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Abstract
We have developed a model to study the kinetics of the redistribution of ions and molecules through a semipermeable membrane
in complex mixtures of substances penetrating and nonpenetrating through a membrane. It takes into account the degree of
dissociation of these substances, their initial concentrations in solutions separated by a membrane, and volumes of these
solutions. The model is based on the assumption that only uncharged particles (molecules or ion pairs) diffuse through a
membrane (and not ions as in the Donnanmodel). The developed model makes it possible to calculate the temporal dependencies
of concentrations for all processing ions and molecules at system transition from the initial state to equilibrium. Under equilib-
rium conditions, the ratio of ion concentrations in solutions separated by a membrane obeys the Donnan distribution. The Donnan
effect is the result of three factors: equality of equilibrium concentrations of penetrating molecules on each side of a membrane,
dissociation of molecules into ions, and Le Chatelier’s principle. It is shown that the Donnan distribution (irregularity of ion
distribution) and accordingly absolute value of the Donnan membrane potential increases if: (i) the nonpenetrating salt concen-
tration (in one of the solutions) and its dissociation constant increases, (ii) the total penetrating salt concentration and its
dissociation constant decreases, and (iii) the volumes ratio increases (between solutions with and without a nonpenetrating
substance). It is shown also that only a slight difference between the degrees of dissociation of two substances can be used for
their membrane separation.
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Introduction

The Donnan effect is necessarily taken into account when
developing membrane technologies (Sarkar et al. 2010;
Steele and Arias 2014; Nouri et al. 2002; Ramirez et al.
2002) because it enables the prediction of ion behaviour in a
membrane system and the calculation of the equilibrium con-
centrations of ions on opposite sides of a semipermeable

membrane. This effect is also taken into account when
explaining the uneven distribution of ions in the cells of living
organisms (Lang et al. 2014; Kurbel 2011; Nguyen and Kurtz
2006).

In 1911, Donnan (1995) revealed that if solutions of elec-
trolytes are put into two cells separated by a membrane that is
impermeable to at least one type of ions (but permeable to
other ions), then, after attainment of thermodynamic equilib-
rium, the ions are unevenly distributed on each side of the
membrane. In this case, the ratio of the concentrations of pen-
etrating KZ+ cations in solutions from different cells (denoted
by indices i and e) is equal to the inverse ratio of the concen-
trations of penetrating AZ– anions:

λ ¼ KZþ� �
i

KZþ� �
e

 !1
Z

¼ AZ−� �
e

AZ−� �
i

 !1
Z

ð1Þ

This ratio is often called the Donnan equilibrium or
Donnan distribution; λ is the distribution coefficient.

Taking into account that at equilibrium the electrochemical
potentials are the same for each of the common ions in the i-
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and e-cells, the following equation can be obtained (Donnan
1924; Davis 2000; Galama et al. 2016; Tian et al. 2015; Mazur
et al. 2014):

ED ¼ RT
F

ln
KZþ� �

i
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 !1
Z

¼ RT
F

ln
AZ−� �

e
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i

 !1
Z

¼ RT lnλ
F

ð2Þ

Here, R is the universal gas constant, T is temperature and F
is the Faraday constant.

The Donnan model does not allow for the possibility of the
incomplete dissociation of those substances that may be pres-
ent in the solutions studied. These may be water-soluble pro-
teins capable of counterion binding as well as weak bases
(e.g., ammonium hydroxide) and acids of organic and inor-
ganic nature (such as phosphoric, carbonic, nitrous, acetic,
citric, tartaric, oxalic, and malic acids) and their salts weakly
dissociating into ions.

Within the context of the Donnan model, it is difficult to
perform calculations for multicomponent systems in which
the volumes of solutions in the i- and e-cells are different, thus
considerably complicating application of the above model.
When developing the Donnan theory, Kosterin and Cherny
(1991) took into account that the ratio between volumes of
solutions in the i- and e-cells may be arbitrary. It turned out
that λ and ED essentially depend on the ratios of volumes.
Under isotonic conditions for membrane vesicles (whose vol-
ume is about 0.001 of the incubation medium volume), ED
increases bymore than twice compared to the “classic” case of
equal volumes. One can see from this example how important
it is to take into account the ratio between the volumes of
solutions separated by a membrane.

To simulate the separation, concentration, removal, and
purification of substances, various membrane transport
models have been developed. The choice and use of a partic-
ular model depends primarily on the process under study and
its driving forces, as well as the nature of the semi-permeable
membrane used, its structure and the material from which it is
made. The consideration of these factors results in a wide
variety of models. In the literature, it is possible to find re-
views on the application of various models in the description
of the most important industrial membrane processes, such as,
for example, nanofiltration (Palmeri and Lefebvre 2006;
Kumaran and Bajpai 2015), reverse osmosis (Sobana and
Panda 2011; Wang et al. 2014; Al-Obaidi et al. 2017), and
Donnan dialysis (Pyrzynska 2006) and electrodialysis
(Rohman and Aziz 2008). The models based on the Nernst-
Planck equation (Gimmi and Alt-Epping 2018; Fridman-
Bishop et al. 2018; Galach and Waniewski 2012; Kozmai
et al. 2017; Prado-Rubio et al. 2010), extended Nernst-
Planck equation (Moshtari et al. 2017; Kumaran and Bajpai
2015; Deon et al. 2013), Kedem-Katchalsky equation (Shu
et al. 2016; Kim et al. 2010; Tanaka 2012), and also the

solution-diffusion model (Yaroshchuk et al. 2011) are consid-
ered the most suitable for describing the process of ion
separation.

It should be noted that despite the fact that the main pur-
pose of modelling is to calculate the distribution of ions across
the membrane, the Donnan approach is not used (sometimes,
the Donnan distribution is used only to find the relationship
between the concentration of ions in a bulk solution and their
concentration in the membrane, membrane pore or
nanochannel (Tian et al. 2015; Gimmi and Alt-Epping
2018). This is conditioned by the fact that, as a rule, non-
equilibrium processes are studied, and under such conditions
it is necessary to consider the membrane potential that is
formed during the process of ion separation and its value is
unknown since it depends on the distribution of ions, that must
be found. As a result, when modelling real processes, re-
searchers are forced to use complex iterative methods.

