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Abstract Traumatic brain injury (TBI) is still the leading
cause of disability in young adults worldwide. The major
mechanisms – diffuse axonal injury, cerebral contusion, ische-
mic neurological damage, and intracranial hematomas have all
been shown to be associated with mitochondrial dysfunction
in some form. Mitochondrial dysfunction in TBI patients is an
active area of research, and attempts to manipulate neuronal/
astrocytic metabolism to improve outcomes have been met
with limited translational success. Previously, several preclin-
ical and clinical studies on TBI induced mitochondrial dys-
function have focused on opening of the mitochondrial per-
meability transition pore (PTP), consequent neurodegenera-
tion and attempts to mitigate this degeneration with cyclospor-
ine A (CsA) or analogous drugs, and have been unsuccessful.
Recent insights into normal mitochondrial dynamics and into
diseases such as inherited mitochondrial neuropathies, sepsis
and organ failure could provide novel opportunities to develop
mitochondria-based neuroprotective treatments that could im-
prove severe TBI outcomes. This review summarizes those
aspects of mitochondrial dysfunction underlying TBI pathol-
ogy with special attention to models of penetrating traumatic
brain injury, an epidemic in modern American society.
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Introduction

In the United States, an estimated 1.4 million people suffer a
traumatic brain injury (TBI) each year (Langlois et al. 2005;
Binder et al. 2005). About 50,000 people die and at least 5.3
million live with severe disabilities related to TBI (Binder
et al. 2005). Social costs, including medical costs and loss of
income, are estimated at 48.3 billion dollars a year by the
Centers for Disease Control and Prevention. Worldwide, TBI
is recognized as the leading cause of mortality and morbidity
in young adults (Fu and Tummala 2005; Vink and Nimmo
2009). Although not yet demonstrated in patients, preclinical
studies suggest aging increases cortical synaptic mitochondria
susceptibility to injury (Gilmer et al. 2010) and changes the
nature of innate immune response (Kollmann et al. 2012)
which in turn may influence TBI outcomes.

In spite of numerous studies of TBI, patient outcomes
remain poor (Langlois et al. 2005). Amongst the different
forms of TBI, penetrating traumatic brain injuries (PTBI) are
associated with the worst outcomes and highest death rates
and especially affect young people (Binder et al. 2005).
Severity of the primary brain injury determines the prognosis,
but its evolution and magnification by secondary damage
heavily influence outcome. There is now much evidence that
most secondary brain injury mechanisms such as hypoxia,
hypotension, sepsis, hyperthermia, seizures, anemia, and hy-
poglycemia can be optimally managed in the intensive care
unit to favorably influence outcomes. However, despite ex-
tensive efforts to develop new neuroprotective therapies, and
about 30 phase III clinical trials, no therapies, other than
surgery and neurocritical care management, are available for
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PTBI (Fu and Tummala 2005). The consensus in TBI research
is that neuroinflammation, free radical formation, and meta-
bolic dysfunction are key determinants of outcomes (Gaetz
2004). All these converge to disrupt metabolism, which has
inspired numerous basic and clinical studies on glucose and
oxygen metabolism in mitochondria (Soustiel and Sviri 2007;
Vespa et al. 2005). Mitochondria have been shown to be a key
participant in TBI pathophysiology. Continuous, normal mi-
tochondrial function is vitally important to maintain homeo-
stasis in neural cellular metabolism, therefore, when mito-
chondrial dysfunction occurs after TBI, patients with pro-
found mitochondrial impairment have the poorest prognosis
(Signoretti et al. 2008).

Since the demonstration of mitochondrial dysfunction in
TBI (Xiong et al. 1997), several drugs affecting this mecha-
nism have also been studied and few are used in neurocritical
care (Clausen and Bullock 2001; Hanafy and Selim 2012).
Growing evidence suggests that for neuroprotection after TBI
there is an unmet need for mitochondria-targeted therapeutics
(Waldmeier et al. 2003).

