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signaling plays an important role in the pathogenesis of 
human disease, such as cardiovascular disease, neuropathic 
pain, fibrosis and cancer (Lin et al. 2010; Tsujiuchi et al. 
2014).

In the 1990s, Xu et al. reported that LPA was highly 
secreted in serum and ascites in aggressive ovarian can-
cers (Xu et al. 1995). Subsequently, numerous studies have 
indicated the involvement of LPA receptors in cancer cell 
biology as well as LPA per se. Genetic alterations and epi-
genetic changes of LPA receptor genes occur in some cancer 
cells. Moreover, LPA receptors participate in the promotion 
of tumor progression, such as cell proliferation, invasion, 
metastasis, tumorigenicity and angiogenesis (Lin et al. 
2010; Tsujiuchi et al. 2014). In recent studies, the activation 
of LPA receptor-mediated signaling modulates chemoresis-
tance and radiosensitivity in cancer cells (Ueda et al. 2020; 
Minami et al. 2019; Okuda et al. 2023). Therefore, it is sug-
gested that LPA receptor-mediated signaling may be a target 
molecule for novel therapies in clinical cancer approaches. 
In this review, we provide an updated overview on the cur-
rent evidence of the roles of LPA receptor-mediated signal-
ing in the regulation of cancer cell functions.

Introduction

Lysophosphatidic acid (LPA) is an extracellular lipid which 
evokes the intracellular signaling via binding to G-pro-
tein-coupled LPA receptors. At least six subtypes of LPA 
receptors (LPA receptor-1 (LPA1) to LPA6) have been deter-
mined. LPA signaling via LPA receptors indicates a variety 
of cellular responses, including cell growth, differentiation, 
morphogenesis, cell migration and protection from apopto-
sis (Geraldo et al. 2021; Stoddard and Chun 2015; Aikawa 
et al. 2015; Yung et al. 2014). The biological functions of 
the individual LPA receptors are not uniform, dependent on 
types of cells. It is considered that LPA receptor-mediated 
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LPA

LPA is a simple lipid and structurally consists of a glyc-
erol, a fatty acid and a phosphate (Geraldo et al. 2021; Stod-
dard and Chun 2015; Aikawa et al. 2015). In 1970s, LPA 
is identified as a physiological molecule which modulates 
platelet aggregation, intracellular calcium release and blood 
pressure (Tokumura et al. 1978; Gerrard et al. 1979). LPA 
is found in not only all mammalian cells and tissues, but 
also in plasma, serum and saliva (Geraldo et al. 2021; Stod-
dard and Chun 2015; Aikawa et al. 2015). LPA is released 
from activated platelets and detectable at concentrations of 
approximately 1 to 5 µM in serum (Eichholtz et al. 1993). 
LPA is present as a mixture of several fatty acids in vivo 
condition; unsaturated fatty acids (16:1, 18:1, 18:2 and 20:4) 
and saturated fatty acids (16:0, 18:0) (Aoki et al. 2008). In 
human plasma, the most abundant LPA forms are 16:0, 18:2 
and 18:1 (Sano et al. 2002) (Fig. 1). It is considered that 
there are at least two pathways for LPA synthesis. LPA is 
endogenously synthesized from lysophosphatidylcholine 
(LPC) by autotaxin (ATX). ATX is widely present in bio-
logical fluids, such as plasma, cerebrospinal fluid, synovial 
fluid and cancer ascites (Stracke et al. 1992). Conversely, 
membrane-bound phosphatidic acid-preferring phospholi-
pase A1 also catalyzes the conversion of phosphatidic acid 
(PA) to LPA (Aoki et al. 2008).

LPA receptors

LPA receptors are members of G protein-coupled receptors 
(GPCR) (Arang and Gutking 2020). So far, six subtypes of 
LPA receptors have been identified as LPA1/EDG2, LPA2/
EDG4, LPA3/EDG7, LPA4/P2Y9/GPR23, LPA5/GPR92 
and LPA6/P2Y5 (Choi et al. 2008; Ishii et al. 2009). Addi-
tionally, LPA receptors are classified into two groups. LPA1, 
LPA2 and LPA3 belong to the endothelial cell differentiation 
gene (Edg) family. Conversely, LPA4, LPA5 and LPA6 have 
been determined as non-Edg LPA receptors which are the 
purinergic receptor family. These receptors are structurally 
distance from other LPA receptors (Choi et al. 2008; Ishii et 