The simulation of the nanofiltration process (NF) using the
extended Nernst-Planck equation (ENP) is described by
Palmeri and Lefebvre (2006): “In general, solving the com-
plete system of non-linear algebraic/ordinary differential
equations describing ion partitioning and transport in NF is a
relatively involved numerical problem (analytical mathemati-
cal solutions exist only for certain single salt solutions). A
major difficulty in any numerical treatment comes from the
appearance of the unknown ion permeate concentrations in the
ENP equations themselves via the filtration condition (2.42),
which means that the model must be solved iteratively …
Using an initial guess for ci

p, the permeate Donnan potential
is calculated using Eq. (2.56). This interfacial potential is then
be used to obtain the intra-membrane ionic concentrations at
the permeate-membrane interface. … The intra-membrane
ionic concentrations at the feed-membrane interface are then
used in conjunction with the ion partitioning equations to cal-
culate first the feed Donnan potential,Δϕ f

D, then the ion feed
concentrations, ci

f (cal.). If the ion feed concentrations obtain-
ed by solving the model, ci

f (cal.), agree (to within some pre-
established tolerance) with the known values, ci

p (real), then
the iteration stops and the values used for ci

p in the current
calculation are the correct numerical solution to the problem.
If, on the other hand, ci

f (cal.) ≠ ci
f (real), then new starting

values are chosen for ci
p and the iteration continues”.

As mentioned above, since the Donnan model is a thermo-
dynamic one, it is applicable only under equilibrium condi-
tions and does not enable the process kinetics to be calculated.
However, when developing the membrane technologies for
concentration, separation, isolation or removal of different
substances, the need to study kinetic dependencies is clear
(Tanaka 2012; Pyrzynska 2006; Kozmai et al. 2017;
Grzegorczyn and Ślęzak 2006), since temporal dependencies
of concentrations are primary experimental data.

To undertake such research, some other approaches beyond
the Donnan model have been developed. These are based on
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application of the Nernst-Planck equation (Cohen and Cooley
1965; Zhao et al. 2012; Higa and Kira 1992; Szczepański and
Szczepańska 2017) which is one of expressions of linear phe-
nomenological laws in nonequilibrium thermodynamics
(Pyrzynska 2006). However, in our opinion, it does not seem
appropriate to use the equations of nonequilibrium thermody-
namics in which the flows are linear functions of forces to
describe the kinetic dependencies. Such equations can be ap-
plicable only in the area close to equilibrium, where the linear
dependence between the forces and flows can hold
(Kondepudi and Prigogine 1998, page 337). There have there-
fore not been any adequate models and theories developed to
investigate kinetic dependencies.

Our approach is kinetic, rather than thermodynamic.
Therefore, it is free of limitations that are peculiar to thermo-
dynamic models and allows the direct calculation of kinetic
dependences for each ion and each molecule from the very
beginning of the separation of substances through a semiper-
meable membrane to equilibrium. This is important because,
as mentioned earlier, the beginning of a process in which the
system is far from equilibrium is attracting the interest of
researchers (Kozmai et al. 2017).

Our approach is aimed at simplifying the calculation of the
transmembrane transport of ions and molecules due to the
concentration gradient so that it would be possible to quickly
and easily calculate their concentrations in multicomponent
solutions separated by a membrane, at any time until the sys-
tem reaches an equilibrium state, based only on the initial
concentrations of soluble substances. Knowing the ion distri-
bution, one can also calculate the Donnan potential.

This simplification is achieved by improving our under-
standing of the mechanism of the penetration of substances
through a semipermeable membrane. Thanks to this, it was
possible to create an algorithm that does not require either the
membrane potential (as in the Donnan approach) or the equi-
librium distribution of substances (which is required under the
thermodynamic approach) to be considered, but rather allows
kinetic calculations to be employed knowing only the initial
concentrations of the substances involved in the investigated
process. As a result, significant difficulties can be avoided in
numerical calculations even with a substantial increase in the
amount of substances involved in the membrane process un-
der study.

The proposed kinetic approach can be considered as an
extension of the scope of the Donnan approach from equilib-
rium to non-equilibrium conditions. It is necessary to consider
two states, i.e. the initial and equilibrium state, in order to
describe the membrane system under the thermodynamic
Donnan approach, while the kinetic approach requires only
the initial state to be considered. To start the process of particle
distribution through the membrane, it is also necessary to set
nonzero permeability coefficients for penetrating molecules.
The result of the calculation is not only the equilibrium

distribution of ions and molecules in solutions on both sides
of the semipermeable membrane, but also their distribution at
any moment in time.

In this work, we present a kinetic model that we have de-
veloped that enables calculation of the (i) temporal variation
of concentrations of all ions and molecules present in a system
and (ii) the Donnan equilibrium λ (and, correspondingly, the
Donnan membrane potential ED) for composite mixtures of
substances penetrating and nonpenetrating through a mem-
brane. The kinetic model takes into account the degree of
dissociation of these substances, their initial concentrations
in solutions separated by a membrane, and the volumes of
these solutions.

A model taking into account the penetration
of molecules through a membrane

The Donnan model becomes problematic when calculating
multicomponent mixtures involving the incomplete dissocia-
tion of the substances involved and unequal volumes of solu-
tions separated by a membrane. In addition, there is no possi-
bility to analyse the kinetic dependencies. Therefore, to ad-
dress this, we have developed a model based on another prin-
ciple. Contrary to the Donnan model (in which it is supposed
that separate ions penetrate through a membrane), our model
is based on the supposition that uncharged particles (mole-
cules or ion pairs) penetrate through a membrane (Pyrzynska
2006; Duffey et al. 1978; Marcus and Hefter 2006; Johnson
and Pytkowicz 1978; Osterhout 1925). The penetration mech-
anism is simple diffusion. The diffusion of molecules or ion
pairs through a membrane does not violate the electroneutral-
ity of solutions and is described by the Fick equation.

The observation of electroneutrality in the Donnan model
may in fact be interpreted as the membrane permeability for
molecules (Philipse and Vrij 2011), since cations and anions
formed during the dissociation of molecules are transported
through the membrane in equivalent amounts according to the
stoichiometry of their parent molecules. It should be also not-
ed that the effect of an electric field near a membrane on the
permeability of neutral molecules must be much less than on
the permeability of ions. Therefore, in our kinetic model we
did not take into account the effect of membrane potential on
the penetration of molecules through a membrane.

Contrary to the classic Donnan model, in our model we
take into account the dissociation of molecules into ions.
The solutions are therefore considered as a mixture of ions
(having an electric charge) and undissociated molecules or
ion pairs (being electrically neutral). It is hereupon considered
that not only are individual ions nonpenetrating through a
membrane but also all molecules or ion pairs (neutral com-
pounds) containing these ions (salts, acids or bases that could
be formed in the system studied) as well.
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As for the Donnan model, we shall present, for the sake of
simplicity, our kinetic model in terms of concentrations rather
than activities. We suppose that all solutions are ideal; how-
ever, it is taken into account that the volumes of solutions
separated by a membrane may differ.

