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Abstract
The individual study of Ca2+ and I P3 dynamics respectively in a β-cell has yielded limited information about the cell
functions. But the systems biology approaches for such studies have received very little attention by the research workers
in the past. In the present work, a system-dynamics model for the interdependent Ca2+ and I P3 signaling that controls
insulin secretion in a β-cell has been suggested. A two-way feedback system of Ca2+ and I P3 has been considered and
one-way feedback between Ca2+ and insulin has been implemented in the model. The finite element method along with
the Crank-Nicolson method have been applied for simulation. Numerical results have been used to analyze the impact of
perturbations in Ca2+ and I P3 dynamics on insulin secretion for normal and Type-2 diabetic conditions. The results reveal
that Type-2 diabetes comes from abnormalities in insulin secretion caused by the perturbation in buffers and pumps (SERCA
and PMCA).
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Introduction

Physiological functions like release of hormone and neu-
rotransmitter, permeability of ionic channels, activity of
enzymes, gene transcription, reproduction and apoptosis are
all controlled by changes in cytosolicCa2+ ions. The cytoso-
lic concentration of Ca2+ ions in almost every cell type
exhibits complex spatiotemporal dynamics. Ca2+ signals in
a β-cell initiate the formation and secretion of insulin hor-
mone, which is released when plasma glucose levels are
high. Blood glucose levels in healthy adults must be kept
within a tight range: typically 4-5 mM and usually, it lies
between 3.5-7.0 mM in fasting subjects (Buchwald 2011).
The increased glucose level can induce both types of dia-
betes mellitus, Type-1 and Type-2. The abnormalities in the
β-cell functions are the primary reason for this elevation. It
is a life-threatening metabolic disorder that affects 5-10% of
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the people in developed countries (Rorsman et al. 2012). It
is also generally understood that diabetes is complex with
environmental factors such as excessive intake of calories
and lack of physical movements, both of which contribute
to obesity, increasing the chance of developing the disease
(Boob-Bavnbek et al. 2008).

In pancreatic β-cells, the intracellular Ca2+ is the imme-
diate controller of production and the secretion of insulin
by exocytosis. The intracellular Ca2+ ions level is elevated
by the influx of Ca2+ ions via voltage gated Ca2+ channel
(VGCC) and various other components such as the source,
pump, leak and so on. All these contribute to calcium control
within the cell. Several experimental studies provide insights
on the involvement of I P3 in the functioning of I P3R.
Ca2+ signaling triggered by I P3 is recognised to be crucial
for normal cell functions and metabolic activities (Decrock
et al. 2013). I P3R are essential for various Ca2+ responses
such as oscillations and waves inside the cell and hence cru-
cial part in different models of Ca2+ regulations. The I P3
releases ER Ca2+ by binding to the I P3R. It is also crucial
to remember that the I P3 and Ca2+ pathway changes with
age and these changes could have an impact in the develop-
ment of diabetes. The expression of I P3R which produces
I P3 was found to be lower in diabetic patients. Gallblad-
der emptying and gallstone development decrease as a result
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of the drop in the I P3/Ca2+ signaling pathway which is a
comorbidity typically linked with diabetes (Berridge 2016).

Numerous research workers conducted experimental
inquiries with fruitful alternatives (Misler et al. 1992; Pertusa
et al. 1999; Braun et al. 2008). During the last few decades,
certain theoretical studies have also been conducted (Dupont
and Erneux 1997; Rorsman 2005; Boob-Bavnbek et al. 2008;
Rorsman et al. 2012; Rorsman and Braun 2013; Idevall-
Hagren and Tengholm 2020). Crank in 1979 discussed the
diffusion mechanism and techniques of their numerical solu-
tion in different media. In 1995, Bootman and Berridge
highlighted the role of various channels in influx and efflux of
Ca2+ ions for calcium signaling events in different tissues.
Smith (1996a, 1996b) investigated the impact of rapid sta-
tionary as well as mobile buffers on calcium dynamics near
an open Ca2+ channel by obtaining the analytical steady
state solution.

Apart from these studies, excitable cells have been a keen
interest of researchers for many years. Several studies have
been performed to know the signaling patterns of these cells.
Wagner et al. (2004) investigated [Ca2+] and I P3 bistability
in oocytes which is accomplished through calcium-feedback
upon calcium-dependent I P3 production and release of cal-
cium mediated by I P3. Naik and Pardasani (2014, 2019)
developed the mathematical models of spatio-temporal cal-
cium variations in oocytes by incorporating the ryanodine
receptor, VGCC, SERCA pump and diffusion coefficient.
Role of Na+/Ca2+ exchanger and calcium advection phe-
nomenon in oocytes has been analyzed by Panday and
Pardasani (2013, 2013). Tewari and Pardasani (2010, 2011a,
2011b) developed the mathematical models for neurons to
investigate the impact of Na+ influx and buffers on [Ca2+]
profile. Amathematical model to explore the effect of buffers
on the calcium profile of dendritic spines has been investi-
gated by Tripathi et al. (2014, 2013). They also analyzed
the calcium dynamics in neurons by incorporating JLeak ,
JSERCA and JRyR along with the calcium diffusion coeffi-
cient as well as exogenous buffers like BAPTA and EGTA.
Pathak andAdlakha (2015, 2016) constructed amathematical
model to analyze the calcium profile of myocytes by incor-
porating calcium diffusion, excess buffers, pump and leak for
one dimensional spatio temporal case. Jha et al. (2016, 2013)
constructed few mathematical models to explore the rela-
tionships among the parameters impacting Ca2+ dynamics
such as source influx and diffusion coefficient in astrocytes
by using finite volume and finite element method. Naik and
Zu (2020) studied the spatiotemporal calcium profile of T-
lymphocytes by framing the reaction-diffusion model. They
solved their model by combining the finite element and finite
difference methods. Hemant and Adlakha (2022) used the
RBF approach and Runge-Kutta method to analyze the cal-
cium reaction-diffusion model that includes the Ryanodine