al. 2009). LPA receptors are coupled to individual sets of G 
proteins (Gi, Gq, Gs and G12/13) and mediate a large vari-
ety of LPA effector functions (Table 1). The effects of each 
LPA receptor on cellular responses are not equivalent. For 
instance, LPA1 and LPA2 stimulate cell proliferation, intra-
cellular calcium mobilization, adenylyl cyclase inhibition 
and phospholipase C activation (Geraldo et al. 2021). LPA3 
increases axon branching via the activation of Gq protein in 
neural cells (Furuta et al. 2012). LPA4 and LPA5 provoke 
neurite retraction and stress fiber formation of neural cells 
(Geraldo et al. 2021). LPA6 is involved in the maintenance 
of human hair growth. In addition, homozygous mutation of 
LPA6 gene is the cause of hypotrichosis (Pasternack et al. 
2008; Shimomura et al. 2009).

Roles of LPA signaling via LPA receptors in 
the pathogenesis of cancer cells

It has been reported that genetic and epigenetic alterations of 
LPA receptors are detected in cancer cells as well as LPA per 
se (Tsujiuchi et al. 2014). LPA is present at high concentra-
tions in blood and ascites from ovarian cancer patients (Xu et 
al. 1995). In colon and gastric cancer cells, LPA contributes 
to the modulation of cell proliferation, migration and adhe-
sion (Shida et al. 2003, 2004a). Moreover, ATX overexpres-
sion is associated with the promotion of malignant potency 
during tumor progression in several cancer cells (Samadi 
et al. 2011; Leblanc and Peyruchaud 2015; van Meeteren 
and Moolenaar 2007). Mutations of LPAR2 and LPAR4 
genes are found in colon cancer cells (Tsujino et al. 2010). 
LPAR1 and LPAR3 mutations occur in osteosarcoma, while 
no mutation of LPA receptors is detected in in fibrosarcoma 
cells (Okabe et al. 2010). In contrast, rodent tumors induced 
by chemical carcinogens harbor high frequent mutations of 
Lpar1 gene. Lpar1 gene mutations are detected 46.7% in rat 
liver tumors induced by N-nitrosodiethylamine (Obo et al. 
2009). Moreover, the frequency of Lpar1 gene mutations is 
16.7% in adenomas and 41.2% in adenocarcinomas during 
rat lung carcinogenesis induced by N-nitrosobis(2-hydroxy-
propyl)amine (Yamada et al. 2009). Mutant LPA1 positively 
regulates malignant properties of cancer cells (Hayashi et al. 
2012; Kato et al. 2012). Aberrant LPA receptor expressions 

Table 1  LPA receptors
Receptor G proteins
LPA1 G12/13, Gq, Gi
LPA2 G12/13, Gq, Gi
LPA3 Gq, Gi
LPA4 G12/13, Gq, Gi, Gs
LPA5 G12/13, Gq
LPA6 G12/13, Gq, Gi, Gs

Fig. 1  Structure of 16:0-LPA. 16:0-LPA is one of the most abundant 
forms in human plasma (Sano et al. 2002)
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are detected in human cancer cells. LPA2 expressions are 
significantly higher in thyroid and breast cancer cells than 
in normal tissues, but not LPA1 expressions (Schulte et al. 
2001). The expression levels of LPA2 are increased in breast 
cancer cells, while no change of LPA1 and LPA3 expres-
sions is observed (Kitayama et al. 2004). LPA1 expressions 
are elevated and LPA2 expressions are reduced in colorectal 
cancers, compared with normal surrounding tissues (Shida 
et al. 2004b). In addition, loss of LPA receptor expressions 
is due to hyper DNA methylation of the promoter region of 
LPA receptor genes in colon cancer and osteosarcoma cells 
(Tsujino et al. 2010; Okabe et al. 2011).