Let us consider a system similar to that analysed by
Kosterin and Cherny (1991) in which two solutions put into
the i- and e-cells and separated by a semipermeable membrane
of the area S have volumes Vi and Ve, respectively. Initially, the
solution in the e-cell contains substance KB of concentration
C1 and salt KA of concentrationC2, while the solution in the i-
cell contains only salt KA of concentration C3. Substance KB
cannot penetrate through a membrane because of the large size
of the B− anion, while substance KA can diffuse through this
membrane. Both compounds can dissociate into ions:

KB ⇄
k−1

k1

Kþ þ B− ð3Þ

KA ⇄
k−2

k2

Kþ þ A− ð4Þ

Here, k1 and k−1 are the rate constants, respectively, of the
direct (s−1) and reverse (M−1s−1) reactions of dissociation of
nonpenetrating substance KB into ions; k2 and k−2 are the rate
constants, respectively, of the direct (s−1) and reverse (M−1s−1)
reactions of the dissociation of penetrating salt KA into ions.

The corresponding dissociation constants (K1 and K2) may
be written as:

K1 ¼ Kþ½ � B−½ �
KB½ � ¼ k1

k−1
ð5Þ

K2 ¼ Kþ½ � A−½ �
KA½ � ¼ k2

k−2
ð6Þ

If salt KA is a strong electrolyte, then Eqs. (4) and (6) may
be considered as the dissociation of the K+A− ion pair.

It should be noted that concentrations [KB] and [KA] rep-
resent the undissociated amount of molecules of the corre-
sponding substances (or the amount of ions united into ion
pairs) rather than their initial concentration. The initial con-
centrations of substances may be presented as:

C1 ¼ KB½ �e þ B−½ �e ð7Þ
C2 ¼ KA½ �e þ A−½ �e ð8Þ

C3 ¼ KA½ �i þ A−½ �i ¼ KA½ �i þ Kþ½ �i ð9Þ

As a result of the penetration of KA molecules (i.e., their
undissociated amount [KA]) through a membrane, the consid-
ered system begins to move from the initial state to equilibri-
um. The latter will occur when [KA] concentrations in both
solutions become equal (i.e., when the chemical potentials for

undissociated KAmolecules in solutions separated by a mem-
brane become equal):

KA½ �e ¼ KA½ �i ð10Þ

The mathematical model of this process is a system of
differential equations:

d KA½ �e
dt

¼ −DKA KA½ �e− KA½ �i
� � S

Ve

� �
−k2 KA½ �e

þ k−2 Kþ½ �e A−½ �e ð11Þ
d KA½ �i
dt

¼ DKA KA½ �e− KA½ �i
� � S

Vi

� �
−k2 KA½ �i

þ k−2 Kþ½ �i A−½ �i ð12Þ
d KB½ �e
dt

¼ −DKB KB½ �e− KB½ �i
� � S

Ve

� �
−k1 KB½ �e

þ k−1 Kþ½ �e B−½ �e ð13Þ
d KB½ �i
dt

¼ DKB KB½ �e− KB½ �i
� � S

Vi

� �
−k1 KB½ �i

þ k−1 Kþ½ �i B−½ �i ð14Þ
d A−½ �e
dt

¼ k2 KA½ �e−k−2 Kþ½ �e A−½ �e ð15Þ

d A−½ �i
dt

¼ k2 KA½ �i−k−2 Kþ½ �i A−½ �i ð16Þ

d Kþ½ �e
dt

¼ k2 KA½ �e−k−2 Kþ½ �e A−½ �e
þ k1 KB½ �e−k−1 Kþ½ �e B−½ �e ð17Þ

d Kþ½ �i
dt

¼ k2 KA½ �i−k−2 Kþ½ �i A−½ �i
þ k1 KB½ �i−k−1 Kþ½ �i B−½ �i ð18Þ

d B−½ �e
dt

¼ k1 KB½ �e−k−1 Kþ½ �e B−½ �e ð19Þ

d B−½ �i
dt

¼ k1 KB½ �i−k−1 Kþ½ �i B−½ �i ð20Þ

Here, DKA is the permeability coefficient of the membrane
to KA molecules (dm·s−1), while DKB is the permeability co-
efficient of the membrane to KB molecules (dm·s−1).

Differential equations must be written for each molecular
or ion particle present in the e- and i-solutions. In this case,
one should take into account that the ions formed due to the
dissociation of substances present in the system may unite in
any combination forming molecules of substances that were
not present in the system initially. Variation of the concentra-
tions of these substances formed in the solution also has to be
taken into account when setting up a system of differential
equations.
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The numerical solution of this system of equations enables
the temporal variation of the concentration of each reaction
component to be calculated. As mentioned above, the process
proceeds until the concentrations of the undissociated part of
molecules of penetrating salt on each side of the membrane
become equal. In this case, all flows stop and the system
reaches the state of equilibrium. An analysis of the presented
system of differential equations shows that its solution is
unique and stable.

The system of Eqs. (11–20) is a special case of differential
equations on graphs considered by Volpert and Hudyaev
(1975) in the analysis of chemical kinetics equations
(Chapter 12, “Chemical Kinetics Equations”). Therefore, our
analysis of the system of differential Eqs. (11–20) is based on
the results obtained by Volpert and Hudyaev. Theorem (§3,
item 2 “Acyclic Graph”) suggests the existence of a unique
non-negative solution to the system of differential Eqs. (11–
20) on the entire time semi-axis (from 0 to ∞), which has a
limit as t→∞. This limit characterizes the equilibrium state of
the system and is stable with respect to changes in the initial
conditions, as it appears from the theorem (§3, item 4,
“Reversible Reactions”). These properties of the solution are
retained even with an increase in the number of system com-
ponents, since in this case the conditions of the above theo-
rems are also fulfilled (Volpert and Hudyaev 1975).

At equilibrium, the ratios between the concentrations of K+

and A− ions in solutions separated by a membrane obey the
Donnan ratio Eq. (1) (as may be seen from Table 1). For
comparison, the results obtained by Kosterin and Cherny
(1991) within the context of the classic Donnan model under
the identical initial conditions are presented in Table 1.

In the classic Donnan model, first the Donnan ratio (Eq.
(1)) is obtained thermodynamically, and then the equilibrium
concentrations of ions are calculated using Eq. (1).