receptor, SERCA pump, source amplitude and buffers for
T-lymphocytes.

Pancreatic β-cells were among the first cell types to have
the relationship of membrane oscillators and cytosolic Ca2+
dynamics studied in depth (Chay and Keizer 1983; Rinzel
and Lee 1987). Magnus and Keizer (1997) devised a min-
imal mathematical model for describing the mitochondrial
calcium management of pancreatic β-cells. Gopel et. al
(1999) investigated the potassium current (Kslow) depending
upon Ca2+ that gradually increases with respect to simu-
lated islet burst in mouse pancreatic β-cells. Alteration in
potassium current may help to terminate the bursting phe-
nomenon depending upon Ca2+, which promote the Ca2+
influx and secretion of insulin in a β-cell. Goforth et al.
(2002) studied that how disrupting [Ca2+] by inhibiting
Ca2+ absorption into the ER by two different agents claimed
to impede the SERCA, thapsigargin (1-5 μM) or insulin
(200 nM) inhibit the calcium-dependent potassium current.
Fridlyand et. al (2010) constructed a mathematical model by
involving the pacemaker candidates of bursts action aswell as
cytoplasmic Ca2+ oscillations in a β-cell. They also formu-
lated a precise mathematical model of β-cell ionic fluxes by
incorporating themajor pumps and channels of plasmamem-
brane 2003 and showed that changes in Ca2+ concentration
can modulate inositol lipid-specific phospholipase activity
which in turn can stimulate I P3-production in the β-cell.
Varadi et al. (1995) in their work investigate the PMCA and
SERCA are associated in dynamic Ca2+ transport in a β-
cell lines (RINm5F, T15, HIT, MIN6) and islets. Berridge
(2016) explained theoretically how the major Ca2+ route
controls processes like muscles contraction, formation of
memory in neurons and secretion of insulin and described
how I P3/Ca2+ signaling pathways are engaged in a number
of biological processes. Sabatini et al. (2019) in their work
briefly highlighted the classical pathways of calcium regu-
lation in β-cells and as well as how they monitor the Ca2+
mobility in several microdomains and organelles. The sig-
nificance of Ca2+ signaling in β-cell has been discussed by
Klec et al. (2019). They provide the role of alterations in β-
cell Ca2+ signaling and its importance in the development
of diabetes.

The study of calcium signaling in various cells individu-
ally without the feedback of other signaling systems yielded
limited information. Thus, from the last few years coupled
dynamics have been proven a powerful tool to investigate
the signaling pattern for different cells using mathematical
models 2003, 2022a, 2022b, 2022c, 2022d, 2023, 2019a,
2019b, 2004. Recently, a dynamic interaction between glu-
cose, insulin, ATP and calcium in β-cell has been presented
by Das et al. (2020) with the help of delay differential
equations. Paul et al. (2022) performed a study to analyze
the glucose-stimulated insulin secretion process through a

123

152 Journal of Bioenergetics and Biomembranes (2023) 55:151–167



six-dimensional model by incorporating calcium and ATP
and highlight the responsible factors in the progression of
diabetes in insulin resistance conditions in β-cell. There are
several research papers describing the relationship between
the Ca2+ and I P3 (De Young and Keizer 1992; Dupont and
Erneux 1997; Smith 1996a; Sneyd et al. 1995; Sneyd and
Falcke 2005). The β-cell models reported in the literature
focused only on temporal dynamics but due to the movement
of signaling ions inside the cytosol the diffusion process also
takes place. As far as we are aware no model is reported for
interdependent spatiotemporal Ca2+ and I P3 dynamics in
a β-cell. Further, no study is reported for impacts of pertur-
bation in Ca2+ and I P3 dynamics on insulin secretion in a
β-cell. The primary goal of the present work is to establish a
mathematical model of interdependent spatiotemporalCa2+
and I P3 homeostasis in a β-cell to gain a better understand-
ing of this complex regulatory network. A two-way feedback
of Ca2+ and I P3 dynamics in a β-cell is incorporated in the
model. The processes like SERCApump, leak, I P3R, VGCC
and PMCA are employed in the proposed model. Numerical
simulations are performed using the finite element and the
Crank-Nicolson method. With the use of numerical findings,
it has been determined howchanges inCa2+ and I P3 dynam-
ics affect the secretion of insulin in both normal and Type-2
diabetes conditions.