This review will summarize the data on normal mitochon-
drial function in central nervous system (CNS) cells, outline
metabolic impairment following TBI/PTBI, and discuss old
and new therapeutic strategies including drug treatment aimed

at cleaning up broken mitochondria and rebuilding metabolic
capacity via mitochondrial biogenesis after injury.

Physiological review

Mitochondria: the metabolic hub of neurons and glia

Core metabolic processes such as glycogen catabolism and
glycolysis generate pyruvate, which is a key node in the
branching pathways of glucose, fatty acid and amino acid
metabolism. Pyruvate can (i) enter mitochondria through the
mitochondrial pyruvate carrier (MPC), be subjected to the
citric acid cycle/tricarboxylic acid (TCA) and oxidative phos-
phorylation to produce adenosine triphosphate (ATP), or be
carboxylated to form oxaloacetate (ii) accumulate in the cyto-
plasm, particularly during mitochondrial dysfunction, and is
transported into the extracellular space via monocarboxylate
transporter (MCT) (DeBerardinis and Thompson 2012;
Halestrap 2013; Schell and Rutter 2013) (Fig. 1). The reduc-
ing agents produced by the citric acid cycle are used in
oxidative phosphorylation on the electron transport chain,
which is comprised of four high conductance multimeric
enzyme supercomplexes (CI–CIV) to generate an

Fig. 1 Schematic showing mitochondria at the hub of metabolic pathways
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electrochemical proton gradient (Δψm) (Fig. 1) (Yokobori
et al. 2013a). The mammalian CI supercomplex is referred
to as the “respirasome” or “respiratory string.” (Gomez et al.
2009). Chemical staining for this complex serves as an
indicator of mitochondrial function in TBI research
(Fig. 2), and new molecules with such properties may
help image human TBI in the near future (Tsukada et al.
2014). Apart from ATP synthesis, membrane potential
(Δψm) is also used to electrophoretically import nuclear
proteins. In addition, the citric acid cycle is the major
metabolic hub of the cell, as it provides intermediates
such as α-ketoglutarate and oxaloacetate for amino acid
biosynthesis (Owen et al. 2002). In the brain, the citric
acid cycle intermediate α-ketoglutarate is lost through
synaptic release of its derivatives glutamate and GABA
from neurons and through export of glutamine from glia
(Hertz 2006). Glutamate is the most abundant brain me-
tabolite and is used as an indicator of a functional citric
acid cycle in TBI patients. In addition to glutamate, N-
Acetyl-aspartate (NAA) is used as “a neuronal marker” in
the clinical setting, primarily by nuclear magnetic reso-
nance (NMR) practioners. NAA is synthesized in neuro-
nal mitochondria from aspartic acid and acetyl-coenzyme
A. NAA signals are lost following traumatic brain injury.
However, to date there is no generally accepted physio-
logical (primary) metabolic role for NAA (Simmons et al.
1991; Clark et al. 2006). Genetic mutation to the
aspartoacylase (ASPA) gene leads to acetate deficiency
and is associated with Canavan disease (CD), a fatal
neurodegenerative disorder (Traeger and Rapin 1998). In
addition, it is hypothesized that NAA can be converted to
glutamate via the citric acid cycle, and hence could act as
a glutamate reservoir (Clark et al. 2006).