Within the context of our kinetic model, we not speculate
as to the ratios between the penetrating ions after the system
reaches equilibrium. The proposed model enables the calcu-
lation of the concentrations of all substances (ions and mole-
cules) in the process of system transition from the initial state
to equilibrium. Only at the end of the calculations (when the
concentrations of all ions andmolecules stop changing and the
system reaches equilibrium), on the basis of the equilibrium
concentrations of penetrating ions, does it become possible to
calculate their ratios from Eq. (1) and to check if they are
distributed in accordance with those predicted by the classic
Donnan model. With the calculated equilibrium concentra-
tions of penetrating ions, it is possible also to calculate the
Donnan potential using Eq. (2).

Our kinetic model thereby enables the equilibrium concen-
trations of molecules and ions to be directly calculated. The
results of such a calculation confirm that at equilibrium the
penetrating ions are distributed as predicted by the classic
Donnan theory (Table 1).

It is possible to prove, using the Donnan thermodynamic
approach, the existence of the same equilibrium state both for
the classical Donnan model and model we have developed (see
Appendix). On the one hand, this may suggest that the assump-
tions that form the basis of the Donnan model and our model
can be fulfilled simultaneously. On the other hand, this fact can
be regarded as proof of the equivalence of our kinetic model to
the Donnan model, which allows us to use the approach pro-
posed in this article for modelling membrane processes.

Table 1 Equilibrium concentrations of ions and molecules (in mM) and
the Donnan distribution λ at different volume ratios θ = Vi/Ve: a
comparison of the results obtained when solving the system of
differential Eqs. (11–20) (at a high degree of dissociation of substances
KB and KA – K1 = K2 = 1000 M and impermeability to membrane for
substance KB – DKB = 0; S = 1 dm2) with those obtained by Kosterin and

Cherny (1991) within the framework of the classic Donnan model from
Eqs. (13) and (15–17) in (Kosterin and Cherny 1991) under the same
initial conditions (C1 = 285 mM; C2 = 15 mM; C3 = 300 mM). The
Donnan potential was calculated at T = 300 K (R = 8.314 J/mol·K,
F = 96,490 C/mol)

Equilibrium concentrations
of ions and molecules

Results of solving the system of
Eqs. (11–20)

Results of calculation from Eqs. (13, 15–17)
in (Kosterin and Cherny 1991)

θ = 1 θ = 0.001 θ = 1 θ = 0.001

[K+]e 393.3 300.1 393.4 300.2

[A−]e 108.4 15.2 108.4 15.2

[K+]i = [A−]i 206.5 67.6 206.6 67.6

[KA]i = [KA]e 0.043 0.0046 0 0

[KB]e 0.1 0.086 0 0

[B−]e 284.9 284.9 285.0 285.0

λ = [A−]e/[A
−]i 0.525 0.225 0.525 0.225

λ = [K+]i/[K
+]e 0.525 0.225 0.525 0.225

ED, mV – 16.7 – 38.6 – 16.7 – 38.6
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The system of differential Eqs. (11–20) can be solved nu-
merically with, e.g., mathematical program packages such as
“MatLab” or “Maple” or using the independently developed
(algorithmic) programs with programming languages.
However, it is much simpler and more convenient to use
COPASI problem-oriented software (a complex pathway sim-
ulator, copasi.org), which provides for the possibility of the
existence of several compartments. Furthermore, it is enough
to write down processes of the dissociation of molecules and
their diffusion through the membrane in the form of chemical
equations instead of a system of differential equations.
COPASI automatically converts the reaction network to a set
of differential equations.

The experimental temporal dependencies obtained for a
variety of concentrations of substances participating in the
process under studymay be analysed by fitting the experimen-
tal data to a model defined by differential equations for the
determination of the kinetic parameters of model.

Three important points should be noted.
The system of Eqs. (11–20) is written for the case when

both substances KB and KA present in the system penetrate
through a membrane, with their penetrating speed determined
by the corresponding permeability coefficients. If the perme-
ability coefficient of the given substance is zero, then this
means that this substance cannot penetrate through the
membrane.

When beginning calculations, the initial concentrations
must be presented with an allowance made for dissociation.
This means that firstly it is necessary to calculate the concen-
trations of ions and of undissociatedmolecules for solutions in
each cell. This is of particular importance when kinetic param-
eters of the model are determined. If the equilibrium concen-
trations are calculated, then the total concentrations for mole-
cules (in this case, C1, C2 and C3) and zero concentrations for
ions may be used as the initial concentrations.

If there are no common ions in the salts solutions separated
by the membrane, one should take into account that hydrogen
and hydroxyl ions are present in aqueous solutions. These are
capable of producing molecules of acids and alkalis with the
ions that result from the dissociation of salts. Along with salt
molecules, acid and alkali molecules also can penetrate
through the membrane.

One should therefore take into account all the above factors
when setting up the system of differential equations.

Nature of the Donnan distribution

Taking into account the process of the dissociation of mole-
cules makes it possible to understand more clearly the nature
of the Donnan distribution, i.e., to understand why the equi-
librium distribution of penetrating ions is described by Eq. (1).
This is determined by three factors related to undissociated

molecules. These factors are as follows: (i) equality of the
equilibrium concentrations of penetrating molecules on each
side of the membrane, (ii) molecules dissociating into ions,
and (iii) Le Chatelier’s principle. As a result of the latter, the
uniform distribution of ions of the penetrating substance is
disrupted due to the common ions of the nonpenetrating sub-
stance present in the solution.

Let us consider each of the three above factors in more
detail.

Equality of equilibrium concentrations of penetrating
undissociated molecules on each side of a membrane

As was shown above (see Table 1), if a membrane is perme-
able to molecules (rather than ions), then the state of equilib-
rium occurs when the concentrations of undissociated mole-
cules (penetrating through a membrane) in the i- and e-solu-
tions become equal. As a result, their flows through a mem-
brane in the opposite directions become equal.

The classic Donnanmodel takes into account only ions; the
concentrations of molecules (because of their complete disso-
ciation into ions) are zero, in particular, at equilibrium.
However, the fact that concentrations of molecules are zero
may be considered as the limiting case of dissociation when
the dissociation constants are infinite.

No matter what the particles penetrating through a mem-
brane are - undissociated molecules, ions or simultaneously
ions and molecules (with electroneutrality) - at equilibrium the
equality of concentrations of penetrating undissociated mole-
cules holds:

KA½ �i
KA½ �e

¼ Kþ½ �i A−½ �i
Kþ½ �e A−½ �e

¼ 1 ð21Þ

If in solutions there are several kinds of molecules pene-
trating through a semipermeable membrane, then at equilibri-
um the equality of concentrations of penetrating undissociated
molecules on each side will hold for molecules of all kinds.

