et al. (2010) observed, it is unlikely all these studies yielded similar effects.

The researcher must consider whether non-overlap can preserve the validity of the

behavioral response.

Most non-overlap procedures are also vulnerable to high levels of autocorrela-

tion, although tend to be more robust than their traditional parametric counterparts

(Parker et al. 2011a). Serial dependency[.20 may visibly distort Tau-U (Parker

et al. 2011a), and this level of autocorrelation is fairly common with SCD (Busk and

Marascuilo 1988; Shadish et al. 2013; Solomon 2014).

The subtraction of overlap matrices also has drawbacks unique to Tau-U.

Because phase A overlap is subtracted from AB phase overlap (recall the numerator,

SAB - SA), and phase B has a maximum amount of overlap comparisons with phase

A equal to NA 9 NB, the monotonic slope control is confounded with phase B

length. As an example, if one had three baseline points along a positive linear

trajectory, SA equals three. If the intervention phase had three points, all of which
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were superior to all baseline points (SAB = 9), Tau-U is (9 - 3)/(9 ? 3) = .5. If the

intervention phase had five superior points and nothing else was changed

(SAB = 15), Tau-U equals (15 - 3)/(15 ? 3) = .67. Therefore, Tau-U’s ceiling is

a function of phase length. This will limit inter-study comparisons, such as is

typically done in meta-analysis. Tau-U can be adjusted to include phase B trend

(Parker et al. 2011a)—another potentially desirable property of an intervention—

where Phase B trend is comprised of a third additive overlap matrix and Tau-

U = (SAB ? SB- SA)/(NA ? NB ? NC), although the ceiling will still not be

consistent across studies.

Conditions for Use

In selecting a nonparametric estimator, presumably because there is either direct or

theoretical evidence for moderate-to-severe non-normality, researchers should first

consider whether non-overlap could reflect substantive treatment goals. Second,

trend should be evaluated. If trend is significant, Tau-U or a parametric trend-

controlled procedure may be more appropriate. If autocorrelation is highly elevated,

an autocorrelation-controlled method may be more appropriate.

As an example, in Fig. 1b, we provide sample data for an AB contrast. These

sample data were drawn from a similar population as our previous example, except

positive skew of 1.80 was introduced to both phases. d would mischaracterize the

effect, so we calculate NAP, which in this case is .94. This value is toward the upper

limit of the metric’s scale and would be considered medium to large.

Fig. 2 Loss of the interval scale with non-overlap
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Generalized Least Squares (GLS)

The goal of GLS is to estimate an unknown parameter—in this case a Lag-1

autoregressive term (AR1)—and model it in the linear regression error term. In

doing so, GLS controls for autocorrelation that otherwise may result in a bias of the

resulting parameter. The prospect of cleaning autocorrelation from SCD has been

proposed before (see Gotman and Glass 1978); however, Swaminathan et al. (2010)

offered a recently published method, an adapted version of GLS that also controls

for trend, which initially appeared in a technical report to the Institute of

Educational Sciences. The procedure is summarized in the peer-reviewed literature

by Maggin et al. (2011) as:

1. Model AR1 using the Cochrane–Orcutt (CO) procedure. The CO models serial

dependency in observed residuals around the time series Ordinary Least

Squares (OLS) regression line (q) absent phase identification, and both y- and x-
axes are subsequently adjusted by q.

2. Calculate a regression line between the AR1 corrected baseline data (b1*) and
time, and the AR1 corrected intervention data (b2*) and time. Project b1*
through the intervention phase. The CO can be repeated if residual q remains

large as indicated by the Durbin–Watson test.

3. Subtract each projected datum point along b1* from its respective b2* datum

point at each observed time point. Averaging these values results in the final

statistic, which is the mean difference of the data space between two regression

lines.

The resulting statistic is unstandardized, which restricts researchers to comparisons

across identical metrics. Maggin et al. (2011) offer the suggestion that the final output

be divided by the scatter about the phase regression lines, resulting in a standardized

value somewhat similar to a Cohen’s d. Absent any formal guidelines, we

computationally defined this scatter using a simple pooled error term, SEB1�B2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSEB1Þ2 þ ðSEB2Þ2
q

; where SEB1 and SEB2 are equal to the average scatter around

the individual OLS regression lines (Cohen et al. 2003). The potential issues with this

standardization are not clear and have yet to be resolved. For example, the projected

trend line has no residual error, although the intervention trend line does, creating

potential estimation issues.