Mitohormesis and mitochondrial dynamics

Resident mitochondrial proteins in combination with proteins
drawn across mitochondrial membranes maintain the dynamic
network of mitochondria that is continuously remodeled by
fusion and fission (Harbauer et al. 2014). Cells do not generate
mitochondria de novo, but instead identify and dispose of
defective mitochondria while stimulating healthy mitochon-
dria to proliferate through mitochondrial biogenesis (Yun and
Finkel 2014). This process called mitochondrial dynamics has
become an exciting new frontier in TBI mitochondrial biology
(Perez-Pinzon et al. 2012). Mitochondrial dynamics is com-
prised of four broad categories: organelle biogenesis, move-
ment, fusion-fission, and mitophagy which are all critical to
maintain function (Chan et al. 2011). Mitochondrial fusion
involves merging the inner and outer mitochondrial mem-
branes (Palmer et al. 2011). Fusion of the outer membrane is
governed primarily by the GTPases mitofusin 1 (Mfn1) and
mitofusin 2 (Mfn2) (Perez-Pinzon et al. 2012). Fusion of the
inner mitochondrial membrane is dictated by the optic atrophy
1 (Opa-1) protein. Cleavage of Opa-1 dissipates mitochondrial
membrane potential (Δψm) (Ehses et al. 2009) leading to
greater fission (Palmer et al. 2011). In healthy cells, the
PTEN Induced Kinase 1 (PINK1) is partially imported into
mitochondria in a membrane potential (Δψm)-dependent
manner and processed by the inner membrane rhomboid
protease, presenilin-associated rhomboid-like (PARL), which
cleaves within the transmembrane segment and generates a
destabilizing N- terminus, followed by retro-translocation of
cleaved PINK1 into the cytosol and degradation by the
ubiquitin-proteasome system. Dissipation of Δψm in dam-
aged mitochondria leads to an accumulation of unprocessed
PINK1 and recruitment of the ubiquitin ligase Parkin to

Fig. 2 Schematics of TTC
stained sections from different
TBI models shows the nature of
mitochondrial dysfunction
specifically that of complex I
(white area) (Baskaya et al. 2000;
Perri et al. 1997; Yao et al. 2009;
Yokobori et al. 2013a)
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mitochondria. Parkin mediates ubiquitination of mitochondri-
al outer membrane proteins (including mitofusins), leads to a
degradation of damaged mitochondria by mitophagy (Chan
et al. 2011; Jin and Youle 2012; Matsuda et al. 2010). Defects
in mitochondrial dynamics that result in respiratory chain
impairment underlie Parkinson’s disease (Kim et al. 2007;
Twig et al. 2008; Westermann 2010; Amo et al. 2011).
Mitophagy selectively removes a single deleterious mitochon-
drion (which is discussed later) (Westermann 2010), separat-
ing damaged from healthy mitochondria (Twig et al. 2008).
Damaged/depolarized/reactive oxygen species (ROS) produc-
ing mitochondria are marked by externalized cardiolipin and
surface ubiquitination, recognized by PINK1-Parkin and re-
moved by mitophagy (Nunnari and Suomalainen 2012; Ji
et al. 2012). Until recently, each cell was thought to degrade
its own broken mitochondria. However, recent work by Davis
et al., uncovered a novel mechanism of acidified mitochon-
drial degradation called transmitophagy. In retinal ganglion
cell axons of mice, mitochondria are shed at the optic nerve
head (ONH), and these mitochondria are internalized and
degraded by adjacent astrocytes (Davis et al. 2014; Nguyen
et al. 2011). This new phenomenon remains to be explored in
the context of TBI.We can postulate this role for the astrocytes
could be impeded by edema and perhaps explain how im-
proved intracranial pressure (ICP) management impacts out-
comes. The need for multiple mitophagy mechanisms arises
from the highly deleterious effects of broken mitochondria.
Mitochondrial components such as formyl peptides and mito-
chondrial DNA due to their bacterial origin can activate innate
immunity leading to cardiomyopathy or neurodegeneration
(Oka et al. 2012; Adamczak et al. 2014; Zhang et al. 2010).
Mitochondria have been compared to “Pandora’s box”
(Zamzami and Kroemer 2001), recalling the Greek legend of
a gift from Zeus to Pandora which should have never been
opened, and once opened, spread all the troubles the world
had ever experienced. Unlike the consequences of the
“Pandora’s box” opening, genetic engineering has been suc-
cessfully used to decrease the burden of sickmitochondria and
promote healing in inherited mitochondrial models (Moraes
2014).