Regulation of cellular functions via LPA 
receptor-mediated signaling in cancer cells

Pancreatic cancer cells

The cell motile and invasive activities of pancreatic cancer 
cells are stimulated by LPA1, LPA3 and LPA6. Conversely, 
LPA2, LPA4 and LPA5 inhibit the cell motility and invasion 
of pancreatic cancer cells. The activation of matrix metal-
loproteinase-2 (MMP-2) is elevated by LPA1, LPA2, LPA5 
and LPA6 (Fukushima et al. 2017; Komachi et al. 2009; Ishii 
et al. 2015). In addition, the cell motility is decreased by 
culturing in low glucose mediums, while LPAR1 and LPAR2 
expression levels are increased (Takai et al. 2023). It is well 
known that MMP-2 activation participates in the promo-
tion of cancer cell invasion and metastasis during tumor 
progression as well as MMP-9 (Kessenbrock et al. 2010). 
In colony assay, LPA1, LPA3 and LPA6 enhance the colony 
formation of pancreatic cancer cells, while LPA4 and LPA5 
inhibit (Fukushima et al. 2017; Ishii et al. 2015). ATX-LPA 
axis promotes tumor progression of pancreatic cancer cells, 
such as peritoneal seeding and malignant ascites (Jinno et 
al. 2021).

Gastrointestinal cancer cells

In gastric cancer cells, the cell migration of LPAR1-express-
ing cells is increased by LPA, but not LPAR2-expressing cells 
(Shida et al. 2004a). In colon cancer cells, LPA stimulated 
the cell proliferation, migration and adhesion of LPAR1-
expressing cells. In contrast, LPA did not affect the cell 
migration and adhesion of LPAR2-expressing cells, whereas 
it increased the cell growth activity (Shida et al. 2003). LPA 
facilitates the colon cancer cell growth activity through 
ROCK and STAT-3 pathways (Leve et al. 2018). The cell 
motility and invasion of colon cancer cells are suppressed 
by LPA3, LPA4 and LPA6 (Fukui et al. 2012; Takahashi et 
al. 2017a). While LPA1 forms the large sized colonies of 

colon cancer cells, the colony formation is decreased by 
LPA6 (Takahashi et al. 2018a). LPA induces the secretion of 
angiogenic factors through LPA1 and LPA2 in colon cancer 
cells (Shida et al. 2003).

Ovarian cancer cells

The cell death is promoted through apoptosis and anoikis 
by LPA in highly LPA1-expressing cells, while LPA inhibits 
the cell growth activity (Furui et al. 1999; Fang et al. 2002). 
The expression levels of vascular endothelial growth factor 
(VEGF) are associated with LPA2 and LPA3 expression lev-
els in ovarian cancer cells (Fujita et al. 2003). LPA2 knock-
down inhibits the production of VEGF as well as LPA3 
knockdown (Yu et al. 2008). LPA increases VEGF mRNA 
expression and protein secretion (Hu et al. 2001). The cell 
motility and invasion of ovarian cancer cells are elevated by 
LPA3. In mouse xenograft study, LPA2 and LPA3 enhance 
tumor growth, ascites formation and metastatic potency to 
distant organs, resulting in the reduction of the survival rate 
of mice (Yu et al. 2008).

Bone and soft tissue sarcoma cells

The cell motility and invasion of fibrosarcoma cells are 
stimulated by LPA2 (Takahashi et al. 2017b). In highly 
migratory osteosarcoma cells, the cell motile activity is 
closely associated with LPAR2 gene expression (Takahashi 
et al. 2018b). The cell motile activity of osteosarcoma cells 
is stimulated via LPA2-mediated signaling activated by cul-
turing with endothelial cells (Minami et al. 2021). In soft-
agar colony formation assay, LPA2 enhances the colony 
formation activity in fibrosarcoma and osteosarcoma cells 
(Takahashi et al. 2017b, 2018b). In contrast, LPA1-mediated 
signaling suppresses pulmonary metastasis of osteosarcoma 
cells (Takagi et al. 2021). The cell motile and invasive activ-
ities are reduced by LPA5 in osteosarcoma and fibrosarcoma 
cells (Minami et al. 2020a; Dong et al. 2014).