Mathematical model

The equations for cytoplasmic [Ca2+] and [I P3]handling for
the β-cell can be written as Fridlyand et al. (2003); Higgins
et al. (2006); Jha et al. (2013); Wagner et al. (2004):

∂
[
Ca2+

]

∂t
= DCa∇2

[
Ca2+

]

−k+
i [Bi ]∞

([
Ca2+

]
−

[
Ca2+

]

∞

)

+ Jleak − JSERCA + JI P3R
Fc

−Jpump + JVGCC , (1)

∂[I P3]
∂t

= DI P3∇2[I P3]

+ Jproduction − λ(Jkinase + Jphosphate)

Fc
. (2)

In Eq. 1 the first term on the right is diffusion term and sec-
ond term is the reaction term. The symbols used in above
equations are defined in Table 1.

Jleak = PER([Ca2+]ER − [Ca2+]), (3)

JSERCA = Pmax
SERCA[Ca2+]2

k2pump + [Ca2+]2 , (4)

JI P3R = PI P3Rm
3h3([Ca2+]ER − [Ca2+]). (5)

According to Li and Rinzel (1994) model:

m = [I P3]
[I P3] + KI P3

[Ca2+]
[Ca2+] + KAct

. (6)

The variable h denotes the percentage of subunits that
haven’t been inactivated byCa2+ (Keizer andMagnus 1989;
Wagner et al. 2004):

dh

dt
= h∞ − h

τ
, (7)

where τ is the inactivation time scale. h∞ denotes the equi-
librium value and defined as follows:

h∞ = KInh

KInh + [Ca2+] , (8)

Jpump = PmCa[Ca2+]2
k2pCa + [Ca2+]2 , (9)

JVGCC = −ICa
ZCa FVc

, (10)

where Jha et al. (2013),

ICa = PCa Z
2
Ca

F2V p

RT

[Ca2+] − [Ca2+]∞exp(−ZCa
FVp
RT )

1 − exp(−ZCa
FVp
RT )

.

(11)

The Ca2+-induced I P3 production is given by Wagner
et al. (2004):

Jproduction = Pproduction
[Ca2+]2

k2production + [Ca2+]2 . (12)

The I P3 degradation in Eq. 2 is given by λ(Jkinase +
Jphosphatase). The Jkinase and Jphosphatase denotes the
kinase flux and phosphate flux respectively and defined as
Wagner et al. (2004):

Jkinase = (1 − θ)V1
[I P3]

2.5 + [I P3] + θV2
[I P3]

0.5 + [I P3] , (13)

Jphosphate = V3
[I P3]

(30 + [I P3]) , (14)

θ = [Ca2+]
(0.39 + [Ca2+]) . (15)
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Table 1 Biophysical parameters and numerical data

Notation Name of the parameter Numerical value

DCa Diffusion coefficient for calcium 200 μm2sec−1 Jha et al. (2013)

DI P3 Diffusion coefficient for I P3 283 μm2sec−1 Wagner et al. (2004)

k+
i Association rate of EGTA 1.5 μM−1sec−1 Smith et al. (1996b)

Association rate of BAPTA 600 μM−1sec−1 Smith et al. (1996b)

[Bi ]∞ EGTA Buffer 15 μM (Assumed)

BAPTA Buffer 0.04 μM (Assumed)

[Ca2+]∞ Intracellular free Ca2+ concentration at rest 0.1 μM Pertusa et al. (1999)

Fc Fraction of cytosolic and total cell volume 0.83 Wagner et al. (2004)

Fe Fraction of ER and total cell volume 0.17 Wagner et al. (2004)

F Faraday’s constant 96487 CoulombsMole−1 Panday and Pardasani (2013)

Vc Volume of cytosol 5.84 × 10−11 μm3 Panday and Pardasani (2013)

λ Scaling factor of production rate of I P3 30 Wagner et al. (2004)

PER Leak permeability of Ca2+ from ER 0.1 sec−1 Fridlyand et al. (2003)

[Ca2+]ER Concentration of Ca2+ in ER 22.8 μM Fridlyand et al. (2003)

Pmax
SERC A Maximum pumping rate of SERCA 0.65 μMsec−1 Wagner et al. (2004)

Kpump Half-maximum pump activity of SERCA 0.4 μM Wagner et al. (2004)

PI P3R Rate constant of I P3 receptor 8.5 sec−1 Wagner et al. (2004)

KI P3 Dissociation constant of activating I P3 binding site 0.15 μM Wagner et al. (2004)

KAct Dissociation constant of activating Ca2+ binding site 0.8 μM Wagner et al. (2004)

KInh Dissociation constant of inhibiting Ca2+ binding site 1.9 μM Wagner et al. (2004)

Pproduction Maximum rate of I P3 production 0.075 μMsec−1 Wagner et al. (2004)

Kproduction Michaelis constant for Ca2+ activation 0.4 μM Wagner et al. (2004)

τ Inhibition time constant 2 sec Wagner et al. (2004)

PmCa Maximum pumping rate of PMCA 28 μMsec−1 Higgins et al. (2006)

kpCa Half-maximum pump activity of PMCA 0.425 μm Higgins et al. (2006)

V1 Maximum rate constant at low Ca2+ (3-kinase) 0.001 μMsec−1 Wagner et al. (2004)

V2 Maximum rate constant at high Ca2+ (3-kinase) 0.005 μMsec−1 Wagner et al. (2004)