Aside from its role in mitochondrial fusion, PINK 1 regu-
lated Mfn2 has also been noted to play a critical role in the
axonal transport of mitochondria (Liu et al. 2012; Misko et al.
2010; Russo et al. 2009). Mutations that disrupt mitochondrial
import, dynamics, and transport result in neurodegenerative
disorders (Duncan and Goldstein 2006; De Vos et al. 2008;
Wang et al. 2014).Mitochondrial fission and fusion are altered
by injury induced hypoxia and reactive oxygen species
(Suliman and Piantadosi 2014). Recently insulin has been
shown to regulate these processes (Parra et al. 2014).
Further, mitochondrial biogenesis is altered by stimuli as
diverse, as nutrient availability, hormones, growth factors
and temperature fluctuations. Several signaling pathways

regulate mitochondrial biogenesis. Among these transcription
factors, nuclear respiratory factors (NRF1 and NRF2),
estrogen-related receptors (ERR-α, ERR-β, ERR-γ) and the
peroxisome proliferator-activated receptor gamma co-
activator 1-alpha (PGC-1α) are major modulators of mito-
chondrial proliferation (Palikaras and Tavernarakis 2014).
Post-transcriptionally cytosolic kinases such as casein kinase
1 and 2 and protein kinase A also affect mitochondrial bio-
genesis (Palikaras and Tavernarakis 2014). A delicate balance
of mitochondrial dynamics and biogenesis confers the normal
cell an ability to respond to external stimuli. Theoretically, the
regulation of the balance of fusion-fission, biogenesis could
be used as a strategy for neuroprotection.

Measuring mitochondrial function

The standardmethods employed to assess mitochondrial func-
tion include measurement of ATP levels, production in living
tissue, or oxygen consumption (Lanza and Nair 2010). These
methods are surrogates of the status of the mitochondria,
especially of oxidative phosphorylation. This information
can be obtained by indirect methods such as chemical staining
of brain sections for activity of complexes or, by directly
measuring oxygen consumption by tissues either by
microrespirometry, or by isolated mitochondria in polaro-
graphic respiratory complex rate experiments. The polaro-
graphic methodology has been reviewed elsewhere
(Barrientos et al. 2009). Changes in mitochondrial respiration
are measured in term of respirator control ratio (RCR), an
index of how coupled respiration is to ATP production. A
RCR of 5 indicates well-coupled mitochondria, a value which
significantly drops with increasing injury severity. Alterations
in mitochondrial respiration were evident as early as 1 h post-
injury and persisted for up to 3 h inmitochondria isolated from
rat cortical tissue after cortical contusion injury (Gilmer et al.
2009). A significant decrease in RCR was also observed in
ipsilateral cortical mitochondria as early as 30 min after injury
in experimental mouse models of controlled cortical impact,
suggesting a decreased mitochondrial ATP production capac-
ity. This study was the first to demonstrate that the earliest
consequences of TBI included alterations in mitochondrial
bioenergetics. The mitochondrial dysfunction was proportion-
al to injury severity and preceded many of the TBI injury
cascades, including oxidative damage. The study indicated
that therapeutic interventions need to be aimed at assisting
mitochondria and initiated early for possible neuroprotection
(Gilmer et al. 2009). It started the search for the elusive mito-/
neuroprotectant including cyclosporine A (CsA) and its ana-
logues (Sullivan et al. 1999). More recently aminopropyl
carbazole agents that preserve mitochondrial function have
been shown to be neuroprotective after TBI (Blaya et al.
2014).
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In our studies with a rat model of penetrating brain trauma,
penetrating ballistic-like brain injury (PBBI), we employed
microrespirometry as a method to measure oxygen consump-
tion in cores of brain tissue isolated from defined regions and
incubated in glucose phosphate buffer. Details of application
of the methods in various TBI studies have been reviewed
previously (Alessandri et al. 2009).

TBI pathophysiology

Cerebral oxygen metabolism after PTBI

Continuous monitoring of brain oxygen tension revealed that
about one-third of severe head injured patients (including
penetrating traumatic brain injury (PTBI)) reduced brain oxy-
gen tension (<25 mmHg O2) for the first 6 to 12 h and had
significantly worse outcomes (Henry et al. 2012; Valadka
et al. 1998; van den Brink et al. 1998). The cause for reduced
cerebral oxygen tension in patients who do poorly is
unknown.