Others

In neuroblastoma cells, the cell motility and invasion are 
elevated by LPA2 and LPA3. Although wild-type LPA1 sup-
presses the cell motility and MMP-2 activation, mutant LPA1 
has promoting effects. Moreover, mutant LPA1 enhances the 
colony formation as well as LPA3 (Hayashi et al. 2012; Kato 
et al. 2012). In lung cancer cells, the cell motile activity is 
suppressed by LPA1 and LPA2. Conversely, LPA3 stimulates 
the cell motile activity and inhibited angiogenesis (Ueda et 
al. 2020; Tanabe et al. 2013). The cell motility and invasion 
of hepatoma cells are stimulated by LPA3. LPA3 enhances 
the colony formation of hepatoma cells (Okabe et al. 2013).
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G12/13 protein activates Rho signaling pathway (Geraldo 
et al. 2021). While RhoA and RhoC have the antiapoptotic 
effects, resulting in chemoresistance to CDDP, the proapop-
tosis induced by RhoB activation enhances chemosensitiv-
ity to CDDP (Mokady et al. 2015). In the presence of LPA2 
agonist, the cell survival to CDDP of fibrosarcoma cells is 
inhibited by RhoA and RhoC knockdowns (Minami et al. 
2020b) (Fig. 2).

Involvement of LPA receptor-mediated 
signaling in radiation sensitivity

Radiation is one of the common treatments for a variety of 
cancers as well as chemotherapy. Ionizing radiation directly 
produces DNA damage and induces DNA double-strand 
breaks, resulting in tumor cell death (Huang and Zhou 
2020). The activation of LPA2 promotes the response to 
DNA damage induced by gamma irradiation. Exposure to 
gamma irradiation elevates the expression level of LPAR2 
gene in intestinal epithelial cells. In mouse models, treat-
ment of gamma irradiation increases the plasma ATX 
activity and LPA concentrations (Balogh et al. 2015). Fur-
thermore, LPAR2 gene expressions are increased in fibro-
sarcoma, pancreatic and lung cancer cells irradiated with 
X-rays. The cell motile activity of pancreatic cancer cells 
is reduced through LPA2 by X-ray irradiation. On the other 
hand, the cell survival to X-ray irradiation is enhanced by 
the activation of LPA2-mediated signaling in pancreatic 
cancer cells (Okuda et al. 2023).

Cancer stem cell and LPA receptor-mediated 
signaling

Cancer stem cells (CSCs) are conceptually proposed as a 
subpopulation of tumor cells exhibiting stem cell properties 
like self-renewal, sphere-forming and multi-lineage differ-
entiation ability. CSCs are considered to be tumor initiating 
cells and could be an origin for tumor heterogeneity and 
involved in metastasis and relapse (Visvader and Lindeman 
2008). CSCs has been identified in various types of hema-
tologic and solid cancers (Bonnet and Dick 1997; Hermann 
et al. 2007; Al-Hajj et al. 2003; Fujii et al. 2009; Honoki et 
al. 2010). Various mechanisms are implicated in the evasion 
of CSC from therapy such as enhanced DNA damage repair, 
altered cell cycle checkpoint control and overexpression of 
multidrug resistance proteins (Morrison et al. 2011).

In ovarian cancer cells, LPA treatment stimulates the 
expression of CSC-associated stem cell marker genes, 
including OCT4, SOX2, ALDH1 and drug transport-
ers. Moreover, LPA promotes CSC-like characteristics: 

Chemoresistance via activation of LPA 
receptor-mediated signaling

Multidrug resistance is a pharmacological phenomenon 
of the simultaneous tolerance to functionally and structur-
ally unrelated anticancer drugs and toxic compounds. The 
acquisition of multidrug resistance is one of the major 
causes of chemotherapeutic failure during cancer treatment 
(Hamilton and Rath 2014). It has been reported that LPA 
receptor-mediated signaling participates in the modulation 
of chemoresistance of cancer cells. In ovarian cancer cells, 
LPA1-expressing cells shows the low cell proliferation activ-
ity and high cell viability to CDDP, compared with LPA1-
unexpressing cells (Furui et al. 1999). The cell survival rate 
to CDDP is enhanced through LPA2-mediated signaling in 
fibrosarcoma, osteosarcoma and lung cancer cells (Ueda 
et al. 2020; Minami et al. 2020b; Kurisu et al. 2022). The 
cell survival is elevated by LPA3 in hepatoma cells treated 
with CDDP and doxorubicin (Okabe et al. 2013). In con-
trast, LPA3 decreases the cell survival rate to CDDP of lung 
cancer and osteosarcoma cells (Ueda et al. 2020; Kurisu et 
al. 2022). LPA5 reduces the cell survival to CDDP of osteo-
sarcoma cells (Minami et al. 2020a). The cell survival is 
decreased by LPA5 in melanoma cells treated with CDDP 
and dacarbazine (Minami et al. 2019). The cell survival to 
CDDP is suppressed through apoptosis by LPA4 and LPA6 
in osteosarcoma cells (Kurisu et al. 202).