Parametric regression techniques which employ a trend control, including the

GLS, can result in implausible scenarios were researchers must deal with regression

lines that intercept the x-axis before the experiment has terminated, resulting in

negative levels of projected behavior (Parker et al. 2011a). We define this presently

as the intercept assumption. In Fig. 3, an OLS baseline trend is projected through

the intervention phase and each intervention point compared to its hypothetical

point absent treatment, which is the basis for several published procedures. In this
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case, the last two datum points would be compared to the implausible y-axis values

of -1.7 and -3.67 incidents of behavior, respectively, inflating the effect. In our

convenience sample, this assumption was violated 22 % of the time for the GLS,

making such a case fairly common. If negative forecasted values emerge, the

researcher must judge whether the problem is severe enough to terminate the

analysis in favor of an alternative technique. Tau-U, which controls for monotonic

trend, is not vulnerable to the intercept assumption.

All parametric trend-controlled procedures carry the assumption of linear trend

absent intervention. In other words, it must be assumed that—absent an intervention

occurring—baseline trend levels would have continued unaltered through the

intervention condition in a linear trajectory (Parker et al. 2011a). The cumulative

distribution plots of Fig. 5, which graph SCESs for our entire sample, highlight a

potential outcome of violating this assumption. Cohen’s d, a level difference metric,

had only four negative values, whereas at the other extreme, GLS had 23 negative

outcomes. A negative effect would certainly alter recommendations for a particular

intervention, if not the prospect of publication entirely. If growth would not have

continued post-baseline with the same degree of slope in these studies, then these

procedures become overly punitive. For example, Solomon (2014) found that

baseline OLS trend levels for math intervention studies were generally higher than

those found in other fields, likely the result of practice effects on the measurement

probes. Such practice would probably continue to yield growth given current

literature on the effects of explicit timing interventions (e.g., Poncy et al. 2010),

making a trend control more appropriate. It may be less appropriate to assume that,

for example, a student’s on-task behavior would continue to improve in a linear

fashion absent intervention.

Fig. 3 Violation of the intercept assumption

446 J Behav Educ (2015) 24:438–458

123



The GLS, being a parametric estimator, assumes homoscedasticity and normality

of the residuals. GLS carries with it the assumption that the true value of q is

constant across phases or subjects, although there is no direct test for this because

autocorrelation is not precisely estimated with small samples. Finally, it is worth

noting that there currently is no statistics program that readily calculates the GLS as

described by Maggin et al. (2011).

Conditions for Use

Researchers who use trend-controlled parametric procedures should first test for

non-normality, heteroscedasticity, and negative projected y-axis values. Researchers

should also consider whether projected values represent a plausible scenario had

intervention not occurred. If not, level difference approaches will be more valid.

Finally, researchers will want to examine autocorrelation for each phase; values

should be, at the least, in the same direction and of moderate size for the GLS.

In Fig. 1c, we have taken our data from Cohen’s d and introduced heavy

autocorrelation of .40 to raw datum points. d is now upwardly biased, d = 1.70. We

respond by calculating the GLS, which equals -1.69. Due to the cleansing of both

trend and autocorrelation, our standardized value actually suggests a medium-sized

negative effect, highlighting several issues previously discussed.

Mean Phase Difference (MPD)

The MPD (Manolov and Solanas 2013) is similar in principle to the final two steps

of the GLS, in that the goal is to project a baseline linear trend and remove that trend

from intervention phase data. The MPD calculates linear trend line by employing

differencing—a well-known concept in economics—making the procedure unique.

Differencing limits the researcher to examination of linear trend, whereas the GLS

and other parametric techniques can be modified to examine curvilinear trend,

although we have observed few published examples of such. The MPD is more

robust to individual outliers while preserving the parametric properties of the

estimator. As described in the calculation steps outlined below, differencing is also

easily accomplished using a spreadsheet program such as Microsoft Excel. The

MPD can be summarized as follows:

1. Calculate a differenced baseline trend by subtracting each baseline datum point

from each subsequent baseline datum points (e.g., X2 - X1, X3 - X2, X4 -X3,

…, Xk- Xk-1). Average these values to calculate the slope of the differenced

trend line.