Reduced cerebral oxygenation may arise from at least four
mechanisms:

1. Reduced oxygen delivery due to impaired cerebral blood
flow.

2. Reduced oxygen delivery by diminished hemoglobin
content or hemoglobin function (e.g., carbon monoxide
poisoning or anemia)

3. Reduced oxygen uptake from the lungs (e.g., Acute
Respiratory Distress Syndrome (ARDS), severe lung dis-
ease, or pulmonary contusions).

4. Reduced oxygen unloading into the tissue (e.g., if mito-
chondrial damage incapacitates aerobic metabolism).

Lowered brain oxygen tension/hypoxia, as seen in PTBI
patients has been recapitulated in PBBI (Murakami et al.
2012). Candidate mechanisms include microvascular compro-
mise due to astrocytic foot process swelling or reduced cere-
bral blood flow (CBF). This has been shown in brain
microvessels of patients with traumatic cerebral contusions
(Bullock et al. 1991; Vaz et al. 1997). Attempts to raise CBF
by use of pressors and increasing cerebral perfusion pressure
have not proven successful in a large NIH funded trial
(Narayan et al. 2002). Restoration of cerebral tissue oxygen-
ation in non-human primates within 3 h lead to preservation of
neuronal integrity, resolution of brain swelling, and slow
restoration of function during the recovery period (Morawetz
et al. 1978). Previously, we have shown that augmenting
tissue oxygen tension, by use of hyperbaric oxygen (HBO),
normobaric hyperoxia (NBH) 100 % fraction of inspired
oxygen (FiO2) and perfluorocarbons (PFCs), resulted in better

functional outcome, brain oxygen consumption (VO2) and
less neuronal death, after severe TBI, in 2 rat models
(Morawetz et al. 1978; Daugherty et al. 2004; Kwon et al.
2005). A recent report of a Phase II of trial of HBO and NBH
that excluded high velocity penetrating TBI patients conclud-
ed that combined HBO/NBH treatments significantly im-
proved markers of oxidative metabolism relative to uninjured
brain as well as in pericontusional tissue, with reduced intra-
cranial hypertension, and demonstrated improvement in mi-
crodialysis markers of cerebral integrity. There was significant
reduction in mortality and improved favorable outcome as
measured by GOS (Glasgow Outcome Scale), in the acute
HBO group (Rockswold et al. 2013). However, HBO is not
available in most trauma centers. On the other hand, PFC’s
were also highly effective, in restoring partial brain oxygen
tension (ptiO2) after TBI, and they were especially attractive
in this role. PFCs can transport oxygen without the need for
erythrocytes, perfuse and oxygenate “peri-contusional” brain
tissue and have been found to be safe in laboratory animals
and humans (Faithfull 1992; Zhou et al. 2008). PFCs remain
in the circulation for ~20 h after a single 30-min rapid infu-
sion. Unfortunately, PFCs are only slowly eliminated from the
body due to their inertness and remain in macrophages in liver
and spleen up to 10 days, limiting multiple dosing.

To test if PTBI pathophysiology could be ameliorated with
PFCs, we exposed PBBI rats to PFCs acutely after injury.
Brain oxygen tension but not oxygen consumption was mod-
estly improved bymultiple PFCs when injected within 30 min
of injury. Brain oxygen tension was monitored up to 2.5 h post
injury and oxygen consumption was assayed at 3 h post injury
(Fig. 3a). Based on these results it is apparent that an inability
to use supplied oxygen exists after PTBI. We speculate that
this inability is mostly likely due to mitochondrial dysfunc-
tion. Compared to other TBI models, PBBI has a unique
feature: an active complex I which can be seen by the presence
of 2,3,5-triphenyltetrazolium chloride (TTC) reduction that is
present up to 24 h post injury (Fig. 2) (Yao et al. 2011;
Baskaya et al. 2000; Perri et al. 1997; Yao et al. 2009;
Yokobori et al. 2013a). Based on lowered oxygen consump-
tion, inability to use supplied oxygen and ability to reduce
TTC, we propose that the mitochondrial defect after PBBI lies
in the complex IV, similar to mitochondrial neurodegenerative
disorders such as Parkinson’s disease (PD) (Kirkinezos and
Moraes 2001). In a recent case, we observed that PTBI patient
metabolism does not respond to restored cerebral perfusion
pressure (CPP), or lowered ICP suggesting persistent irrevers-
ible mitochondrial dysfunction up to 4 days (Fig. 4) (De Fazio
et al. 2011). As with TBI patients, in PBBI rats we observed
reduced glucose uptake (hypoglycolysis; unpublished data).
In PTBI, the shearing forces of a travelling projectile mechan-
ically stretch and tear apart the membrane and internal organ-
elles. Apart from physical damage in TBI, hypoxia induces a
family of proteins called the hypoxia inducible factors. The

