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Abstract
Calcium ions  (Ca2+) serve as a crucial signaling mechanism in almost all cells. The buffers are proteins that bind free  Ca2+ to 
reduce the cell’s  Ca2+ concentration. The most studies reported in the past on calcium signaling in various cells have consid-
ered the buffer concentration as constant in the cell. However, buffers also diffuse and their concentration varies dynamically 
in the cells. Almost no work has been reported on interdependent calcium and buffer dynamics in the cells. In the present 
study, a model is proposed for inter-dependent spatio-temporal dynamics of calcium and buffer by coupling reaction–diffusion 
equations of  Ca2+ and buffer in a hepatocyte cell. Boundary and initial conditions are framed based on the physiological state 
of the cell. The effect of various parameters viz. inositol 1,4,5-triphosphate receptor (IP3R), diffusion coefficient, SERCA 
pump and ryanodine receptor (RyR) on spatio-temporal dynamics of calcium and buffer regulating diacylglycerol (DAG) in 
a normal and obese hepatocyte cell has been studied using finite element simulation. From the results, it is concluded that 
the dynamics of calcium and buffer impact each other significantly along the spatio-temporal dimensions, thereby affecting 
the regulation of all the processes including DAG in a hepatocyte cell. The proposed model is more realistic than the exist-
ing ones, as the interdependent system dynamics of calcium and buffer have different regulatory impacts as compared to the 
individual and independent dynamics of these signaling processes in a hepatocyte cell.
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Introduction

Many normal and pathological processes involve calcium 
ions. Elevations in cytoplasmic  Ca2+ regulate a wide range 
of biological activities, including rapid processes, such as 
muscle contraction and neurosecretion as well as slower and 
more intricate ones like cell division, differentiation and 
apoptosis.  IP3, a second messenger produced by phospho-
lipase C, most frequently causes the intracellular release of 
 Ca2+, whereas the stimulation of plasma membrane store-
operated channels cause  Ca2+ to enter cells (Dupont et al. 
2011). There is a need for an universal  Ca2+ homeostasis 

system because calcium ions are essential not only for 
many cellular processes along the cell’s life cycle but they 
are also toxic to all phylogenetic phases (Gilabert 2001). A 
few of the mechanisms that regulate calcium concentration 
( [Ca2+] ) at resting value include calcium inflow and efflux 
from the extracellular space,  Ca2+ sequestration towards 
internal  Ca2+ stores,  Ca2+ release from internal  Ca2+ stores 
and calcium buffering.  Ca2+ buffers are among a small num-
ber of proteins that bind  Ca2+ and have acidic side-chain 
residues. The two primary mechanisms that regulate  Ca2+ 
persistence in the cytosol and subsequent  Ca2+ mediated 
activities are  Ca2+ elimination and  Ca2+ diffusion (Gilabert 
2001).  Ca2+ efflux and sequestration together remove  Ca2+ 
from the cytosol, whereas  Ca2+ diffusion is predominantly 
regulated by  Ca2+ buffering. The quick binding of  Ca2+ to 
various cellular binding sites when they enter the cytoplasm 
is known as buffering of  Ca2+. Only 1–5% of the  Ca2+ that 
enter the cell are thought to remain in its free physiologically 
active state, making  Ca2+ buffering an essential step in  Ca2+ 
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signaling. It is possible for mobile or immobile buffers to 
mediate  Ca2+ buffering at the cytosol which will control the 
diffusion and confine the movement of free  Ca2+ inside the 
cytoplasm. Immobile buffers are represented by molecules 
that are tethered to intracellular structures or molecules with 
a high molecular weight. Mobile buffers are compounds with 
small molecular weights usually less than 20–25 kDa.  Ca2+ 
binding capability in mobile buffers is thought to be approxi-
mately one-tenth that of the cytosol. ATP is one of the most 
important transportable  Ca2+ buffers. Around 2–3 mM of 
ATP are thought to be present in the cytosol from which 
0.4 mM are in a free state. A powerful and extremely port-
able  Ca2+ chelator is ATP. Within 10 to 50 nm of the  Ca2+ 
entry site, more than 95% of the  Ca2+ are quickly linked 
to the buffers. When such elevated [Ca2+] domains occur, 
a mobile  Ca2+ buffer will act to disperse them, whereas 
stationary  Ca2+ buffers will act to prolong them. The  Ca2+ 
binding proteins can be identified as soluble proteins in the 
cytosol, intraluminal proteins in organelles like the endo-
plasmic reticulum (ER) or intrinsic proteins in membranes 
like the plasma or organellar membranes. Physiological pro-
cesses that rely on  Ca2+ can be modulated by  Ca2+ buffering 
changes that can impact signaling patterns. Phospholipase C 
(PLC) signaling channels become active when  Ca2+ signal-
ing is activated. An agonist activates a PLC type ( PLCγ or 
PLCβ) when it interacts with a cell surface receptor. This 
kind of PLC catalyzes the subsequent breakdown of phos-
phatidyl inositol bisphosphate (PIP2) into  IP3 and DAG. A 
brief rise in [Ca2+] results from the release of  Ca2+ from 
the  IP3-sensitive  Ca2+ storage. The activation of a plasma 
membrane TRPC (T-cell receptor) channel by the second 
messenger DAG leads to the direct influx of  Ca2+ into the 
cytosol. IP3R interacts with the DAG-activated TRPC to 
contribute to DAG-induced  Ca2+ influx (Chakrabarti and 
Chakrabarti 2006).