2. Using this slope, project the differenced baseline trend through the intervention

phase.

3. Subtract each projected point from each actual intervention datum point and

average. This results in the unstandardized MPD.
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Like the GLS, the standardization of the MPD is not clear and the intercept

assumption can be violated. Interestingly however, in only 6 % of our sample did

this violation occur for the MPD, in comparison with the 22 % for the GLS. The

procedure is parametric, and therefore, standardized values are vulnerable to

heteroscedasticity. With no built-in mechanism to control autocorrelation, this also

is an assumption, although removing trend will typically reduce autocorrelation to

some degree, because trend and autocorrelation are correlated (Yue et al. 2002).

Manolov and Solanas (2013) also noted that controlling for both autocorrelation and

trend within the same model, as is done with the GLS, might overcorrect both

problems, resulting in a loss of sensitivity. Shadish et al. (2008) also suggested that,

sample sizes typically being small in SCD, the presence of absolute q may be a

random artifact of the data. Manolov and Solanas (2013) also demonstrated that the

MPD is robust to moderate levels of autocorrelation.

Manolov and Solanas (2013) observed that phase B sample size might confound

parametric trend-controlled statistics that measure the data space between two regression

lines,which includes theMPDand theGLS.The authors reported tobeworkingonamore

appropriate standardization procedure that addresses this issue. In Fig. 4, we provide an

example of this concept using OLS regression, where the average difference between the

regression lines for the first three datum points (dashed arrows) is �X = .92. However, if

we were unsatisfied with this value, we could extend the experiment through the next

three datum points (solid arrows), and the difference is now �X = 2.56. This duration

confound is neither exclusive to single-case designs nor the MPD/GLS. Any repeated

measures design phase—group or single case—can be extended beyond original intent

to exaggerate differences between levels of the IV, creating a higher likelihood of

significance and the visual illusion of greater effectiveness of the target treatment.

However, given the method of calculation, the GLS and MPD are particularly

Fig. 4 Intervention duration as a confound

448 J Behav Educ (2015) 24:438–458

123



vulnerable. It is recommended that researchers either compare across interventions,

whether it bewithin or across studies, if the duration of those experiments are generally

equivalent, or account for time in some way, whether this be defined by observation

points along the x-axis or, more precisely, by total instructional minutes of

intervention (Cates et al. 2003; Joseph and Schsiler 2007; Poncy et al. in press).

We present the MPD because it is similar to the other metrics discussed (e.g., a

single parameter that controls for trend); however Manalov and Solanas earlier

presented a two-part effect estimator entitled the ‘‘slope and level change’’ (SLC;

Solanas et al. 2010). The differenced slope of phase B minus the differenced slope

of phase A comprises one element. The Phase B mean minus the phase A mean with

both phase A and phase B trend controlled equals the second element. Separate

estimation of slope and level differences avoids several issues, including the

intercept assumption and confounds with study duration (Beretvas and Chung

2008). Similar two-parameter summaries could also be calculated using OLS

regression, which would be more sensitive when normality is fulfilled and there are

no outliers, or using nonparametric/non-overlap procedures similar to Tau-U (see

Parker et al. 2011a), which would be more appropriate when normality is violated.

Recently proposed techniques for the use of multilevel modeling estimate slope

and level changes separately and simultaneously, can accommodate alternative

distributions, and have the added benefit of providing a single, flexible, summary for

all study participants (Ferron et al. 2009; Shadish et al. 2013). Such models can also

include interaction terms (trend 9 phase). Multilevel models have a higher power

requirement (Shadish et al. 2013), require multiple subjects, typically utilize more

specialized software, and require a background in advanced regression applications.

Conditions for Use

The MPD should be considered when non-normality is violated; however,

maintaining an interval or ratio difference is important when there is evidence for

linear trend in the data. If curvilinear trend is found, the MPD is not appropriate.