J Bioenerg Biomembr (2015) 47:133–148 137



hypoxia inducible factor 1 alpha (HIF1α) mediates mitochon-
drial fission, which could potentially contribute to mitochon-
drial dysfunction. Despite the upregulation of HIF1α mRNA
in PBBI, the protein was not detectable (Cartagena et al.
2014). It remains to be determined whether HIF1α contributes
to mitochondrial dysfunction in PTBI/PBBI/in vitro stretch
injury models. In addition to hypoxia, inflammation seen in

PTBI has been observed in PBBI (Williams et al. 2007;
Oehmichen et al. 2003). Both inflammation and hypoxia
induce mitophagy. In an in vitro liver injury model, their
respective roles were clarified. Hypoxia was found to be a
stronger inducer of mitochondrial dysfunction than inflamma-
tion with concomitant induction of neuroprotective
hemoxygenase 1 (HO-1) via Nrf2/ nuclear factor kappa-
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light-chain-enhancer of activated B cells (NFKβ) pathways.
In PBBI, there is notable hemorrhage and upregulation of HO-
1 (Yao et al. 2011). As with TBI, perhaps PBBI neurodegen-
eration can be attenuated by activation of neuroprotective HO-
1 via Nrf2 (Miller et al. 2013). Avariety of diseases have been
associated with excessive ROS (Kirkinezos and Moraes
2001). A direct link between ROSmediated oxidative damage
to the neuronal ubiquitination/de-ubiquitination machinery
and the pathogenesis of sporadic Alzheimer’s disease (AD)
and PD has been established. Ubiquitin carboxyl-terminal
hydrolase L1 (UCHL1) is a neuronal de-ubiquitinating en-
zyme (Choi et al. 2004). In PBBI, the levels of UCHL1 in
serum and CSF increase within minutes of injury and are
proportional to the severity of the injury. This indicates that
acute mitochondrial dysfunction can occur immediately fol-
lowing PTBI (Ren et al. 2013; Zoltewicz et al. 2013). In a
separate but related model of TBI, the acute subdural hema-
toma (ASDH) model, we have previously shown that the
release of injury biomarker UCHL1, TTC staining as well as
neurodegeneration can all be blunted during the reperfusion
phase with moderate therapeutic hypothermia (Yokobori et al.
2013a). In addition, loss of UCHL1 immunoreactivity pre-
cedes neurodegeneration in ASDH model (Gajavelli Shyam
et al. 2012). Apart frommaintaining ubiquitin pools, UCHL-1
is also responsible for endogenous antioxidant glutathione
levels (Coulombe et al. 2014). Increased ROS production,
UCHL1 oxidation, and impaired oxidative phosphorylation
that manifests as mitochondrial dysfunction could underlie the
metabolic dysfunction seen in PTBI patients (De Fazio et al.
2011; Verweij et al. 2000). Although there are multiple mech-
anisms contributing to mitochondrial dysfunction, several
could thus be ameliorated by therapeutic hypothermia and
management of intracranial pressure (Piantadosi and
Suliman 2012). Clinical use of a TTC positron emission
tomography (PET) ligand which precedes UCHL1 release
into body fluids could help determine the time window for
therapeutic hypothermia.