Calcium signaling has been studied in various cells like 
neurons, oocytes, myocytes, astrocytes, pancreatic acinars, 
hepatocytes etc. by various researchers (Jha and Adlakha 
2014; Jha et al. 2016; Panday and Pardasani 2013; Jagtap 
and Adlakha 2019; Kotwani and Adlakha 2017; Manhas 
and Anbazhagan 2021; Tewari 2012; Manhas and Pardasani 
2014a, b; Singh and Adlakha 2019a, b, c). Kotwani et al. 
have attempted to study one-dimensional calcium concen-
tration variation in fibroblast cells to study the influence 
of calcium transfer between different cellular compart-
ments, involving excess buffers using the finite difference 
method (Kotwani and Adlakha 2017). A two-dimensional 
mathematical model for calcium distribution in fibroblast 
cells was also developed by them for an unsteady state case. 
The study was done for two cases of source geometry viz. 
point source and line source (Kotwani et al. 2014a, b; Kot-
wani et al. 2014a, b). Panday et al. formulated a model for 
 Ca2+ distribution in oocytes involving  Na+/Ca2+ exchanger 

(NCX) and advection of  Ca2+ in the cell (Panday and Par-
dasani 2013). Naik et al. studied the calcium distribution 
involving voltage-gated calcium channels(VGCC), ryano-
dine receptors(RyR) and buffers in oocyte cells. They con-
cluded that the increase of  Ca2+ concentration due to RyR 
was higher than that of VGCC (Naik and Pardasani 2015). 
Amrita et al. observed the effects of NCX, source geometry, 
leak, SERCA pump etc. on  Ca2+ oscillations in dendritic 
spines & neuron cells employing finite element approach 
(Jha and Adlakha 2014, 2015; Jha et al. 2016; Yripathi and 
Adlakha 2013). Pathak et al. devised a mathematical model 
of calcium distribution in cardiac myocyte cells involving 
pump, excess buffer and leaks (Pathak and Adlakha 2015). 
Manhas et al. studied calcium variation in pancreatic acinar 
cells describing the effect of mitochondria on  Ca2+ signaling 
(Manhas and Pardasani 2014a, b; Manhas and Anbazhagan 
2021; Manhas and Pardasani 2014a, b). Tewari et al. have 
developed a model for neuron cells expressing the impact 
of sodium pump on  Ca2+ oscillation and calcium diffusion 
with excess buffer (Tewari 2012; Tewari and Pardasani 
2012). Jagtap et al. studied calcium variation in a hepatocyte 
cell using finite volume method. They developed a steady-
state one-dimensional mathematical formulation using the 
advection–diffusion equation for calcium and  IP3 (Jagtap 
and Adlakha 2019). They also solved the problem for cal-
cium concentration fluctuation in two-dimensions using 
the finite volume method for the unsteady state situation 
(Jagtap and Adlakha 2018). Kumar et al. devised a math-
ematical model to obtain insight through the one-dimen-
sional unsteady state intracellular calcium distribution in 
T cells. The model takes into account factors like source 
inflow, buffers, ryanodine receptors (RyRs) and diffusion 
coefficient (Kumar et al. 2017). Kothiya et al. provided a 
mathematical model to analyze the effect of  Ca2+ signaling 
on the synthesis of ATP and  IP3 in fibroblast cells (Kothiya 
and Adlakha 2023). The results revealed that variations in 
source influxes, buffers and diffusion coefficient can alter 
the production and degradation of ATP and  IP3, resulting 
in anomalies in fibroblast cells that contribute to cancer, 
inflammation and wound healing such as cardiac fibroblast 
cell proliferation and migration (Kothiya and Adlakha 2022). 
Bhardwaj et al. employed a differential quadrature approach 
based on radial basis functions to study nonlinear spatio-
temporal dynamics of  Ca2+ in T cells involving the SERCA 
pump, RyR, source amplitude and buffers (Bhardwaj and 
Adlakha 2023). Singh et al. developed a mathematical model 
in one and three dimension for the study of nonlinear  IP3- 
dependent calcium dynamics in cardiac myocyte (Singh and 
Adlakha 2019a, b, c; Singh and Adlakha 2019a, b, c; Singh 
and Adlakha 2019a, b, c). The cytosolic calcium level was 
found to be potentially regulated by  IP3 signaling, source 
input of calcium, leak and maximum  IP3 production. Pawar 
et al. studied the interdependence of calcium and  IP3 using 
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a two-way feedback model effecting the production of nitric 
oxide and the production and degradation of �-amyloid in 
neuron cells. A dopaminergic neuron cell’s dopamine con-
trol and dysregulation were also analyzed by developing a 
numerical model (Pawar and Raj Pardasani 2022; Pawar and 
Pardasani 2022a, b, c; Pawar and Pardasani 2023). Using 
the system of reaction–diffusion equations for calcium and 
�-amyloid, the dependency of calcium and �-amyloid in a 
neuron cell was investigated (Pawar and Pardasani 2022a, b, 
c). A reaction–diffusion equation system was employed to 
study the alterations in different factors such as buffer, RyR, 
SERCA pump, source inflow, etc. which contribute to the 
regulation and dysregulation of spatio-temporal calcium and 
NO dynamics in neuron cells (Pawar and Pardasani 2022a, b, 
c). Vaishali et al. investigated beta cell’s response to calcium 
and  IP3 dynamics in terms of secreting insulin (Vaishali and 
Adlakha 2023). Yogita et al. analyzed the effects of  Ca2+ 
and  IP3 dynamics on glycogen phosphorylase regulation in 
hepatocyte cells (Jagtap and Adlakha 2023).

Neher et al. studied the buffer and calcium gradient in 
bovine chromaffin cells. It was concluded that 98–99% of 
the calcium which typically enter the cell is absorbed by the 
fast endogenous  Ca2+ buffer, according to two independent 
estimates of its capacity (Neher and Augustine 1992). Smith 
et al. developed asymptotic approximations, including the 
excess buffer approximation, rapid buffer approximation and 
immobile buffer approximation to address the steady state 
problem of buffered diffusion of  Ca2+ at a single source. In 
their investigation, they took into account the three-parame-
ter regimes described by the dimensionless diffusion coeffi-
cients of  Ca2+ and buffer with respect to one another and the 
rate of response (Smith et al. 1996; Smith 1996). Schwaller 
observed that the impact of a particular  Ca2+ buffer on 
intracellular  Ca2+ signals depends on a variety of variables 
including intracellular concentration, affinities for  Ca2+ and 
other metal ions, the kinetics of  Ca2+ binding and release in 
different cells (Schwaller 2019). Martin Falcke used reac-
tion–diffusion equations and developed a mathematical 
model including calcium concentration, slow buffer, mobile 
buffer etc. and discovered that a fast buffer’s concentration 
profile around an open channel is more localized than a slow 
buffer’s (Falcke 2003). Nowycky et al. employed diffusion 
equations and showed that fixed and diffusible calcium buff-
ers affect the spatial and temporal distribution of free  Ca2+ 
after  Ca2+ entrance through voltage-gated ion channels in 
chromaffin cells (Nowycky and Pinter 1993). Klingauf et al. 
discussed that the kinetic data from flash-photolysis experi-
ments can be combined with  Ca2+ data to explain a range of 
catecholamine secretion-related phenomena from chromaffin 
cells (Klingauf and Neher 1997). Naraghi et al. presented 
an explicit solution to a linear approximation of the com-
bined reaction–diffusion problem that takes into considera-
tion of any number of calcium buffers that can be produced 