V3 Maximum rate constant (phosphatase) 0.02 μMsec−1 Wagner et al. (2004)

ZCa Valency of Ca2+ 2 Panday and Pardasani (2013)

[Ca2+]0 Extracellular Ca2+ Concentration 3 mM Panday and Pardasani (2013)

Vp Membrane Potential -0.03 V Panday and Pardasani (2013)

R Gas Constant 8.314 Joule/KelvinMole Panday and Pardasani (2013)

T Absolute Temperature 300 K Panday and Pardasani (2013)

Canull Minimal Ca2+ necessary for insulin release 0.1 μM Pedersen et al. (2005)

Islope Measure of Ca2+ sensitivity of secretion 210 Pedersen et al. (2005)

τa Time constant 10 sec Pedersen et al. (2005)

σCa Source influx 20 pA (Assumed)

The [Ca2+]ER can be eliminated as:

[Ca2+]T = Fc[Ca2+] + Fe[Ca2+]ER . (16)

Initial and boundary conditions

The flux boundary condition for the source is provided by,
where it is considered that the calcium source is present at

x=0 μm (Smith et al. 1995):

lim
x→0

(
−DCa

∂[Ca2+]
∂x

)
= σCa . (17)

The other endof the boundary ismaintained at background
concentration and expressed as given below:

lim
x→10

[Ca2+] = 0.1μM . (18)
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The boundary conditions for I P3 are defined (Wagner et
al. 2004):

lim
x→10

[I P3] = 0.16μM, (19)

lim
x→0

[I P3] = 3μM . (20)

At initial time t=0 msec the system is supposed to be at rest
and thus the initial calcium concentration at rest is given by:

lim
t→0

[Ca2+] = 0.1μM, (21)

lim
t→0

[I P3] = 0.16μM . (22)

Insulin secretion

The influx of Ca2+ through different channels result in
increased cytosolic calcium and exocytosis of insulin gran-
ules. It is assumed that any stimulation that causes a Ca2+
influx into the β-cell will cause the release of insulin. But,
there are some Ca2+ chelators (like EGTA and BAPTA),
which suppress the insulin secretion (Idevall-Hagren and
Tengholm 2020; Pertusa et al. 1999). The rate at which a β-
cell secrete insulin is given as follows (Pedersen et al. 2005):

d[I ]
dt

= I∞(Ca) − [I ]
τa

, (23)

where I∞(Ca) denotes equilibrium secretion rate and is
defined as:

I∞(Ca) =
{
Islope([Ca2+] − Canull ) f or [Ca2+] ≥ Canull
0 f or [Ca2+] < Canull

,

where Islope measures the Ca2+ sensitivity of secretion (see
Table 1) and Canull represents the minimal Ca2+ concentra-
tion necessary for insulin release.

The numerical solution of the model given by the Eqs. 1-
22 was obtained using the finite element approach. The finite
element procedure used here is given in theAppendix. Taylor
series expansion is applied for handling the non-linear terms
present in the model. The cell is discretized into 40 elements
and piecewise linear shape function is used for interpolation.
The time derivatives have been handled using the Crank-
Nicolson method which has been simulated using MATLAB
to produce numerical results. After obtaining the numeri-
cal solution of the model given by the Eqs. 1-22 by finite
element method along spatial dimension and then the Crank-
Nicolson method is employed along temporal dimension to
solve theEqs. 1-23. The numerical data of various parameters
employed for simulation is given in the Table 1.

Table

Results and discussion

The results shown below have been computed for the values
of parameters mentioned in Table 1 unless specified along
with the figures. The profiles for interdependent Ca2+ and
I P3 concentration and insulin secretion have been plotted.

Figure 1 depicts the distribution of Ca2+ and I P3 at var-
ious time and positional instants. Figure 1A exhibits the
distribution of Ca2+ concentration with respect to space
at time t=0, 5, 20, 50 and 10 sec respectively. Due to the
emission of Ca2+ ions, the spatial and temporal profile of
[Ca2+] reaches the maximum near the source (x=0 μm).
Figure 1A shows that the Ca2+ concentration decreases as
we get farther from the source (from x=0 to x=10 μm). The
phenomenon occurs due to the functioning of the SERCA
pump, PMCA pump and binding of Ca2+ ions with free
buffers. The Fig. 1B shows that as time passes, the concen-
tration of Ca2+ rises and reaches a stable state after 150
msec. Oscillations can also be seen at the initial position
due to heavy source influx. Because source channels such as
ER leak, I P3 channel and VGCC open, Ca2+ ions begin to
release and Ca2+ rises in the cytosol, the temporal [Ca2+]
rises with time at different sites in space.

Figure 1C displays the concentration of I P3 with respect
to space at time t=0, 5 msec, 20, 50 and 10 sec respectively.
The I P3 concentration decreases with the distance as seen
in Fig. 1C. I P3 profile is initially non-linear but this non-
linearity reduces with respect to time and becomes nearly
linear over a period of time as the multiple I P3 dynamics
processes achieve equilibrium. The I P3 molecules connect
near the I P3R at different points in time, maintaining the
boundary concentration. The I P3 distribution in aβ-cell with
respect to space at x=0, 2.5, 5, 7.5 and 10μm is shown in Fig.
1D. Temporal concentration of I P3 increases with increase
in time at various positions as I P3 molecules bindwith I P3R
and start releasing the ER Ca2+ ions into the cytosol.