It is considered that activation of ATP-binding cassette 
(ABC) transporters and drug-detoxifying enzyme facilitates 
the acquisition of multidrug resistance in cancer cells. ABC 
transporters act as the efflux pumps of anticancer drugs 
through the cell membrane. ABC transporters are composed 
of at least 48 members. In particular, ABCB1, ABCC1, 
ABCC10 and ABCG2 contribute to the promotion of mul-
tidrug resistance. ABC transporters requires abundant ATP 
production as the energy molecule in cancer cells (Katha-
wala et al. 2015; Chen et al. 2016; Sau et al. 2010). It is 
suggested that the depletion of intracellular ATP may result 
in the suppression of chemoresistance through ABC trans-
porters. In the presence of LPA, the cell survival to CDDP 
is decreased in ATP-reduced osteosarcoma cells (Kurisu et 
al. 2022). On the other hand, ATP is used as the substrate 
for cAMP synthesis by adenylyl cyclase activity (Steegborn 
2014). cAMP induces apoptosis and promotes chemore-
sistance in some types of tumor cells (Zhang et al. 2020; 
Insel et al. 2012). Gs protein stimulates and Gi protein sup-
presses the adenylyl cyclase activity (Stoddard and Chun 
2015). Therefore, the differential effects of the individual 
LPA receptors on cell survival to anticancer drugs may be 
due to the intracellular cAMP accumulation levels in can-
cer cells. Moreover, Rho family is involved in the regula-
tion of chemosensitivity to CDDP (Mokady et al. 2015). 
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Conclusion

In this review, we provide an overview of the pivotal roles 
of LPA receptor-mediated signaling in the regulation of 
cancer cell functions. LPA receptor-mediated signaling 
consists of complicated components of G protein-coupled 
LPA receptors and involved in several physiological func-
tions of normal and cancer cells. Therefore, further efforts 
should be attempted to clarify the specific molecular mecha-
nisms linked to LPA receptor-mediated signaling in cancer 
cells and establish a novel therapeutic approach for cancer 
treatment.
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epithelial-to-mesenchymal transition, sphere forming abil-
ity and resistance to anti-cancer drugs. Therefore, it is sug-
gested that LPA plays a key role in the therapeutic resistance 
and tumor progression of ovarian CSCs (Seo et al. 2016).

ATX-LPA signaling axis participates in the interaction 
between tumor cells and tumor environment through the 
crosstalk of tumor cells and tumor-associated fibroblasts 
originated from mesenchymal stem cells (MSCs). Accumu-
lating evidence suggests that MSCs promote in vivo growth 
of xenograft transplanted tumors as well as animal models 
(Huang et al. 2013; Tsukamoto et al. 2012). Interestingly, 
cancer-derived LPA facilitates the differentiation of human 
MSCs to myofibroblast-like cells (Jeon et al. 2008). Fur-
thermore, LPA signaling promotes the secretion of cyto-
kines like vascular endothelial growth factor and stromal 
cell-derived factor-1/CXCL12 from MSCs (Ptaszynska 
et al. 2010; Jeon et al. 2010). Taken together, targeting of 
ATX-LPA signaling pathway could be a potential therapeu-
tic candidate to overcome the therapy-resistance and disease 
relapse as well as metastatic spreading in cancer.

Fig. 2  Roles of LPA signaling via LPA receptors in the regulation of 
cell survival to anticancer drugs in cancer cells. Gi protein inhibits and 
Gs protein stimulates adenylyl cyclase activity. The increased amount 
of cAMP causes tumor suppression, such as apoptosis. ABC trans-
porters require the abundant ATP to excrete chemotherapeutic agents 

across cellular membrane. G12/13 protein activates Rho-mediated 
signaling. RhoA and RhoC have the antiapoptotic effects, resulting 
in chemoresistance. RhoB induces the proapoptosis in cancer cells 
treated with anticancer drugs
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