naturally or introduced exogenously (Naraghi and Neher 
1997). M.D. Stern developed a mathematical model and 
illustrated that when intracellular processes including the 
opening and closing of channels, induce rapid fluctuations 
in calcium fluxes, a buffer with rapid kinetics is required 
to stabilize the level of [Ca2+] (Stern 1992). Agarwal et al. 
developed a model incorporating calcium binding buffers 
and the advection diffusion equation. The impacts on the 
calcium concentration level were discussed in relation to 
EGTA, BAPTA, Calmodulin and Troponine (Agarwal et al. 
2021). Ahmed et al. investigated the process of Archidoris 
monteryensis neuron’s soma regulating calcium levels and 
buffers calcium transients at physiological levels. To mini-
mize transient changes in free calcium, measured amounts 
of intracellular EGTA was used in an indirect technique to 
measure the cytoplasm’s ability to buffer calcium (Ahmed 
and Connor 1988). Prins et al. discussed the idea that the 
multifunctionality of organellar  Ca2+ buffers which exhibit 
such diversity in their  Ca2+ binding and reactions, is one 
feature that unites them. Protein folding, apoptosis control 
and  Ca2+ release pathway modulation are just a few of the 
functions that  Ca2+ buffering proteins perform in addition 
in acting as an inactive  Ca2+ breakdown within intracellular 
organelles for eukaryotic cells (Prins and Michalak 2011). 
Faas et al. concluded that the calcium binding protein has 
one independent and four cooperative binding sites simulta-
neously, it was also found that calcium binding to calretinin 
in different cells was a phenomenon due to the reduction of 
free calcium following significant rise in calcium concentra-
tion caused by the release of calcium from DM-nitrophen 
(Faas et al. 2007). Foehring et al. identified cell break-in 
over steady state using fluorescent  Ca2+ � M fura-2 exog-
enous buffer stimulating with a single action potential and 
measured the  Ca2+ transient from the proximal dendrite 
for dopamine neurons (Foehring et al. 2009). Gabso et al. 
showed the effect of cellular  Ca2+-buffers on the intensity 
and diffusional spread of  Ca2+-impulses in neurons. Mobile 
buffers aid in  Ca2+ redistribution whereas fixed  Ca2+ buffers 
tend to delay the signal and lower the measured  Ca2+ diffu-
sion coefficient (Gabso et al. 1997).

Dysregulation in calcium signaling results in various 
diseases like obesity, insulin resistance, diabetes etc. 
Obesity is characterized as a condition in which there is 
an accumulation of extra body fat that may have a negative 
impact on health. Obesity in the upper body is characterized 
by an intra-abdominal accumulation of adipose tissue, 
this is crucial for the emergence of hypertension, elevated 
plasma insulin levels, insulin resistance, type 2 diabetes and 
hyperlipidemia (Kopelman 2000). Excess lipid accumulation 
is a defining feature of obesity. The WHO BMI (kg/m2) 
standards are followed by the majority of definitions of 
obesity, though other definitions are sometimes used. 
If a person’s BMI is ≥ 30 kg/m2, they are considered fat. 
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Obesity can range from class 1 (30.0–34.9 kg/m2) to class 
2 (35.0–39.9 kg/m2) and class 3 (above or equal to 40 kg/m2) 
(Montalto 2021). Obesity is a significant contributing factor 
to increased morbidity and death, especially for diabetes 
and cardiovascular disease (CVD), cancer and other chronic 
illnesses like osteoarthritis, liver and kidney disease, sleep 
apneaspa and depression (Pi-Sunyer 2002).

The survey of literature gives a fair idea that not 
much attention is given to mathematical modelling to 
study interdependent calcium and buffer dynamics for a 
hepatocyte cell. The studies reported above on calcium 
dynamics have been performed by taking buffer as a 
constant in their model. The studies on interdependent 
 Ca2+ and  IP3,  Ca2+ and NO,  Ca2+ and dopamine etc. 
were reported by taking buffers as constant. But, the 
concentration of buffers is also dynamic. To obtain better 
insights, a model of the interdependent  Ca2+ and buffer 
dynamics in a hepatocyte cell must be developed. In the 
present study, a novel two-way reaction–diffusion model 
for interdependent  Ca2+ and buffer dynamics has been 
formulated. The reaction–diffusion equations of  Ca2+ and 
buffer have been coupled through their interdependent 
fluxes. Also, the temporal DAG growth equation has 
been coupled in this work to analyze the impact of 
interdependent  Ca2+ & buffer dynamics on DAG net 
growth in normal and obese hepatocyte cells. Further, 
numerical simulation has been performed using the finite 
element method and the Crank-Nicolson method.

Mathematical formulation

A mathematical model proposed by Smith and Caamal et al. 
(Smith et al. 1996; Lopez-Caamal et al. 2014) is modified in 
this study by incorporating IP3R, SERCA pump, RyR and 
calcium buffering fluxes. The following reaction–diffusion 
equation for calcium is used for the study

Here [Ca2+] represents calcium concentration in the cyto-
sol, DCa is the diffusion coefficient of calcium, JIPR is calcium 
influx through IP3R, JRYR is calcium influx through RyR, 
JSERCA is efflux of calcium from SERCA pumps, Jon and Joff  
represent  Ca2+ buffering flux and it’s release from the buffers.

The various fluxes are modelled as,

KIPR represents receptor activity levels in the cytosol, CT  
is total calcium content and Vc is the proportion of cytosol to 
total cell volume & OIPR is given by (Wacquier et al. 2016),

(1)

�[Ca2+]

�t
= DCa

�2[Ca2+]

�x2
+ JIPR + JRYR − JSERCA − Jon + Joff

(2)JIPR =
KIPROIPR

Vc

(CT − (1 + Vc)[Ca
2+])

Here OIPR represents the open probability of IP3R recep-
tors in the cytosol. q26 and q62 are transition rate from  C2 to 
 O6 and transition rate from  O6 to  C2 respectively.