Heteroscedasticity across phases should be evaluated and if high, the procedure

avoided or results given less weight. Like the GLS, if the intercept assumption

occurs, the procedure should be terminated in favor of the separate estimation of

slope and level. Although robust against autocorrelation, high levels may warrant an

alternative procedure.

In Fig. 1d, we use our skewed data for which we calculated NAP. However, a

consistent trend over the baseline condition of .20 units/session and an intervention

trend of .35 units/session have been introduced. Ignoring trend, d = 2.18. We

calculate the MPD, with a differenced slope value for baseline of .22, and the

standardized MPD = .25, a very different outcome than the mean-level approach.

This effect would be considered small.

Summary of Assumptions

We have outlined some key assumptions of several extant SCESs, which we

summarize in Table 2. In Table 3, we provide a basic guide for evaluating these
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assumptions using common approaches. These assumptions have rarely been

reviewed in prior SCD literature, and we stress the need to account for them before

selection of SCES and interpretation of results. As discussed, this may include

normality (including floor and ceiling effects), homogeneity/homoscedasticity,

experimental duration, trend and linearity, autocorrelation, and potential intercept

violations. Many SCES may still be robust in the face of modest violations, although

more inquiry is needed to delineate these nuances and researchers are advised to

take a conservative approach.

Interpretative Guidelines

We now move to another facet of interpretability. Presuming assumptions are met,

researchers need some context for explaining the size of the effect. Effect sizes

with understandable distributions that lend to clear interpretation are most

desirable. Such benchmarks are the well-known case of parametric large-

N procedures, such as Cohen’s d (.2, .5, .8) and r (10, .30, .50) for small,

medium, and large (Cohen 1988); however, there is no reason they should apply to

the single case, largely because they are not drawn from the same sampling

distribution. We have come across several recent published works where authors

have mistakenly recommended group design benchmarks for single-case use,

albeit usually encouraging caution. There also may be a misunderstanding that

because the MPD and GLS result in a d-like statistic, they can be combined with

group design statistics.

Table 2 Summary of assumption requirements for described effect sizes

Constant q No q Normality Homogeneity/

heteroscedasticity

No trend Intercept Equal phase

length

MPD X X X X *

GLS X X X X *

Tau-U X

d X X X X

NAP X X

SLC X X X

We emphasize that this summary is based on theoretical rationale. Some estimators are more robust to

violations than others, particularly small-to-moderate severity violations of normality or autocorrelation

(q)

MPD mean phase difference, GLS generalized least squares, NAP non-overlap of all pairs, SLC slope and

level change

* As discussed, phase length may confound all designs unless explicitly accounted for. However, because

the MPD and GLS compare two regression lines, in most cases they will be more sensitive to this issue

relative to the other procedures
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Model Generation

The assumptions discussed above were reviewed when constructing benchmarks. To

preserve as much of our sample as possible, studies with very high levels of non-

normality (skew or kurtosis\-4 or[ 4), and high levels of autocorrelation among

the raw values (q[ .4) were removed for the parametric procedures (MPD, Cohen’s

d). Graphs with high autocorrelation for the nonparametric procedures (Tau-U, NAP)

were removed, as were graphs with non-normality for the GLS. We then averaged

graphs within studies. To increase precision, we only reviewed studies with at least 15

datum points and five points per phase for the GLS, which Manolov and Solanas

(2013) found to be acceptable. This is a more conservative process than has been

utilized in prior studies, which typically report benchmarks without regard to

assumption violations or overrepresentation of graphs from certain studies. This

Table 3 Various methods for reviewing assumptions

Visual tests Statistical tests

Normality

Q–Q plot Shapiro–Wilk test

Cumulative probability plot Skewness and kurtosis estimates

Histogram

Boxplot

Homogeneity

Visually inspect the time series graphs for higher

‘‘bounce’’ in one phase over another

Levene’s test

Brown–Forsythe test

Heteroscedasticity

Scatterplot of standardized residuals versus

standardized predicted values

Levene’s or Brown–Forsythe on outcome residuals

Histogram of residuals

Autocorrelation

Scatterplot of raw values or residuals against

lagged values

Correlate values to the same dataset with a one-

observation lag.