Metabolic substrate augmentation after TBI

Depressed cerebral metabolism following TBI is a consistent
finding and associated with poor outcomes (Vespa et al.
2003). Metabolic crisis from mitochondrial dysfunction has
been demonstrated by the use of microdialysis, allowing mon-
itoring of neurochemical events as they unfold after severe
human TBI and showing lactate surges and glucose decreases
after injury (Chen et al. 2000; Vespa et al. 2005). The initial
failure of mitochondrial respiratory function in turn compro-
mises mitochondrial integrity. The metabolic crisis persists
even after adequate restoration of CPP and substrates of
energy metabolism (De Fazio et al. 2011). Clinical investiga-
tions in severely head-injured patients have shown increases
in brain extracellular lactate levels despite well-preserved, or

restored regional blood flow and tissue oxygen tension (De
Fazio et al. 2011). Therefore, mitochondrial dysfunction is a
primary focus of metabolic dysfunction following TBI, per-
petuating a vicious “cause-and-effect” cycle by which the
progression of neurological damage is promoted (De Fazio
et al. 2011). Since the “Lund concept”, a protocol aimed at
nonsurgical reduction of TBI-induced increase of ICP via
manipulation of physiological, pharmacological, and bio-
chemical parameters, clinicians and preclinical researchers
alike are tempted to supplement with exogenous energy sub-
strates to restore metabolism (Nordstrom et al. 2013). Such
studies appeared to have explored the potential of all meta-
bolic substrates listed in the pathways, from glucose to ATP.
Previous results from experimental animal models vary, sug-
gesting that post-TBI hyperglycemiamay be harmful (Cherian
et al. 1997), neutral (Vink et al. 1997), or beneficial (Gurevich
et al. 1997). In a recent study using a rodent model of unilat-
eral controlled cortical impact (CCI) injury, glucose adminis-
trations significantly improved cerebral metabolism in ap-
proximately half of cortical and subcortical regions assessed
(Moro et al. 2013). Several preclinical studies have pointed to
the possibility of using lactate and pyruvate supplementation
as an alternate energy source to power metabolism after TBI.
This concept has been reviewed previously in greater detail
(Yokobori et al. 2013b). Recently, two clinical studies using
microdialysis have addressed the cerebral metabolic effects of
exogenous lactate supplementation on the injured human
brain. Both studies concluded that infused lactate was effec-
tively metabolized after TBI (Bouzat et al. 2014; Carpenter
et al. 2014). Exogenous lactate was found to dilate cerebral
vasculature and increase cerebral blood flow (Gordon et al.
2008) and lactate infusion compared favorably to mannitol in
reducing ICP after TBI (Ichai et al. 2009). However, the
acceptance of this lactate augmentation intervention strategy
is still being debated (Nordstrom and Nielsen 2014). In an-
other study using CCI rats, the effects of the hydrophobic
acetate precursor, glyceryltriacetate (GTA), as a method of
delivering metabolizable acetate to the injured brain were
investigated. GTA administration significantly increased the
levels of both NAA and ATP in the injured hemisphere 4 and
6 days after injury, and also resulted in significantly improved
motor performance in rats 3 days after injury (Arun et al.
2010). In addition, GTA (4.5 g/kg/day) was well tolerated by
infants with the neurodegenerative Canavan disease (Segel
et al. 2011). An increase in brain acetyl-CoA levels by acetate
supplementation increases brain energy stores (such as phos-
phocreatine), but has no effect on brain glycogen and neuronal
mitochondrial biogenesis (Bhatt et al. 2013). Acute and de-
layed administration of sodium pyruvate (SP) was also found
to be neuroprotective and capable of enhancing memory in
CCI rats (Moro et al. 2011; Moro and Sutton 2010).