D represents the proportions of the IP3Rs in the cytosol, 
q42 and q24 are the transition rates between the modes park 
to drive and drive to park respectively.

Here PO is the rate of calcium efflux, Ve is the ratio of ER 
volume to total cell volume and VRyR is rate of RyR (Naik 
and Pardasani 2015).

Here the bulk cytosol’s maximal SERCA flux is �SERCA 
and the cytosolic  Ca2+ concentration of SERCA at half-
maximal activation is KSERCA (Wagner et al. 2004).

Here k+
j
 and k−

j
 represent the buffer association rate and 

buffer dissociation rate respectively (Lopez-Caamal et al. 
2014; Smith et al. 1996).

Diffusion equation for buffer is given as (Lopez-Caamal 
et al. 2014),

where Db represents the diffusion coefficient of the buffer, b 
is buffer concentration in the cytosol, Jon and Joff  are given 
in Eqs. (7) and (8).

The following initial conditions are imposed based on the 
assumption that  Ca2+ and buffer concentration at rest is 0.1 
�M and 0 �M in the cell.

The following boundary conditions based on physical 
conditions are applied to obtain the solution.

(3)OIPR =
q26

q62 + q26
D

(4)D =
q42(q62 + q26)

q42q62 + q42q26 + q24q62

(5)JRYR =
VRyRPO

Ve

(CT − (Ve + Vc)[Ca
2+])

(6)JSERCA = �SERCA
[Ca2+]2

[Ca2+]2 + K2

SERCA

(7)Jon = k+
j
[Ca2+]b

(8)Joff = k−
j

btot[Ca
2+]

K + [Ca2+]

(9)�b

�t
= Db

�2b

�x2
− Jon + Joff

(10)([Ca2+]t=0) = 0.1�M

(11)(bt=0) = 0�M
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where �Ca represents source influx (Jagtap and Adlakha 
2019).

Here K=k−

k+
 is dissociation constant of the buffer and total 

buffer concentration is btot (Patil et al. 2022, Jagtap and 
Adlakha 2019).

The terms of the various fluxes given in Eqs. (6) and (7) 
are nonlinear, therefore linearized using the Taylor’s approx-
imation method around the point where calcium and buffer 
concentration is 0.1 and 5 �M . The nonlinear terms in Taylor 
series approximation becomes negligible.

Rate of DAG net growth is calculated by (Siso-Nadal 
et al. 2009),

Here [DAG] represents DAG concentration in the cell, 
[PLC∗] denotes the concentration of activated PLC � , the 
rate at which activated PLC can produce  IP3 at its maximal 
capacity is vi and [Ca2+] at which this rate is halved is K(1)

c
.

The Eq. (1) can be rewritten after linearization as,

where u represents [Ca2+] and  A1 and  B1 are constants 
obtained after Taylor’s approximation method.

In a similar manner representing free buffer concentration 
as b, Eq. (9) can be rewritten as,

where  A2 and  B2 are constants obtained after Taylor’s 
approximation method.

The numerical solution is obtained by the variational 
finite element method by dividing the cytosol of the hepato-
cyte cell into 80 elements. The variational functional of the 
problem (17) in discretized form is expressed by

(12)limx→0 − DCa

(
�[Ca2+]

�x

)
= �Ca,

(13)limx→15([Ca
2+]) = C∞ = 0.1�M,

(14)limx→0Db

(
�b

�x

)
= 0,

(15)limx→15(b) = b∞ =
Kbtot

K + C∞

,

(16)
d[DAG]

dt
= vi

[Ca2+][PLC∗]

K
(1)
c + [Ca2+]

− bd[DAG],

(17)�u

�t
= DCa

�2u

�x2
− A1u + B10 ≤ x ≤ 15, t ≥ 0

(18)�b

�t
= Db

�2b

�x2
− A2b + B20 ≤ x ≤ 15, t ≥ 0

(19)
I(e) =

1

2
∫ xj

xi

[
u(e)

�2
+

1

DCa

�u(e)
2

�t
+ A1u

(e)2 − 2B1u
(e)
]
− �(e)

(
�Ca

DCa

u
(e)

(x=0)

)

Here �(e) is one for the first element and zero for the 
remaining elements.

The elements are very small in size therefore for cal-
cium concentration shape function is assigned as following 
linear variation,

The Eq. (20) can be expressed as

Here PT =
[
1 x

]
and

Values of u(e) at nodes xi and xj are given by,

using above equations, it is obtained as,

Here P(e) =

[
1 xi
1 xj

]

& u(e) =
[
ui
uj

]

From Eqs. (22)-(24),

Here R(e) = P(e)−1 =
1

xj−xi

[
xj −xi
−1 1

]

Here

Minimizing I(e) with respect to u(e),

that is,

(20)u(e) = c1 + c2x

(21)u(e) = PTC(e)

C(e) =

[
c1
c2

]

(22)u(e)(xi) = c1 + c2xi

(23)u(e)(xj) = c1 + c2xj

(24)u
(e)

= P(e)C(e)

(25)u(e) = PTR(e)u
(e)

I(e) = I
(e)

k
+ I(e)

m
+ I

(e)

l
− I(e)

r
− I(e)

s

I
(e)

k
=

1

2
∫ xj

xi

[(
Px

TR(e)u
(e)2

)]
dx

I(e)
m

=
1

2
∫ xj

xi

1

DCa

�

�t

[(
PTR(e)u

(e)2
)]

dx

I
(e)

l
=

1

2
∫ xj

xi
A1

[(
PTR(e)u

(e)2
)]

dx

I(e)
r

= ∫ xj
xi
B1

[(
PTR(e)u

(e)
)]

dx

I(e)
s

= �(e)
[(

�Ca

2DCa

PTR(e)u
(e)

(x=0)

)]

dI(e)

du
(e)

= 0
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which can be written as,

where

In a similar manner Eq. (18) is solved using linear ele-
ments leading again to an 81 × 81 system.

This results in the set of linear algebraic equations,

where U is given by 
[
u

B

]
 , system matrices are represented 

as K and N  & F is characteristic vector. For solving the 
system Crank-Nicolson method is used and simulated using 
MATLAB program.