Figure 2 exhibits the variation in Ca2+ profile for differ-
ent values of EGTA 0, 10, 20 and 50 μM respectively along
with the space and time.When no buffer is present, theCa2+
concentration is higher at the beginning node and declines
rapidly to achieve the baseline calcium concentration of 0.1
μM along with the space as shown in Fig. 2A. The concen-
tration of Ca2+ drops as the buffer concentration rises and
thus the background concentration is being achieved at an
early stage which cause the change in nature of the curves.
This occurs as a result of free calcium ions binding to free
buffers. Figure 2B shows that the temporal profile of Ca2+
rises over time and reaches steady state sooner for greater
buffer values in the cell.

Figure 3 exhibits the influence of BAPTA buffer on Ca2+
ions inside the cytosol with respect to space and time. The
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Fig. 1 Interdependent Ca2+ and I P3 dynamics in presence of ER leak, SERCA, I P3R, PMCA and VGCC in normal conditions (Table 1)

BAPTA is a fast exogenous buffer that binds the calcium ions
faster than the EGTAbuffer. FromFig. 3A, it can be observed
that a slight change in the concentration of BAPTAbuffer can
lead to a significant variation in calcium concentration. This

phenomenon happened due to the high association rate of
BAPTA buffer. The curves achieve the steady state early for
the high value of BAPTA and delay can be observed in the
steady state for a lowvalueofBAPTA.Thus, the non-linearity
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Fig. 2 Ca2+ profile for different values of EGTA buffer in presence of ER leak, SERCA, I P3R, PMCA and VGCC for time t=50msec and distance
x=0 μm
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of the curves varies as the concentration of the BAPTA buffer
increases. Figure 3B depicts the changes in calcium concen-
tration with respect to time for different values of buffer.
When the buffer is high the calcium increases slowly with
time and for the low value of buffer concentration calcium
increases quickly with time.

The impact of source influx on calcium profile with regard
to space and time is depicted in Fig. 4A and B respectively.
When the source influx grows from 20 to 50 pA at a certain
time and distance, Ca2+ concentration rises. It is the major
factor for increasing or reducing the concentration of calcium
in a β-cell to achieve the appropriate amount of Ca2+.
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Fig. 5 Ca2+ profile for different values of maximum pumping rate of SERCA in presence of ER leak, I P3R, PMCA and VGCC for time t=50
msec and distance x=0 μm (EGTA=15 μM and σCa=20 pA)

The spatio temporal changes in calcium profile for dis-
tinct values of maximum pumping rate of SERCA 0, 0.65,
1.5 μMsec−1 respectively are shown in Fig. 5. Because the
SERCA transports Ca2+ from cytosol to ER for normal β-
cell activity, the Ca2+ concentration drops as the pumping

rate of SERCA rises. In the β-cell, the Ca2+ concentration
reaches its maximum level when a SERCA pump is absent.

Figure 6A and B show the changes in Ca2+ profile in the
presence and absence of PMCA for space and time respec-
tively. The concentration of calcium in Fig. 6A is highest at
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the source x=0 μm in absence of PMCA and decreases as
the distance grows. However, in case of active PMCA the
concentration of calcium is low. This phenomenon occurs
because PMCA extracts the extra Ca2+ from the cytosol to
the extracellular space. In the absence of PMCA, the calcium
inclusion mechanism (like VGCC, ER leak and IP3 recep-
tor) plays a dominating role and the Ca2+ profile elevates.

Due to the diffusion process, these free calcium ions diffuse
over longer distances and attain steady state with a delay.
Figure 6B shows the calcium profile for time in absence and
presence of PMCA.

Figure 7 exhibits the insulin concentration with respect
to space by varying the time, EGTA buffer concentration,
source influx value, SERCA pump rate, PMCA pump rate
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Fig. 9 Calcium and Insulin profile in case of normal and Type-2 diabetes associated with EGTA buffer in presence of ER leak, SERCA, I P3R,
PMCA and VGCC

and BAPTA buffer concentration respectively in β-cells. The
insulin concentration throughout space is represented in Fig.
7A for different positions in time t=0, 5, 20 and 50 msec.
In normal conditions, the insulin concentration almost lies
within the expected range as given by Wang et al. (2013).
Insulin concentration is highest at x=0 μm and gradually
declines along the space dimension as shown in Fig. 7A.
Insulin concentration follows the same pattern as the calcium

profile. This is simply due to the fact that insulin concentra-
tion is influenced by calcium levels. When the cell’s Ca2+
concentration is greater than 0.1 μM , insulin is constantly
secreted and the rate of secretion is determined by the cell’s
sensitivity. However, because excessive calcium is toxic, the
concentration of calcium with in the cell cannot remain high
indefinitely. As a result, the calcium control system reduces
calcium levels, causing insulin secretion to cease. Thismeans
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Fig. 11 Secretion Rate of Insulin in case of normal and Type-2 diabetes associated with EGTA buffer in presence of ER leak, SERCA, I P3R,
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that insulin secretion occurs in the cell in a switch-on/switch-
off fashion. This is also evident from the fact that at the same
time all the insulin granules are not in secretion mode. Only
100 of the 10,000 granules in a β-cell are actively secret-
ing insulin (Bratanova-Tochkova et al. 2002). This indicates
that the β-cell become sensitive to insulin release in batches

and they secrete insulin in an on/off manner. The Fig. 7B
exhibits the spatial variation in insulin concentration for dif-
ferent values of EGTA 0, 10, 20, 50 μM respectively. It
is observed that insulin shows the same behaviour as seen
in calcium Fig. 2A. Thus, in a β-cell the buffer’s effect
on calcium signaling is passed in the same proportion to