Dissociation of molecules into ions

It is evident that electrolytic dissociation is necessary for the
Donnan effect to occur. Due to the dissociation of molecules
in accordance with Eqs. (5) and (6), it is not only ions that
appear in solution. The products of cation and anion concen-
trations also appear in the equations. The equality of these
products in different cells results from equal equilibrium dis-
tributions of undissociated molecules in the given cells as well
as from equal dissociation constants of penetrating substances
of the given type in solutions separated by a semipermeable
membrane.

To clearly see how the Donnan distribution, dissociation
and equality of equilibrium concentrations of undissociated
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molecules in solutions separated by a semipermeable mem-
brane are interrelated, let us present Eq. (21) as

Kþ½ �i A−½ �i ¼ Kþ½ �e A−½ �e ð22Þ

and Eq. (6) separately for solutions in the i- and e-cells:

K2 ¼ Kþ½ �i A−½ �i
KA½ �i

ð23Þ

K2 ¼ Kþ½ �e A−½ �e
KA½ �e

ð24Þ

It follows from these equations that if ions are distributed in
accordance with the Donnan effect (i.e., Eq. (22) holds), then
the equality [KA]e = [KA]i also has to be true, since the nu-
merators in Eqs. (23) and (24) are equal (Osterhout 1929).
Moreover, vice versa, if the equilibrium concentrations of un-
dissociated penetrating salts are the same, then the Donnan
Eq. (22) must hold.

Le Chatelier’s principle

However, one should note that a third factor is required to
reveal the Donnan effect (non-uniform distribution of ions),
namely Le Chatelier’s principle, which is related to the pres-
ence of common ions of the substances penetrating and
nonpenetrating through a membrane. The electrolytic dissoci-
ation of molecules into ions per se can provide only uniform
distribution of ions [KZ+]i = [KZ+]e and [AZ–]i = [AZ–]e (i.e.,
λ = 1) in solutions separated by a membrane (see Table 2,
columns 2 and 5). The presence of an additional number of
K+ ions in the i-cell due to dissociation of substance KB

cannot change the equilibrium constant K2 characterizing the
dissociation of salt KA. However, this causes the redistribu-
tion of ions in the i-cell, thus leading to a disturbance of the
uniform distribution of ions in solutions separated by a mem-
brane (i.e., to the Donnan effect when λ > 1).

As the total concentration of K+ ions increases, the equilib-
rium shifts (in accordance with Le Chatelier’s principle) to-
wards increasing the concentration of undissociated KA mol-
ecules due to binding the A− counterion. As a result, the con-
centration of A− decreases just as much as the concentration of
K+ increases (relative to the concentrations of ions in the ad-
jacent cell).

A shift in equilibrium due to Le Chatelier’s principle is
clearly seen from the results presented in Table 2. This shows
the results of the equilibrium distribution of ions and undisso-
ciated molecules in solutions separated by a semipermeable
membrane in the presence and absence of a nonpenetrating
substance. If a nonpenetrating substance KB is present in the
system, then the equilibrium concentration of undissociated
molecules of penetrating substance KA is always higher than
in the case of a lack of substance KB (e.g., in column 4, the
equilibrium concentration is almost twice as big as in column
1). This indicates that adding substance KB (which is a source
of K+ cations) shifts the equilibrium towards an increase in the
concentration of undissociated KA molecules. Moreover, this
gives rise to their concentration in both solutions separated by
a membrane, as compared with a situation when there was no
nonpenetrating substance in the system.

On the other hand, due to transferring substance KA into
solution in the e-cell (with subsequent dissociation), reaction
equilibrium (Eq. (3) also shifts in accordance with Le
Chatelier’s principle. One can calculate the concentrations of

Table 2 Equilibrium distribution of ions and undissociated molecules
(inmM) in solutions separated by a semipermeable membrane (Vi = Ve) in
the presence and absence of nonpenetrating substance KB (with
concentration C1) in the solution in the e-cell at different dissociation

constants of substance KB (K1) and penetrating through membrane
substance KA (K2). The initial (total) concentration of substance KA in
the solution in the i-cell – C3 = 0.3 М (C2 = 0)

Equilibrium concentrations
of ions and molecules
(in mM)

C3 = 0.3 М;
C1 = 0 М;
K1 = 0;
K2 = 10М

C3 = 0.3 М;
C1 = 0.3 М; K1 = 0.1
М;
K2 = 10М

C3 = 0.3 М;
C1 = 0.3 М; K1 = 10
М;
K2 = 10М

C3 = 0.3 М;
C1 = 0 М;
K1 = 0;
K2 = 0.1 М

C3 = 0.3 М;
C1 = 0.3 М; K1 = 0.1
М;
K2 = 0.1 М

1 2 3 4 5 6

[K+]e 147.8 220.6 386.7 82.3 163.3

[A−]e 147.8 127.0 97.9 82.3 49.3

[K+]i = [A−]i 147.8 167.4 194.5 82.3 89.7

[KA]i = [KA]e 2.2 2.8 3.8 67.7 80.5

Ci = [KA]i + [A−]i 150.0 170.2 198.3 150.0 170.2

Ce = [KA]e + [A−]e 150.0 129.8 101.7 150.0 129.8

[KB]e 0 206.4 11.2 0 186.0

[B−]e 0 93.6 288.8 0 114.0

λ = [A−]e/[A
−]i 1.000 0.759 0.503 1.000 0.55

λ = [K+]i/[K
+]e 1.000 0.759 0.503 1.000 0.55
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ions and undissociated molecules in solution from the e-cell in
the initial state (at C1 = 0.3 M and K1 = 0.1 M). The concen-
tration of K+ and B− ions is 130.3 mM, while that of the
undissociated amount of KB molecules is 169.7 mM. One
can see from Table 2 (columns 3 and 6) that if substance KA
is present in solution in the e-cell, then the concentration of the
undissociated amount of KBmolecules increases considerably.

The presence of common ions of the substances penetrating
and nonpenetrating through the membrane therefore leads to an
increase in the concentrations of undissociated molecules of
those substances due to Le Chatelier’s principle. In this case,
the concentration of common ions increases, while that of coun-
terions decreases. This results in an irregular distribution of ions
in solutions separated by a membrane, i.e., in the Donnan effect.

One can see from Table 2 that if nonpenetrating substance
KB is present in the system, then, at equilibrium, substance
KA is irregularly distributed in the solutions on either side of
the membrane (Ci > Ce).