Table

The following physiological parameters are used for solving 
the formulated problem (26).

dI(e)

du
(e)

=
dI

(e)

k

du
(e)

+
dI(e)

m

du
(e)

+
dI

(e)

l

du
(e)

−
dI(e)

r

du
(e)

−
dI(e)

s

du
(e)

dI

du
(e)

=
∑80

e=1
M

(e) dI
(e)

du
(e)
(M

(e)
)
T
= 0

M
(e)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

. .

0 0

1 0

0 1

0 0

. .

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
81×2

ithrow

jthrow
, u

(e)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
.

.

u80
u81

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
81×1

(26)[K](162×162)U + [N](162×162)
�U

�t (162×1)
= [F](162×1)

Results & discussion

Figure 1 displays calcium and free buffer concentration 
distribution with respect to space and time. Figure 1A 
shows spatial calcium concentration fluctuations. The 
figure displays that the concentration of calcium is high-
est near the source which decreases to reach equilibrium 
value on moving away from the source. Highest steady 
state concentration of calcium is close to ≈ 0.7 M� . Fig-
ure 1B shows the concentration of calcium variation with 
respect to time. Initially, the concentration of calcium 
increases sharply till 500 ms and then attains a steady 
state. Figure 1C shows free buffer concentration variation 
with respect to space. Free buffer binds with free calcium 
to form calcium-bound buffer because excessive amount 
of calcium is harmful to cells. Near the source, the con-
centration of calcium is highest therefore more amount of 
buffer is needed to reduce the concentration of calcium. 
Hence, the free buffer value is smallest near the source. 
Buffer diffuses to the calcium source whereas calcium 
diffuses toward the other end of the cell. Thus near the 
source influx of free calcium, it is observed that source 
influx dominates the buffering process while on the other 
end of the boundary, the buffering process dominates over 
calcium signals. Figure 1D shows free buffer concentra-
tion variation with respect to time. Initially, free buffer 
concentration increases gradually and smoothly till 500 ms 
and then attains steady state. The maximum steady state 
value of the buffer is observed to be 6.667 �M.

Figure 2 displays calcium concentration distribution 
with respect to space and time for dynamic and constant 
buffer values. For the purpose of comparison, the constant 
buffer value is taken as the maximum steady state value 
i.e. 6.667 �M as obtained in Fig. 1. Figure 2A shows spa-
tial calcium concentration fluctuations for dynamic and 

Fig. 1  Calcium and free buffer 
distribution with �Ca = 15 
pA , DCa = 200 �m2sec−1 and 
Db = 75 = �m2sec−1
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constant buffer values. It displays that the concentration 
of calcium is highest near the source which decreases to 
reach equilibrium value on moving away from the source. 
It is observed from the Fig. 2A that dynamic buffer is 
dominated by constant buffer as seen in the plot because 
constant buffer drops calcium concentration drastically 
near the source while dynamic buffer gradually decreases 
calcium concentration and therefore, smoother curve is 
observed for dynamic buffer. Figure 2B shows concentra-
tion of calcium variation with respect to time for dynamic 
and constant buffer values. Initially, concentration of cal-
cium increases sharply till 300 ms, in case of constant 
buffer value and then it attains steady state around 300 ms. 
But in the presence of dynamic buffer, calcium concen-
tration increases sharply till 500 ms and attains steady 
state thereafter 500 ms. The case of constant buffer is an 
idealistic situation whereas the case of dynamic buffer 
represents more realistic situation. Slight oscillations are 
observed in the curves because of time gap between free 
calcium and buffers diffusing towards each other and the 
binding time required to form buffer bound calcium reduc-
ing free calcium and buffer concentration. It is observed 
from the Fig. 2 A and B that in the presence of dynamic 
buffer value, it almost uniformly reduces concentration of 
calcium in the entire domain whereas in the presence of 
constant buffer value, the concentration of calcium reduces 
drastically which is possible in an ideal case only. Differ-
ence of calcium concentration in the cytosol of the cell 
in the presence of dynamic and constant buffer value is 
≈ 30%. The significant difference is observed in calcium 
concentration profile for idealistic and realistic scenario 
of buffer.

Figure 3 displays changes in calcium concentration for 
various calcium diffusion coefficient values with respect to 
time and space. Figure 3A is plotted for spatial variations 

in calcium concentration. It is observed that with increas-
ing values of the diffusion coefficient of calcium, calcium 
concentration decreases. Calcium diffusion rises as the value 
of the diffusion coefficient rises, hence the concentration of 
calcium is inversely proportional to the diffusion coefficient. 
Near the source calcium concentration is highest and mov-
ing away from the source attains its equilibrium state. Fig-
ure 3B shows calcium concentration variation with respect 
to time. Initially, calcium concentration increases sharply 
till 300 ms and then attains a steady state. Slight oscillations 
are observed in the curves because of the time gap between 
free calcium and free buffers diffusing towards each other 
and the binding time required to form buffer-bound calcium 
reducing free calcium and free buffer concentration.

Figure 4 shows a change in calcium concentration for 
various buffer’s diffusion coefficient values with respect 
to space and time. Figure 4A is plotted for variations in 
calcium concentration with respect to space. It is observed 
that with increasing values of the diffusion coefficient of 
buffer, calcium concentration decreases. Buffer diffusion 
increases with an increase in diffusion coefficient, which 
increases the formation of buffers that are calcium-bound. 
Near the source, calcium concentration is highest and 
moving away from the source attains its equilibrium state. 
Figure 4B shows calcium concentration variation with 
respect to time. Initially, calcium concentration increases 
sharply till 300 ms and then attains a steady state. Slight 
oscillations are observed in the curves because of the 
time gap between free calcium and free buffers diffusing 
towards each other and the binding time required to form 
buffer-bound calcium reducing free calcium and buffer 
concentration.