Distance in micro meter
0 2 4 6 8 10

In
su

lin
 s

ec
re

tio
n 

ra
te

 (p
M

/m
in

)

0

200

400

600

800

1000

1200

1400
A Insulin profile with respect to space

Normal
T2D

Time in milisecond
100 200 300 400 500

In
su

lin
 s

ec
re

tio
n 

ra
te

 (p
M

/m
in

)

0

200

400

600

800

1000

1200

1400

1600

1800
B Insulin profile with respect to time

Normal
T2D

Fig. 12 Secretion Rate of Insulin in case of normal and Type-2 diabetes associated with BAPTA buffer in presence of ER leak, SERCA, I P3R,
PMCA and VGCC
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Table 2 Analysis of error for
calcium concentration when
x=0 μM for 30 and 40 elements

Time N=30 N=40 Absolute Error Relative % Error

0.1 sec 0.557239211 0.556150998 0.001088213 0.195286501 %

0.2 sec 0.574825081 0.573961768 0.000863313 0.150187055 %

0.5 sec 0.576515031 0.576293888 0.000221143 0.03835854%

1 sec 0.57658363 0.576614652 0.000031 0.005380342%

insulin concentration. The insulin concentration decreases
with the increase in values of buffer. This occurs due to
binding of buffers with free calcium, reducing the cytosolic
calciumwhich in turn brings down the insulin concentration.
Figure 7C displays the insulin concentration for different val-
ues of source influx 20, 30, 50 pA respectively at a particular
time and position. Insulin concentration increases with an
increase in source influx as insulin concentration is depen-
dent on cytosolic calcium as shown in Fig. 4A. Figure 7D
shows the spatial variation for various choices of the maxi-
mum pumping rate of SERCA 0, 0.65 and 1.5 μMsec−1 of
insulin concentration. The Fig. 7D shows that the concentra-
tion of insulin is high for a low value of the pumping rate of
SERCA and as the pumping rate increases, insulin concen-
tration decreases with respect to space. Figure 7E shows the
influence of PMCA on insulin concentration. In the presence
of PMCA the insulin concentration is low as the concentra-
tion of calcium is low, while in case of inactive PMCA the
concentration of insulin is higher. The effect ofBAPTAbuffer
on insulin concentration can be observed from the Fig. 7F. It
is evident from the figure that the concentration of insulin is
inversely proportional to the BAPTA buffer concentration.

The rate of insulin secretion for both space and time is
shown in Fig. 8. The curves for the various instants of time
for space are shown in Fig. 8A. The figure shows how the
secretion rate decreases with increasing distance and grows
with time, but after a while, it reaches a stable state and no
additional elevation is seen Fig. 8B. Due to the existence of
source terms, oscillations for the secretion rate at x=0μm can
be observed.

Figures 9 and 10 show the calcium and insulin concentra-
tion profile for EGTA and BAPTA buffer in case of normal
and Type-2 diabetic conditions. It can be seen in Figs. 9
and 10, that both calcium and insulin profiles decreased
significantly. The BAPTA buffer has a high association
rate which causes it to decrease the level more markedly

even when added in little amounts as compared to EGTA
buffer. The change in the nature of the curves can also be
observed in the Figs. 9 and 10 because when buffers are
added in a small amount, more calcium ions are free in
the cytosol, which diffuses up to a more significant dis-
tance inside the cell but when buffers are added into higher
amount it binds the calcium ions which slow down the diffu-
sion process and the steady state is achieved earlier. Since
the insulin profile is calcium-dependent, it shows similar
behavior. Figures 11 and 12 represent the insulin secretion
rate for EGTA and BAPTA buffer in case of normal and
Type-2 diabetic conditions. A significant reduction has been
observed from the figures in secretion rate of insulin in case
of Type-2 diabetes. The oscillations are observed in Figs.
9B, 10B, 11B and 12B for higher values of buffer. This
implies that the calcium regulation mechanisms take some
time to achieve balance among the sub processes and reach
steady state after some time. By changing the buffer val-
ues almost 60 % reduction in the insulin secretion rate can
be observed, which is the case of Type-2 diabetes. These
insights of various mechanisms, their disturbances and con-
sequential effects can be useful for treatment of Type 2
diabetes.