When comparing the results presented in columns 3 and 6
of Table 2, one should note that the equilibrium distributions λ
of ions differ considerably, although the concentrations of
substances KA and KB in the initial states were equal
(C1 = C3 = 0.3 M). Moreover, the amount of substance KA
that has moved from the i-cell into the e-cell is the same too
(compare the Ci and Ce values). In the case under study, the
difference in the equilibrium distribution of ions is due to the
dissociation constants of the penetrating substance.

When analysing the equilibrium distribution of substances,
ions and undissociated molecules in solutions separated by a
membrane, one can see that only the undissociated amount of
molecules of substances penetrating through amembrane at equi-
librium is distributed regularly, both in the presence and absence
of nonpenetrating substances in the system. One may see in this

the demonstration of the more fundamental nature of undissoci-
ated molecules as compared to ions in the membrane processes.

The Donnan effect is thereby the result of three factors,
namely, (i) the equality of equilibrium concentrations of pen-
etrating molecules on each side of the membrane, (ii) the elec-
trolytic dissociation of molecules, and (iii) Le Chatelier’s prin-
ciple related to the presence of common ions in substances
penetrating and nonpenetrating through a membrane.

Effect of dissociation constants of salts
on the Donnan distribution

One can see from Table 1 that at equilibrium both our kinetic
model and the classic Donnan model lead to the same results.
However, this is true only in the case of relatively high disso-
ciation constants. Their variation essentially influences both
the Donnan distribution and the ED value (Table 3).

A reduction in the dissociation constant of nonpenetrating
molecules leads to a decrease both in the Donnan distribution
(λ approaches one) and the absolute value of ED due to a
decrease in the concentration of nonpenetrating ions respon-
sible for the irregular distribution of penetrating ions.

Furthermore, a decrease in the dissociation constant of
penetrating salt (ion pair) leads to a considerable increase
in the Donnan distribution (growth of ion distribution irreg-
ularity) and an increase of the absolute value of ED since a
reduction of K2 is equivalent to a decrease of the KA con-
centration in the Donnan model. These effects are clearly
seen when comparing the data from Table 1 and Table 3.

Hence the Donnan distribution λ (irregularity of ion distribu-
tion) and accordingly absolute value of the Donnan membrane
potential ED increases if: (i) the nonpenetrating salt concentration

Table 3 Effect of dissociation constants of penetrating (K2) and
nonpenetrating (K1) substances at different volume ratios θ = Vi/Ve on
the values of the Donnan distribution λ andmembrane potential ED under

isotonic conditions at different initial concentrations (all concentrations
are given in mM). The Donnan potential was calculated at T = 300 K
(R = 8.314 J/mol·K, F = 96,490 C/mol). S = 1 dm2

Equilibrium concentrations of ions and molecules C1 = 285 mM; K1 = 1 mM
C2 = 15 mM; K2 = 103 M
C3 = 300 mM

C1 = 285 mM; K1 = 103 M
C2 = 15 mM; K2 = 1 mM
C3 = 300 mM

C1 = 495 mM; K1 = 103 M
C2 = 5 mM; K2 = 17.5 μM
C3 = 500 mM

θ = 1 θ = 0.001 θ = 1 θ = 0.001 θ = 0.001

[K+]e 158.8 25.9 285.4 285.0 494.8

[A−]e 157.0 15.3 0.5 0.05 0.0002

[K+]i = [A−]i 157.9 19.9 12.3 3.9 0.3

[KA]i = [KA]e 0.025 0.0004 151.1 15.2 5.5

[KB]e 283.2 274.4 0.08 0.08 0.2

[B−]e 1.8 10.6 284.9 284.9 494.8

λ = [A−]e/[A
−]i 0.994 0.768 0.043 0.014 0.0006

λ = [K+]i/[K
+]e 0.994 0.768 0.043 0.014 0.0006

ED, mV – 0.16 – 6.8 – 81 – 110 – 192
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in one of the solutions and its dissociation constant increases, (ii)
the total penetrating salt concentration and its dissociation con-
stant decreases, and (iii) the ratio decreases between the volumes
of solution in which nonpenetrating salt is absent and solution
containing the nonpenetrating substance.

If a penetrating substance with a dissociation constant
K2 = 0.0175 mM (characteristic of the dissociation of acetic
acid, i.e., in this case HAc is a penetrating substance KA) and
higher concentrations are used, then it is possible to reach
under isotonic conditions a sufficiently high membrane poten-
tial of 190 mV (Table 3, the last column).

A possibility to reach such high potentials (compared to the
maximum potentials observed in living cells) can be applied
when calibrating potential-sensitive probes. Vesicles are the
usual model system for performing such calibrations. The po-
tentials of a desired value can be obtained on their membrane
(Mazur 2014). These potentials are achieved under conditions
when the equilibrium concentrations of ions do not change for
a long time. This makes it possible to measure the membrane
potential and corresponding fluorescence of a potential-
dependent probe with sufficient accuracy. Our model enables
the calculation of the conditions for obtaining potentials of a
desired value at the membranes of vesicles.

If equilibrium is reached rather slowly, then our model can be
also applied to determine the point of time when the studied
membrane potential ED or ion concentration differ from their
equilibrium values by a certain value, e.g., comparable with the
experimental accuracy (by 1% or 5%). By way of example, one
may consider the investigations by Vega et al. (2010) dealing
with the determination of concentrations of free ions in natural
systemswhere the authors use t95%, i.e., the time required for free
ions to reach 95% of the equilibrium concentrations.

Nelhof and Sollner (1957) showed that when along with
nonpenetrating ions, several penetrating ions (whose penetrat-
ing speeds through a membrane differ considerably) are pres-
ent in the membrane system, then, at some point of time, the
concentration of penetrating ions of one type may be much
bigger or smaller than its concentration at equilibrium. The
presence of such effects has been established experimentally
by the authors. Our kinetic model may be very useful in such
cases, not only for determining the point of time at which the
maximum orminimum concentration of given ions is reached,
but also for “designing” and analyzing similar systems in
which it is possible (i) to reach higher separation than at equi-
librium, and (ii) to save time since optimal conditions for the
separation of substances are achieved much faster than equi-
librium (see, for example, Fig. 1).

The proposed kinetic model can be used to calculate the per-
meability coefficients of substances through the membrane in
diffusion dialysis. Similar studies were performed by Luo et al.
(2013) to simulate the recovery of inorganic acids from metal
treatment wastes by diffusion dialysis for systems containing
HCl in the presence of sodium, copper, zinc, iron, nickel and

aluminium chlorides. For this purpose, only the temporal depen-
dences of the concentration of ions in solutions separated by a
membrane were used. Our model should be especially effective
for studies where the initial part of the process is important and
where it is necessary to take into account the dissociation of salts
and the change in the volume of solutions during the transfer of
substances through the membrane.