Figure 5 shows variation in buffer concentration for 
different buffer’s diffusion coefficient values with respect 
to space and time. Figure 5A demonstrates spatial buffer 

Fig. 2  Calcium dynamics for 
dynamic and constant buffer 
with �Ca = 15 pA , DCa = 200 
�m2sec−1 at 500 ms
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concentration for various buffer diffusion coefficient values. 
It is seen from the figure that with increasing value of diffu-
sion coefficient of buffer, buffer concentration in the cytosol 
of the cell increases as diffusion of buffer increases. At the 
source calcium concentration is highest, to reduce the con-
centration of calcium buffer concentration has increased at 
the source. Figure 5B shows buffer concentration for differ-
ent values of the buffer’s diffusion coefficient with respect to 
time. Initially, buffer concentration increases gradually up to 
30 ms then oscillates for some time around 30 ms to 350 ms 
(maximum time period) and attains a steady state. Oscilla-
tions remain for the maximum time period with increasing 
the buffer’s diffusion coefficient.

Figure 6 displays variations in calcium concentration for 
various levels of source influx with respect to space and 
time. Figure 6A is plotted for calcium concentration vari-
ation with respect to space. It has been found that calcium 

concentration rises with rising calcium source inflow val-
ues. Near the source calcium concentration is highest and 
on moving away from the source attains its equilibrium 
state. Figure 6B shows calcium concentration variation with 
respect to time. Initially, calcium concentration increases 
sharply till 400 ms and then reaches a steady state. The cal-
cium concentration variation has the same behavior as seen 
in Fig. 1.

Figure 7 displays variations in calcium concentration 
for various total buffer concentration values with respect to 
space and time. Figure 7A is plotted for calcium concentra-
tion variation with respect to space. Calcium concentration 
is seen to decrease with increasing total buffer concentra-
tion levels. With the increase in the total value of buffer, the 
quantity of calcium-bound buffer increases, hence calcium 
concentration decreases. Near the source calcium concentra-
tion is highest and moving away from the source attains its 

Fig. 3  Calcium dynamics for 
different values of calcium’s 
diffusion coefficient
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Fig. 4  Calcium dynamics for 
various levels of the buffer’s 
diffusion coefficient
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Fig. 5  Buffer dynamics for 
different diffusion coefficient 
values of the buffer
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Fig. 6  Calcium dynamics for 
different values of source influx
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Fig. 7  Calcium dynamics for 
various values of  btot
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equilibrium state. Figure 7B shows calcium concentration 
variation with respect to time. Initially, calcium concentra-
tion increases sharply till 350 ms and then reaches a steady 
state. Behavior of calcium concentration variation is the 
same as seen in Fig. 1. Slight oscillations are observed with 
increasing value of source influx.

Figure 8 shows variations in buffer concentration at vari-
ous total buffer concentration levels with respect to space 
and time. Figure 8A displays the fluctuation in buffer con-
centration with respect to space for various total buffer con-
centration values. The figure demonstrates that when the 
overall buffer concentration is at its maximum, the value 
of the buffer is highest. Additionally, at the source, the 
buffer reaches a fixed value in less time compared to the 
scenario where the total buffer concentration is low. Fig-
ure 8B shows variation in buffer concentration for different 
values of total buffer concentration with respect to time. It 

is seen that buffer starts from a fixed value of 0 �M then 
initially decreases near the source and then increases with 
an increase in time.

Figure 9 demonstrates the fluctuation in calcium con-
centration along time and space for dissociation constants 
of different buffers which are EGTA, Triponin C and 
BAPTA. Figure 9A shows calcium concentration varia-
tion with respect to space. Upon comparison of calcium 
concentrations at the source, it is observed that the pres-
ence of an EGTA buffer results in the highest calcium 
concentration, surpassing the concentrations observed 
with Troponin C and BAPTA. The behavior of the cal-
cium concentration is similar to Fig. 1A in the presence 
of EGTA buffer. Presence of Triponin C reduced the con-
centration at the source ≈ by 5% and the BAPTA buffer 
changed the behavior of the curve. Calcium concentra-
tion is highest at the source and decreases as one moves 

Fig. 8  Buffer dynamics for 
various total buffer concentra-
tion values
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Fig. 9  Calcium dynamics for 
different values of various 
buffer association rates
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away from the source until it achieves a steady state when 
EGTA and Triponin C is present. Calcium concentration 
first rises in the presence of BAPTA buffer for a while 
before reaching a steady state. Figure 9B shows calcium 
concentration variation with respect to time. It is seen 
that in the presence of EGTA, initially, calcium concen-
tration increases sharply and gradually till 350 ms and 
then attains a steady state. When Triponin C and BAPTA 
buffers are present steady state is attained in 30 ms. With 
respect to time, oscillations appear when Triponin C and 
BAPTA buffers are present.

Figure  10 shows the spatial and temporal DAG net 
growth rate. Figure 10A shows spatial DAG net growth 
rate. From the Fig. 10A, it is seen that close to the source, 
DAG net growth rate is largest and moving away from the 
source, DAG net growth rate decreases to a certain fixed 
value. There is a change in the nonlinear behavior of the 

curve compared to that in Fig. 1A. Figure 10B shows DAG 
net growth rate with respect to time. It is seen from the 
curves that the net growth rate increases more gradually 
and smoothly compared to the temporal calcium profile in 
Fig. 1B.

Figure 11 displays DAG net growth rate distribution 
with respect to space and time for dynamic and constant 
buffer values. Figure 11A shows spatial DAG net growth 
rate for dynamic and constant buffer values. It displays that 
the DAG net growth rate is highest near the source which 
decreases to reach equilibrium value on moving away from 
the source. It is observed from the Fig. 11A that dynamic 
buffering is dominated by constant buffering process as seen 
in the plot because constant buffer drops DAG net growth 
rate drastically near the source while dynamic buffer gradu-
ally decreases DAG net growth rate and therefore, smoother 
curve is observed for dynamic buffering process. Figure 11B 

Fig. 10  DAG concentration net 
growth
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shows DAG net growth rate with respect to time for dynamic 
and constant buffer values. DAG net growth rate increases 
gradually for both the cases dynamic and constant buffer val-
ues. It is observed from the Fig. 11A and B that in the pres-
ence of dynamic buffer value, it almost uniformly reduces 
DAG net growth rate in the entire domain whereas in the 
presence of constant buffer value, the DAG net growth rate 
reduces drastically which is possible in an ideal case only. 
Difference of DAG net growth rate in the cytosol of the cell 
in the presence of dynamic and constant buffer value is ≈ 
30%. The significant difference is observed in DAG net 
growth rate for idealistic and realistic scenario of buffer.