Conclusion

In conclusion, a systems biology model for describing the
interdependency of Ca2+ and I P3 in a pancreatic β-cell
is proposed. The function of SERCA pumps, buffer, leak,
I P3R, PMCA pump and VGCC in forming the fundamen-
tal dynamical landscape of our model of triggered calcium
responses in the β-cell is studied using computational anal-
yses and simulations. The model has also been framed to
investigate the effects of system dynamics Ca2+ and I P3
on Ca2+-dependent insulin secretion in a β-cell. The linear

Table 3 Analysis of error for
I P3 concentration when x=0.25
μM for 30 and 40 elements

Time N=30 N=40 Absolute Error Relative % Error

0.1 sec 2.904331472 2.934696856 0.030365384 1.034702588 %

0.2 sec 2.907435655 2.933541049 0.026105394 0.889893591 %

0.5 sec 2.90544686 2.92963082 0.02418396 0.825495154 %

1 sec 2.90527074 2.929007576 0.023736836 0.810405423 %
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Table 4 Comparision of [Ca2+]
profile at t=50 sec

Distance (μm) [Ca2+] (Wagner et al. 2004) [Ca2+] (Present Work)

0 1.35 1.350029674

2 1.192540688 1.190689045

4 1.080154535 1.064165408

6 0.937748913 0.905002462

8 0.670328457 0.630870015

10 0.1 0.1

finite elements andCrank-Nicolson schemes are used respec-
tively with respect to space and time coordinates. The Ca2+
concentration profiles have been presented in response to
varied buffer concentrations, varying amplitudes of Ca2+
source, active and inactive SERCA pump, ER leak and
PMCA pump. The numerical solution results are used to
arrive at the following basic conclusions:

(i) With increasing buffer concentration, the peak value of
Ca2+ concentration in a β-cell falls. This is because the
elevated buffer concentration binds theCa2+, lowering
the Ca2+ concentration in the cytosol. The EGTA and
BAPTA are exogenous in nature and are used to slow
down the diffusion process by binding with free cytoso-
lic calcium ions.

(ii) In the case of active VGCC, I P3R and ER leak, the
amount of intracellular Ca2+ is larger than in the case
of inactive VGCC, I P3R and ER leak. This means that
VGCC, I P3R and ER leak all help the cell to increase
Ca2+ concentration when the cell requires it.

(iii) High source influx combined with lower SERCA and
PMCA pump values can lead to an increase in Ca2+
and I P3 concentration profiles, which boosts insulin
secretion.

(iv) The model is effective in providing the response time
of the cell in achieving the maximal secretion rate for
insulin.

(v) The relative percentage errors have been computed to
estimate the accuracy of the model and the mesh sen-
sitivity for the finite element procedure given in Tables
2 and 3. The maximum percentage errors were found
to be 0.195 % for Ca2+ concentration and 1.035 % for

I P3 concentration. Themaximum accuracy were found
to be 99.805 % for Ca2+ concentration and 98.9650 %
for I P3 concentration. Thus, it can be concluded from
the obtained results that the method is mesh indepen-
dent. The spectral radius was estimated and found to be
0.999, which is less than 1, which supports the assertion
that the solution approach is stable.

(vi) The present model has been found to be in good
agreement with Wagner et al. (2004). For validation
purpose, the Ca2+ and I P3 concentrations at some
points for t=50 sec have been observed from the work
of Wagner et al. (see figure 3 2004) and from the
present work. The observed data is given in Tables 4
and 5. Further, the root mean square error for Ca2+
and I P3 has also been calculated and found to be
0.0241 and 4.23E-06 respectively, which are almost
negligible.

The following novel conclusions are drawn on the basis
of numerical results:

(i) The disturbances/changes in the system dynamics of
Ca2+ and I P3 leads to changes in insulin secretion.

(ii) The changes in source influx causing changes in Ca2+
levels, thereby causes changes in insulin secretion. The
decrease in source influx causes lower secretion rate
of insulin. Insulin release rises as the source inflow
rises, potentially causing β-cell overstimulation and
resulting in obesity, cardiovascular disease, hyperten-
sion and other metabolic problems (Sprietsma and
Schuitemaker 1994).

Table 5 Comparision of [I P3]
profile at t=50 sec

Distance (μm) [I P3] (Wagner et al. 2004) [I P3] (Present Work)

0 0.5 0.5

2 0.430982023 0.43098468

4 0.362510677 0.362515755

6 0.294550377 0.294556528

8 0.227063092 0.227067657

10 0.16 0.16
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(iii) The changes in buffering activity causes changes in
Ca2+ levels and thus leads to changes in insulin secre-
tion levels. The higher rate of buffering causes decrease
in insulin secretion. Insulin levels have been found to
be low in both Type 1 and Type 2 diabetes (Jaberi-
Douraki et al. 2015; Rorsman 2005). In normal settings,
insulin secretion rate ranges between 400 and 1600
pmol/min (Rorsman 2005). The rate of insulin secre-
tion remains almost within this range, as shown in
Fig. 8.

(iv) The model is effective to provide the role of buffers
in normal and diabetic conditions. Figures 11 and 12
show the insulin secretion rate in case of non-diabetic
and diabetic conditions. Almost 60% reduction can be
observed in Figs. 11 and 12 in secretion rate of insulin
by changing the buffers concentration which is the case
of Type-2 diabetes (Rorsman andBraun 2013). It can be
concluded from the observation that due to high asso-
ciation rate of BAPTA buffers, low amount of BAPTA
can be significant to achieve the normal range.Whereas
high amount of EGTA buffer is required to achieve the
same. The obtained results are in good agreement with
the results obtained by Pertusa et al. (1999).