Let us demonstrate one more effect that can manifest itself
at the membrane separation of substances differing in the de-
gree of dissociation. Let us put a solution with the same con-
centration (0.3 M) of substances KR and NaR into the e-cell,
while distilled water is placed in the i-cell. The permeability
coefficients of these substances are the same (600 dm/h); how-
ever, the degree of NaR dissociation is 104 M, while that of
KR is 102 M. It should be stressed that there are no
nonpenetrating substances in the given system, and both sub-
stances penetrate through the membrane with the same rate.
All the previously developed theories of membrane transport
(in particular, the Donnan theory) cannot be used for the de-
scription and investigation of such systems.

The temporal variation of concentrations of Na+ and K+

cations in solutions separated by a membrane is shown in
Fig. 1. One can see that a difference only in the degree of
dissociation of the given substances enables their effective
separation. However, the optimum separation conditions
should be determined for this, since the separation of the given
substrates does not occur under equilibrium: they are distrib-
uted in solutions on each side of the membranes with the same
concentrations (0.15 M).

Fig. 1 Concentration dependenciesC of Na+ cations (curves 1 and 2) and
K+ cations (curves 3 and 4) on time t in the solutions in the e-cell (curves 1
and 3) and i-cell (curves 2 and 4). For both substances (KR and NaR), the
initial total concentrations in the solution in the e-cell are 0.3 M and the
permeability coefficients are 600 dm/h. The dissociation constants of KR
and NaR are 102 M (k1 = 105 h−1, k−1 = 103 M−1 h−1 and 104 M
(k2 = 105 h−1, k−2 = 10 M−1 h−1), respectively. The solution volumes in
the e- and i-cells are equal (Vi = Ve). S = 1 dm2
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However, one can see from Fig. 1 that 1.16 h after starting
the separation process the maximum K+ amount – 22.7 times
bigger than Na+ (i.e., 95.6%) – appears in the solution in the i-
cell. In this case, the K+ concentration exceeds its equilibrium
concentration and is 196.7 mM (it should be noted that for
0.9 h – from 0.26 h to 1.16 h – K+ cations are transported
against their concentration gradient). This effect does not ap-
pear if the dissociation constants of both substances are equal.
In this case, the ratio between the concentrations of cations
remains equal to one during the whole process.

The smaller the elapsed time from the start of the separation
process (relative to 1.16 h), the higher the content of K+ cations
(relative to the total amount of ions) in solution in the i-cell and
the lower its concentration. For example, after 0.5 h the K+ con-
centration is 184.6 mM - 44.8 times higher than the Na+ concen-
tration (i.e., there is about 2% Na+ cations in the solution).

The greater the elapsed time from the start of the separation
process (relative to 1.16 h), the lower the content of K+ cations
in solution in the i-cell and the lower its concentration. For
example, after 5 h the K+ concentration is 189.2 mM - only 5.9
times higher than the Na+ concentration (i.e., there is about
17% Na+ cations in the solution).

When analysing the data presented in Fig. 1, one may con-
clude that the relative penetrating speed ofK+ cations through the
membrane ismuch higher than that of Na+ cations. However, this
is due to the difference in the concentrations of undissociated
molecules in solution in the e-cell rather than the permeability
coefficients. So, at the moment t = 0, the solution in the e-cell
contains 1.78 mM of undissociated [KR] molecules and
0.0179 mM of undissociated [NaR] molecules. Due to the
hundred-fold difference in concentrations, even at the same pen-
etrating speed through the membrane, a hundred times more K+

ions (as compared to Na+ ions) pass through at the starting mo-
ment. This creates the illusion that K+ ions penetrate through the
membrane more quickly than Na+ ions.

The above example shows that even a difference in the
dissociation degree of two substances is sufficient for their
membrane separation. This phenomenon may possibly be
physiologically important because the relative penetrating
speed of ions through a membrane can be regulated by a
protein that can bind ions with different dissociation constants.

In addition to the specific examples of the application
of the proposed kinetic model presented above, it can be
also used for other purposes. It can be used to simulate
processes whose driving force is a concentration gradient,
for example, for dialysis. It should be noted again that the
developed model, presented as a system of differential
Eqs. (11–20), is only a particular example showing how
to build a kinetic model in the general case based on a
new principle and show its capabilities. Of course, to sim-
ulate a specific process, it is necessary to create a system
of equations that considers all the components involved in
the studied process.

The advantage of the model, in our opinion, is that most of
the constants are rate constants of the dissociation of mole-
cules into ions and ion associations into molecules. The values
of many of these constants are known or can be determined in
independent experiments. The nature of membranes can affect
only the permeability coefficients of substances, which can be
determined by comparing experimental results with model
calculations (Luo et al. 2013). It is also possible to make the
model more complex in order to associate the value of perme-
ability coefficients to membrane properties.

The importance of our approach for the simulation of mem-
brane transport is that it enhances our understanding of the phys-
ical processes of the transport of various substances through a
semipermeable membrane. It provides opportunities for improv-
ing existing models of membrane processes, developing new
models based on different principles, and allows looking from
a different perspective at the processes occurring in living organ-
isms with the participation of biological membranes.

Conclusions

We have developed a model to calculate the kinetics of the
redistribution of ions and molecules through a semipermeable
membrane in complex mixtures of substances penetrating and
nonpenetrating through a membrane. It takes into account the
degree of dissociation of these substances, their initial (total)
concentrations in solutions separated by a membrane, and the
volumes of these solutions.

Contrary to the Donnan model based on the assumption
that only ions can penetrate through a membrane, our model
is based on the assumption that uncharged particles – mole-
cules or ion pairs – diffuse through a membrane.

Using our model, it is possible to calculate the temporal
variation of the concentration of each reaction component in
the system from the initial state to equilibrium. The state of
equilibrium comes when the concentrations of penetrating un-
dissociated molecules on each side of the membrane become
equal. The Donnan distribution results directly from the kinet-
ic calculation of the process of reaching equilibrium.

The Donnan effect results from the dissociation and equal-
ity of concentrations of molecules or ion pairs on each side of
the membrane at equilibrium as well as from Le Chatelier’s
principle related to the presence of common ions of the sub-
stances penetrating and nonpenetrating through a membrane.

It is shown that only a slight difference between the degrees
of dissociation of two substances can be used for their mem-
brane separation.