Figure 12 displays a difference of calcium concentration 
variation from obese hepatocyte cells to normal hepatocyte 
cells with respect to space and time. Figure 12A shows a 
spatial difference graph for calcium concentration variation 
due to obese and normal hepatocyte cells. The graph shows 

that the difference in calcium concentration from an obese 
to a normal hepatocyte cell is largest close to the source 
and gradually reduces as one moves away from the source 
and becomes zero as calcium concentration attains an equi-
librium state in both obese and normal hepatocyte cells. 
Figure 12B shows a temporal difference graph for calcium 
concentration variation. The Fig. 12B shows that the behav-
iour of the fluctuation in calcium concentration is similar 
to Fig. 1B. Initially, difference in calcium increases upto 
400 ms then attains steady state at 400 ms.

Figure 13 shows a difference of DAG net growth rate 
variation due to obese and normal hepatocyte cells with 
respect to space and time. Figure 13A shows a spatial dif-
ference graph for DAG net growth rate variation. The graph 
illustrates that the initial difference in calcium concentration 
near the source increases and reaches its peak at approxi-
mately 5 � m then starts decreasing due to obese and normal 

Fig. 12  Difference of calcium 
concentration due to obese and 
normal hepatocyte
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10-3 B. Di�erence of calcium concentration with respect to time

Fig. 13  Difference of DAG net 
growth rate due to obese and 
normal hepatocyte
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hepatocyte cells and becomes zero. Figure 13B shows a tem-
poral difference graph for DAG net growth rate variation. It 
is noticed from the figure that the behaviour of the DAG net 
growth rate variation is similar to Fig. 10B. It is seen from 
the curves that the difference in net growth rate increases 
more gradually and smoothly compared to the temporal cal-
cium profile in Fig. 1B

Figure 14 displays calcium concentration distribution 
in normal and obese hepatocyte cells. Figure 14A shows 
calcium concentration variation with respect to space for 
normal and obese cells. The Fig. 14A demonstrates that 
the concentration of calcium increases in obese cells as 
ER becomes leaky in obesity. Figure 14B shows calcium 
concentration variation with respect to time for normal 
and obese cells. The behaviour of the curves is similar to 
that in the Fig. 1B.

Figure 15 shows DAG net growth rate variation in normal 
and obese hepatocytes. Figure 15A shows DAG net growth 
rate variation with respect to space for normal and obese 
cells. It is observed from the figure that the DAG net growth 
rate is high in the case of obese cells. DAG net growth rate 
is highest at the source. When going away from the source 
DAG net growth rate decreases and attains a fixed value that 
is ≈ 0.6 � M  sec-1. Figure 15B shows DAG net growth rate 
variation along time. It is observed that initially difference 
in DAG net growth rate in the obese and normal cells was 
not much but as time increases difference increases. It is 
noticed that in obese hepatocyte cells, DAG net growth rate 
increases in comparison to normal hepatocyte cells.

Figure 16 shows a 3-d plot among calcium concentration, 
buffer concentration and time at x = 0, 0.1875, 0.9375 and 
1.6875 m� . The figure illustrates that the concentration of cal-
cium is a maximum ≈ 0.5 �M and the buffer value is smallest 

Fig. 14  Calcium concentration 
variation in normal and obese 
hepatocyte
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Fig. 15  DAG net growth rate 
variation in normal and obese 
hepatocyte
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around 0 �M at time t = 0 ms. With the increase in time, cal-
cium concentration reaches its equilibrium value i.e. 0.1 �M 
and buffer value increase with the increase in time. An inverse 
relationship is observed between calcium and buffer. As a 
high quantity of calcium is toxic to the cell, buffers bind with 
calcium and form a calcium-bound buffer. Therefore, when 
calcium concentration is high, the free buffer value will be 
low and when the buffer value is high, calcium concentration 
will attain a small value (Tables 1, 2, and 3).

Figure 17 shows a 3-d plot of calcium concentration, buffer 
concentration and time at x=0 m� for the source influx’s dif-
ferent values. It is analyzed from figure that at t=0 ms the 
concentration of calcium is highest ≈ 0.5 �M and the buffer 
value is smallest around 0 �M . With the increase in time, 

calcium concentration reaches its equilibrium value i.e. 0.1 
�M and buffer value increases with the increase in time. 
With the increase in the value of source influx, a gradual and 
smooth increase in the concentration of buffer is observed with 
respect to time. The concentration of calcium increases with an 
increase in source influx, hence buffers take more time to form 
a calcium-bound buffer. An inverse relationship is observed 
between calcium and buffer. As a high quantity of calcium is 
toxic to the cell, buffers bind with calcium and form a calcium-
bound buffer. Therefore, when calcium concentration is high, 
the free buffer value will be low and when the buffer value is 
high, calcium concentration will attain a small value.

Error and stability analysis

Error analysis is done for t = 0.1, 0.2, 0.3, 0.4 and t = 0.5 s at x
=0. The finite element method is found effective in this problem 
as accuracy with 80 linear elements for calcium profile is found 
as 99.96% and for buffer profile accuracy is 99.47% as displayed 
in Table 4. The spectral radius for the finite element method is 
0.9959 which is less than one therefore, the method is stable.

Validation

The concentration profiles of [Ca2+] obtained for the 
parameter values taken by Smith et  al. (Smith et  al. 
1996) at x = 0, 0.5, 1, 2 and 15 m� , are compared to ear-
lier research by Smith et al. (Smith et al. 1996) at time 
t = 50 s and findings are in good accord, as demonstrated 
in Table 5.