If the SCES is regression-based (data against time),

run the Durbin–Watson test on the residuals

Trend & linearity

Scatterplot of data against time with superimposed

OLS trend line, differenced trend line, or

smoothed trend line

Regress y-axis data against time

Review r, t value, and p value

Regressing data against both time and time2 as

predictors (see Cohen et al. 2003) will yield

information on whether trend is linear or

quadratic

Intercept assumption

Inspect forecasted data for any negative values

Superimpose forecasted trend line over graph (see

Fig. 3)

We restrict our recommendations to popular techniques that can be readily produced in SPSS 21 or

Microsoft Excel
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makes the current summary unique, although parallels are drawn to prior reports when

appropriate. To avoid a confound with study duration, averages were not weighted.

Finally, quartile estimates were bootstrapped to increase benchmark stability.

Benchmark Comparisons

Benchmark summaries are reported in Table 4. Negative results were removed to

enhance interpretability and the sign of the effects adjusted to reflect the hypothesis

of the experiment. Cohen’s d yielded the most uniform intervals. Benchmarks (1.81,

2.44, 3.55) were far greater than Cohen’s traditional benchmarks. The MPD also

showed larger values relative to traditional benchmarks and positive skew, although

values were more conservative than those of Cohen’s d. Among these three

procedures, the GLS appeared to have quartiles that most resembled traditional

benchmarks, but were still far greater. Tau-U yielded slight negative skew, although

benchmarks stayed away from the scale’s potential range limits. The 3rd quartile of

NAP was virtually at the range limit of the scale (Q3 = .98), similar to findings of

Parker et al. (2011a, b) and Peterson-Brown et al. (2012), again highlighting issues

with ceiling effects with NAP and other non-overlap procedures. Bootstrapped

confidence intervals yielded moderate variability, particularly for the first quartile of

d and the third quartiles of the parametric procedures, suggesting a certain amount

of instability with these metrics across sampling iterations.

Distribution of SCESs Across Studies

To further highlight differences in these distributions, we graphed our findings in the

form of cumulative distribution plots (Fig. 5). As Parker et al. (2011a) noted, ideally

these plots are uniform, indicating sensitivity across a wide range of effects. Tau-U

yielded the most uniform CPD, with the densest cluster of scores falling between .35

and .6. This distribution was similar to that originally presented in Parker et al.’s

(2011a) presentation of Tau-U. In contrast, NAP showed a significant ceiling, where

the top 30 % of scores were nearly indistinguishable, again consistent with previous

findings. The difference between these graphs is explained purely by the inclusion

of monotonic trend, the implications of which were discussed previously.

The MPD yielded a relative normal distribution except in the right tail, with sharp

increases in scores after the 80th percentile. The GLS demonstrated a less desirable

Table 4 Bootstrapped distribution benchmarks by SCES and confidence intervals

MPD d Tau-U GLS NAP

Min .09 .08 .04 .01 .50

1st Quartile 1.22 (1.03, 1.49) 1.81 (1.15, 2.09) .28 (.24, .42) .58 (.36, .78) .75 (.63, .82)

Median 1.90 (1.49, 2.37) 2.44 (2.06, 2.73) .47 (.40, .51) 1.09 (.76, 1.51) .89 (.82, .94)

3rd Quartile 2.80 (2.37, 4.02) 3.55 (2.73, 4.47) .57 (.50, .63) 2.13 (1.49, 2.57) .97 (.94, 1.00)

Max 7.52 8.82 .78 5.52 1.00

Numbers in parentheses represent 95 % confidence intervals
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distribution, with significant kurtosis, and Cohen’s d yielded a more ideal distribution,

with slight positive skew. The most extreme positive outlier distorts the plot.

The take-home message for researchers is that Tau-U yielded ideal sensitivity

across studies, although researchers must be aware of ceiling effects, as described

earlier, complicates this otherwise straightforward finding. Among the parametric

procedures, Cohen’s d yielded relatively optimal sensitivity, followed by the MPD

and then the GLS, although distributions were not ideal for the MPD and especially

the GLS. Researchers should know that if using the GLS or the MPD, study results

that appear different from visual inspection might yield similar ESs. This is

particularly so for the GLS, which may overly cleanse data. Manolov and Solanas

(2013) came to a similar conclusion in their Monte Carlo study, finding that

although the GLS was generally more robust, the MPD was more sensitive to study-

level effects.