It is also shown that the Donnan distribution (irregularity of
ion distribution) and accordingly absolute value of the
Donnan membrane potential increases if : ( i ) the
nonpenetrating salt concentration (in one of the solutions)
and its dissociation constant increases, (ii) the total penetrating
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salt concentration and its dissociation constant decreases, and
(iii) the volumes ratio increases (between solutions with and
without a nonpenetrating substance).
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Appendix

We will show that our kinetic model based on the assumption
that only molecules (uncharged particles) penetrate through a
membrane, and the Donnan model, based on the assumption
that only ions can penetrate through a membrane, are equiva-
lent. For this purpose, we use the “classical” thermodynamic
approach and consider two states of the membrane system: the
initial and equilibrium states.

In the initial state, the substance KB at concentration C1

and infinitely large dissociation constantK1, is located in the i-
cell (i.e., only K+ and B− ions are present) while salt KAwith
concentration C2 and relatively small dissociation constant K2

is located in the e-cell. It should be taken into account that K+

and A− ions are in the i-cell simultaneously with the undisso-
ciated KA molecules. The cell volumes are equal to Vi = Ve.

To calculate the concentrations of ions and molecules in the
e-cell, we designate z = [K+] = [A−] and write down an equa-
tion for the dissociation constant K2 (taking into account Eq.
(8)):
K2 ¼ z2

C2−z
ðA1Þ

Solving the quadratic equation in z, we get:

z ¼
−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2C2

q
2

ðA2Þ

Thereby the initial state of the system under investigation
may be presented as:

[K+]i = C1 | [K
+]e =

−K2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2þ4K2C2

p
2 .

[B−]i = C1 | [A
−]e =

−K2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2þ4K2C2

p
2

| [KA]e =
2C2þK2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2þ4K2C2

p
2

Firstly, we will calculate the equilibrium state using the
Donnan approach, i.e. we assume that only K+ and A− ions
penetrate through the membrane.

As a result of permeable K+ and A− ions passing through
the membrane, some amount of salt moves from the e-cell into
the i-cell, taking into account that the electroneutrality condi-
tion requires transferring equal amounts of K+ and A− ions. As
a result, the total salt concentration in the e-cell decreases by x
and is thenC2 – x. In accordancewith Eq. (A1) in whichC2 – x
has to be written in the denominator instead of C2, it is possi-
ble to calculate the concentrations of ions and molecules in the
e-cell at equilibrium.

Some of the ions that penetrate into the i-cell formmolecules
whose concentration is denoted by y. Then the concentrations of
K+ cations and A− anionsmay be written asC1 + x – y and x – y,
respectively. The concentrations of ions and undissociated mol-
ecules are related by the following equation:

K2 ¼ C1 þ x−yð Þ x−yð Þ
y

ðA3Þ

with which y can be calculated:

y ¼
C1 þ K2ð Þ þ 2x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q
2

ðA4Þ

Thereby the equilibrium state of the system under investi-
gation may be presented as:

Kþ½ �i ¼
C1−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q
2

j Kþ½ �e ¼
−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q

2

A−½ �i ¼
−C1−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q
2

j A−½ �e ¼
−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q

2

KA½ �i ¼
C1 þ K2ð Þ þ 2x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q
2

j KA½ �e ¼
2 C2−xð Þ þ K2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q
2

B−½ �i ¼ C1 j
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Now, let us assume that only undissociated KA molecules
penetrate through the membrane like in our kinetic approach. In
the process of transition of the system from the initial state to
the equilibrium state, the total salt concentration in the e-cell
will decrease by x, and these xmoles of salt KAwill move to the
solution located in the i-cell. In this case, the concentrations of
ions and molecules in the e-cell at equilibrium are as follows:

Kþ½ �e ¼ A�½ �e ¼
−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q

2
ðA5Þ

KA½ �e ¼
2 C2−xð Þ þ K2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q
2

ðA6Þ

Some KA molecules that have moved to the i-cell dissoci-
ate into ions. Let us denote the concentration of resulting ions
as y. Then the concentrations of K+ cations and A− anions may
be written as C1 + y and y, respectively The concentrations of
ions and undissociated molecules are related by the following
equation:

K2 ¼ y C1 þ yð Þ
x−y

ðA7Þ

with which y can be calculated:

y ¼
− C1 þ K2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q
2

ðA8Þ

The resulting expression is the concentration of the A−

anion in i-cell ([A−]i). Now, it is possible to calculate [K+]i
and [KA]i:

Kþ½ �i ¼ C1 þ y ¼
C1−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q
2

ðA9Þ

KA½ �i ¼ x� y ¼
C1 þ K2ð Þ þ 2x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q
2

ðA10Þ

As you can see, both approaches lead to identical results,
suggesting their equivalence. Thus, regardless of whether un-
dissociated molecules or individual ions are transported
through the membrane (in quantities guaranteeing the mainte-
nance of electrical neutrality), the system reaches the same
equilibrium state (from an identical initial state).

We also show that both approaches lead to the equality of
equilibrium concentrations of undissociated salt molecules in
solutions separated by a semipermeable membrane.

At equilibrium, the penetrating ions obey the Donnan dis-
tribution, so the following equations may be written:

λ ¼ Kþ½ �i
Kþ½ �e

¼
C1−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q

−K2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q ðA11Þ

λ ¼ A−½ �e
A−½ �i

¼
−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q

−C1−K2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q ðA12Þ

Let us compare the concentrations of undissociated KA
molecules in the i- and e-cells:

KA½ �i
KA½ �e

¼
C1 þ K2ð Þ þ 2x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q

2 C2−xð Þ þ K2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q ðA13Þ

It is difficult to determine from Eq. (A13) if the above ratio
equals one. So let us focus on Eqs. (A11) and (A12): their ratio
equals one.

Kþ½ �i A−½ �i
Kþ½ �e A−½ �e

¼
C1−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q	 

−C1−K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q	 


−K2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q	 


−K2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q	 
 ¼ 1

ðA14Þ

After transformations we get:

Kþ½ �i A−½ �i
Kþ½ �e A−½ �e

¼
2K2 C1 þ K2ð Þ þ 2x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ K2ð Þ2 þ 4xK2

q� �

2K2 2 C2−xð Þ þ K2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þ 4K2 C2−xð Þ
q� � ¼ 1 ðA15Þ

The comparison between Eqs. (A13) and (A15) clearly
shows that at equilibrium the concentrations of undissociated
molecules in the cells separated by a membrane are equal:

KA½ �i
KA½ �e

¼ Kþ½ �i A−½ �i
Kþ½ �e A−½ �e

¼ 1 ðA16Þ
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