(v) The proposedmodel is novel as no researcher in the past
had studied the impact of interdependent dynamics of
Ca2+ and I P3 on insulin secretion. The past studies
reported are mostly for independent Ca2+ dynamics
affecting insulin secretion which provide limited infor-
mation. The balancing effect of Ca2+ and I P3 on each
other gives better insights of the impact of system
dynamics on insulin secretion in normal and diabetic
cell. The significant changes in insulin secretion take
place due to Type-1 and Type-2 diabetes as revealed by
the results.

According to the results, the interdependent Ca2+ and
I P3 dynamics in a β-cell are significantly influenced by the
buffers, source influx, SERCA, leak, PMCA and VGCC,
which are required for maintaining the cell’s structure
and function. Any disruption in these factors in a β-cell
can result in major diseases like obesity, diabetes and
hypertension. The proposed model provides us with use-
ful information that may be used to develop treatment and
diagnosis for a variety of diseases. The mathematical model
proposed here is highly adaptable, as it allows for the
inclusion of minute parameter details. These kinds of math-
ematical models can be utilised to create crucial data for
Ca2+ management.
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Appendix

The finite element approach was used to solve the model
described by the Eqs. 1 to 22 along spatial dimension. Since
the present study is focused onone-dimensionalmodel, so the
linear shape function is the best fit to discretized the domain.
As linear shape elements are good enough to reduce the com-
plexity of the model and make it computationally tractable.
Also, by increasing the number of elements desired accuracy
can be achieved, as mentioned in the Table 3. Thus, for each
element, the following is the linear shape function of Ca2+
and I P3 concentration:

u(e) = c(e)
1 + c(e)

2 x, (24)

v(e) = d(e)
1 + d(e)

2 x, (25)

u(e) = pT c(e), v(e) = pT d(e), (26)

where
pT = [1 x],

c(e) = [c(e)
1 c(e)

2 ]T ,

d(e) = [d(e)
1 d(e)

2 ]T .

After substituting the nodal values in Eq. 26, we get;

[
u1
u2

]
=

[
1 xi
1 x j

] [
c(e)
1

c(e)
2

]

,

[
v1
v2

]
=

[
1 xi
1 x j

] [
d(e)
1

d(e)
2

]

,

ū(e) = P(e)c(e), v̄(e) = P(e)d(e), (27)

ū(e) =
[
u1
u2

]
, v̄(e) =

[
v1
v2

]
and P(e) =

[
1 xi
1 x j

]
. (28)

Equation 27 can be re-written as:

c(e) = R(e)ū(e), d(e) = R(e)v̄(e), (29)
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where
R(e) = P(e)−1

.

Using Eqs. 26 and 29, we get

u(e) = pT R(e)ū(e), v(e) = pT R(e)v̄(e). (30)

Discretizing the space into 40 linear elements and linearis-
ing the Eqs. 1 and 2, the integral A and B can be expressed
in this formulation:

A = A1 − A2 − A3 − A4 + A5 − A6, (31)

B = B1 − B2 − B3 − B4 + B5, (32)

where

A1 = 1

2

∫ x j

xi

(
∂u(e)

∂x

)2

dx, (33)

A2 = a11
2

∫ x j

xi

(
u(e)

)2
dx, (34)

A3 = a12

∫ x j

xi
u(e)v(e)dx, (35)

A4 = a13

∫ x j

xi
u(e)dx, (36)

A5 = 1

2DCa

∫ x j

xi

∂

∂t
(u(e))2dx, (37)

A6 = σ

DCa

(
u(e)

)

x=0
, (38)

B1 = 1

2

∫ x j

xi

(
∂v(e)

∂x

)2

dx, (39)

B2 = a11
2

∫ x j

xi

(
v(e)

)2
dx, (40)

B3 = a12

∫ x j

xi
u(e)v(e)dx, (41)

B4 = a13

∫ x j

xi
v(e)dx, (42)

B5 = 1

2DI P3

∫ x j

xi

∂

∂t
(v(e))2dx . (43)

After applying all the initial and boundary conditions we
get a system of equation given as follows:

d A

dū(e)
=

40∑

e=1

Q̄(e) d A
(e)

dū(e)
Q̄(e)T = 0, (44)

dB

d v̄(e)
=

40∑

e=1

Q̄(e) dB
(e)

d v̄(e)
Q̄(e)T = 0, (45)

where

Q̄(e) =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0
...

...

0 0
1 0
0 1
0 0
...

...

0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, ū =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

u1
u2
u3
...

u40
u41

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

and v̄ =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

v1
v2
v3
...

v40
v41

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

. (46)

The non zero vectors [1, 0] and [0, 1] are located at the
i th and j th row of the matrix Q̄(e).

[X ]82×82

[[
∂ ū
∂t

]
41×1[

∂v̄
∂t

]
41×1

]

+ [Y ]82×82

[
[ū]41×1
[v̄]41×1

]
= [Z ]82×1.

(47)

X and Y represents the system matrices and Z represents a
system vector. Temporal system given in Eq. 47 is solved
using Crank-Nicolson scheme and simulated on MATLAB
to obtain numerical results.
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