Limitations

Several of the assertions we made were bolstered by results from our convenience

sample. This convenience sample represents only a small sample of the published

single-case literature. It is possible different results would have been reached had

other discipline areas that utilize SCD been included.

We reviewed only a select few SCESs, as a full examination of all published

SCESs is beyond the scope of a single article. These SCESs were purposefully

chosen because they represent distinct areas of the field and were recently

published. No judgment regarding the quality of these metrics should be inferred by

their inclusion alone. For example, a recent proposal, the d-index (Shadish et al.

2014a, b), was described in the educational research after initial submission of this

article. Readers are cautioned that different SCESs have different assumptions,

although there is great overlap across procedures. Most of the assumptions

described above will generalize to other variants of these procedures.

Due to limitations of space, we also did not discuss power in detail, a field of

study focusing on the minimum sample size needed to reliably detect certain

magnitudes of effect size or attain significance.

Conclusions

We have summarized a wide variety of assumptions applicable to single-case analysis.

It was emphasized that these assumptions must be reviewed prior to estimation and

should be used to guide both selection and interpretation of these metrics. We then

presented sample distributions for the SCESs reviewed to demonstrate that group

benchmarks do not apply and to provide some context for their application. We stress

that assumption violations do not lead to direct recommendations for ES selection,

making any decision tree on the subject potentially misleading. Such decisions depend

on the severity of the assumption violation, sample size, and the type of data.

It is our opinion that SCESs nicely juxtapose many of the errors that can

potentially occur with visual analysis. However, given the findings reported in this
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article and in other extant work, it is recommended that such statistics remain

supplemental. Given prior research and the evidence currently presented, we find

two or three parameter models where slope and level differences are estimated

separately, such as the SLC or multilevel models, appealing given their flexibility

and ability to avoid certain assumptions. However, there are circumstances when

researchers may want a single indicator, the far more common statistic in the social

sciences, such as for comparisons across studies or when differences in trend are not

relevant to address research questions. Non-overlap techniques may be used when

normality is severely violated and non-overlap can adequately address the research

question. Curiously, many researchers have chosen such effects as their default

method, even for meta-analysis. Controlling for autocorrelation may be applied

when serial dependency is severe; however, we question whether this will be worth

the effort in many cases when trend is also controlled for. We do not believe

providing multiple SCESs (e.g., NAP and Cohen’s d) to cover all bases, whether it

be for individual studies or meta-analysis, is appropriate, which is atheoretical and

may lead to false positives. Rather, researchers should use their understanding of the

data to select the single, most appropriate estimator, as is common practice in the

group design literature.

Appendix: Basic Assumption Testing in SPSS 21.0 Using Dropdown Menus

Calculating skew and kurtosis

Analyze

Descriptive statistics

Descriptives

Options (check skew and kurtosis)

Generating a boxplot to review normality

Graphs

Legacy dialogs

Boxplot (simple)

Generating a Q–Q plot to review normality

Analyze

Descriptive statistics

Q–Q plots (check normal)

Levene’s Test of homogeneity

Analyze

Compare means

Independent samples t test (Levene’s is part of the default output)

Testing parametric linear trend

Create a time series variable (e.g., 1, 2, 3, 4, 5, 6…) equal to the length of the phase data

Analyze

Regression

Linear (input raw data and time variable)

Note that the Durbin–Watson test is also available in this module under ‘‘statistics’’
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A visual inspection of the graph will also be telling

Testing heteroscedasticity

Create a time series variable (e.g., 1, 2, 3, 4, 5, 6…) equal to the length of the phase data

Analyze

Regression

Linear (input phase data and time variable)

Plots (select predicted residuals for Y and raw residuals X). Inspect plot

Testing nonparametric linear trend

Create a time-series variable (e.g., 1, 2, 3, 4, 5, 6…) equal to the length of the phase data

Analyze

Correlate

Bivariate (check Kendall’s Tau-b)
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