Fig. 16  Graph among calcium and buffer concentrations and time at different spatial positions

Table 1  Physiological parameters for calcium and buffer variation 
(Jagtap and Adlakha 2019; Smith et al. 1996)

Symbol Parameter Value

DCa Diffusion coefficient of calcium 200 �m2∕sec

Db Buffer’s diffusion coefficient 75 �m2∕sec

C∞ Calcium concentration at equilibrium 0.1 �M
Vc Volume of the cytosol to the total cell 

volume ratio
0.83

KIP3R Dissociation constant of activating  IP3 bind-
ing site

0.3 �M

CT Total calcium concentration 2 �M
Ve Volume of ER relative to total cell volume 0.17
VRyR RyR rate 0.5 �M∕Sec

Po Rate of calcium efflux 0.5 M/sec
KSERCA Half maximal rate of SERCA 0.1 �M
k+
j

Buffer(EGTA) association rate 1.5 (�M∕s)−1

k−
j

Buffer(EGTA) dissociation rate 0.3  s-1

btot Total buffer concentration 10 �M
�SERCA Flux rate of SERCA pump 0.65  s-1

Table 2  Physiological parameters for the comparative study of nor-
mal and obese hepatocyte cells (Han and Periwal 2019)

Symbol Value in normal cell Value in obese cell

KIP3R 0.15 �M 0.35 �M
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Conclusion

The existing model (Smith et al. 1996; Lopez-Caamal 
et al. 2014) is modified by incorporating IP3R, SERCA 
pump, RyR and calcium buffering f luxes and reac-
tion term to propose a new system dynamics model for 

numerical simulation of calcium, buffer and DAG dynam-
ics due to obese and normal hepatocyte cells. The out-
comes were discovered to be consistent with cellular bio-
logical phenomena (Naraghi and Neher 1997; Neher and 
Augustine 1992; Smith et al. 1996). The results lead to 
the following basic conclusions:

Table 3  Error analysis for 
calcium profile with 80 
elements and 90 elements

Time Node = 80 Node = 90 Absolute error Relative error Relative % error

0.1 s 0.434841234 0.434658855 0.000182379 0.000336715 0.033671525
0.2 s 0.507936181 0.507725107 0.000211074 0.000389693 0.038969333
0.3 s 0.533282388 0.533072269 0.000210119 0.00038793 0.038793029
0.4 s 0.540837526 0.540640737 0.000196789 0.00036332 0.036332048
0.5 s 0.541640878 0.541462618 0.00017826 0.000329111 0.032911103

Fig. 17  Graph among calcium and buffer concentrations and time at x = 0

Table 4  Error analysis for 
buffer concentration profile with 
80 elements and 90 elements

Time Node = 80 Node = 90 Absolute error Relative error Relative % error

0.1 s 6.417647309 6.451990997 0.034343688 0.005251473 0.525147303
0.2 s 6.47123838 6.495452231 0.024213851 0.003702526 0.370252553
0.3 s 6.497341311 6.517228151 0.019886839 0.003040885 0.304088479
0.4 s 6.513075094 6.529005888 0.015930794 0.002435968 0.243596831
0.5 s 6.523755814 6.539819997 0.016064183 0.002456365 0.245636468

Table 5  Validation of calcium 
dynamics with Smith et al. at 
t = 50 s (Smith et al. 1996)

Distance Ca2+ (Smith) Ca2+ (Present work) Absolute error Relative % error

x = 0 �m 0.302433473 0.30123763 0.001195844 0.396976925
x = 0.5 �m 0.260661503 0.258604315 0.002057187 0.682911855
x = 1 �m 0.249294538 0.247739235 0.001555303 0.516304519
x = 2 �m 0.23002896 0.231480878 0.001451918 0.481984222
x = 15 �m 0.1 0.1 0 0
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 (i) As source inflow increases, it also raises the concen-
tration of free calcium.

 (ii) With an increase in free buffer concentration, free 
calcium concentration falls.

 (iii) With an increase in calcium’s diffusion coefficient, 
free calcium concentration drops.

 (iv) (iv)The concentration of free calcium decreases as 
the buffer’s diffusion coefficient rises.

 (v) Near the source, the concentration of the calcium is 
largest and calcium diffuses towards other end of the 
cell ( x = 15 �m ) and reaches an equilibrium state, 
whereas free buffer concentration diffuses towards 
calcium source.

 (vi) Free calcium and buffer reach at steady state at the 
same time period with a slight change in temporal 
behaviour.

The analysis of numerical results leads to the following 
novel conclusions:

 (i) The spatial locations where calcium concentration is 
high, there consequently the free buffer concentration 
is low because free buffer concentration decreases 
due to high buffering activity to lower the free cal-
cium concentration at those locations.

 (ii) The spatial locations where the rise in calcium con-
centration is high, there consequently rise in free 
buffer concentration is slower because most of the 
free buffer binds with free calcium. Similarly, wher-
ever buffer concentration is rising rapidly conse-
quently calcium concentration rises slowly.

 (iii) Free calcium and free buffer are interdependent 
depending on their domination at various locations.

 (iv) Free calcium and free buffer fluctuate dynamically 
concerning one another based on the rate of a gradual 
rise in buffer activity. The difference in calcium pro-
file and DAG net growth rate due to realistic dynamic 
buffering process and idealistic constant buffering 
process is quite significant. Thus, it implies that the 
proposed model provides more realistic simulation 
results as compared to the existing models.

 (v) Due to an increase in calcium-elevating mechanisms 
brought on by obesity, the amount of free calcium 
concentration is higher in the obese cell than it is in 
the normal hepatocyte cell.

 (vi) DAG growth rate is higher in obese cells as compared 
to normal hepatocyte cells due to increase in calcium 
concentration causing an increase in DAG net growth 
rate in obese cells.

 (vii) The effect of changes in parameters like source, 
total buffer concentration, SERCA pump etc. on 
calcium profiles is transferred in a synergistic man-
ner to the net growth rate of DAG. Thus changes in 

these parameters cause significant changes in the net 
growth rate of DAG leading to various disorders of 
the liver like obesity, diabetes etc.

 (viii) Obese mice’s liver cells had an ER content that was 
50% lower. The obesity-related aberrant increase in 
MAM (mitochondria associated membrane) produc-
tion induces increased  Ca2+ flow from the ER to the 
mitochondria (Arruda et al. 2014). As a result, only a 
10% increase in the calcium content of a hepatocyte 
cell’s cytoplasm was anticipated, the same is evident 
in Fig. 14.

Thus proposed model is quite effective in estimating the 
levels of concentration of calcium in obesity and normal 
conditions of the cell. The numerical approach consisting 
of finite element and Crank- Nicolson method is competent 
enough to solve the proposed model for generating useful 
results. The ensuing model excels among others as it is able 
to incorporate the effect of dynamic variations in free buffer 
concentration on free calcium concentration and vice versa 
in normal and obese hepatocyte cells and provide the more 
realistic dynamics of calcium and buffers in these cells. 
Similar models can be developed further for other liver dis-
orders like diabetes etc. to generate crucial information for 
therapeutic applications.
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