In addition to hypometabolism of glucose post TBI, de-
creased cellular energy production (Yoshino et al. 1991) by an
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increased flux of glucose through the reparative pentose phos-
phate pathway (PPP) has been documented in several preclin-
ical studies (Prins et al. 2013). In contrast, in a single clinical
study, where the nature of TBI was inadequately described,
metabolism of glucose was predominantly via glycolysis,
rather than by the PPP, suggesting glycolysis was intact even
after TBI (Carpenter et al. 2014). Given that glucose may not
be the optimum fuel after TBI, it was hypothesized that
decreasing metabolism of glucose in the presence of an alter-
native substrate would improve cellular metabolism and re-
covery. The ketogenic diet (KD) has been one of the most
common approaches to induce ketosis and increase cerebral
metabolism of ketones. The rate of ketosis achieved is depen-
dent on age, with younger animals achieving significant β-
hydroxybutyrate levels earlier than adults, which can contrib-
ute to the age effect of neuroprotection observed after TBI. In
juvenile rats in the weight drop model and adolescent rats in
CCI, KD resulted in smaller contusion volumes, better motor
and cognitive performances, decreased brain edema, cyto-
chrome c release, expression of molecular markers of apopto-
sis, markers of oxidative stress, and mitochondrial calcium
loading, as well as improved cellular energetics and increased
expression of brain-derived neurotrophic factor. Ketosis via
fasting or calorie restriction (albeit 3 times slower based on
plasma concentrations of βhydroxybutyrate 0.57 mM vs
1.75 mM), was also neuroprotective in adult rats with trau-
matic brain injury. How the KD works has been reviewed
elsewhere (Procaccio et al. 2014; Rho and Sankar 2008). The
prominent mechanisms of KD includes increased mitochon-
drial biogenesis as seen by a combination of microarray
analysis, electron microscopic estimation of mitochondrial
profiles, levels of selected energy metabolites and enzyme
activities (Bough et al. 2006). The ketogenic diet even altered
gene expression in adolescent rat hippocampi. Among the
components of KD medium-chain triglyceride decanoic acid
(C10), a reported peroxisome proliferator activator receptor γ
(PPARγ) agonist mediated increase in mitochondrial content
(Hughes et al. 2014).

In contrast to the beneficial effects of ketone metabolism,
poor nutritional support can exacerbate TBI (Hoane et al.
2011). Currently, clinical studies are underway to determine
the optimal method to induce cerebral ketone metabolism in
the post-injury brain, and to validate the neuroprotective ben-
efits of ketogenic therapy in humans (Prins and Matsumoto
2014).

Oxidation of nutrients culminates in the synthesis of high-
energy compounds, particularly ATP, which works as the
main chemical energy carrier in all cells. However, exogenous
ATP administration after CNS injury is harmful.
Intraperitoneal injections of ATP after stroke increased infarct
volume, accompanied by seizures, hemorrhagic transforma-
tion, and higher mortality, perhaps due to cardiosuppression
and hypoperfusion (Zhang et al. 2013).

As mentioned above, glucose is metabolized via several
essential pathways that take place in mitochondria. Studies
suggest that some forms of TBI may be amenable to exoge-
nous energy supplementation, which if specifically delivered
to CNS cells, may translate to function and structural recovery.
The severity of mitochondrial dysfunction after mechanical
traumatic injury will thus be an important factor in determin-
ing cell death or survival. Following traumatic brain injury,
mitochondria sustain structural and functional impairment due
the direct shearing forces transmitted through the brain tissue,
which then contribute to secondary damage that can continue
for days after the initial injury (Gilmer et al. 2009). The state
of hypovolemic shock immediately following TBI provides a
complicating obstacle to therapy. The infusion of fluid as a
resuscitation mechanism has been widely recognized as an
appropriate primary treatment to increase blood pressure in
trauma patients (Kortbeek et al. 2008). However, evidence has
shown the deleterious effects of early fluid resuscitation
(Clifton et al. 2011; Haut et al. 2011). Recent research has
suggested that colloid-containing fluids are the most appro-
priate for infusion. This is due to the nature of these fluids to
support plasma oncotic pressure. This results in the expansion
of intravascular volume and allows proper resuscitation with
smaller fluid volumes (Gantner et al. 2014). However, studies
have shown that 4 % albumin is actually detrimental to brain
injury (Investigators, S. S., Australian, New Zealand Intensive
Care Society Clinical Trials, G., Australian Red Cross Blood,
S., George Institute for International, H et al. 2007).
Researchers have suggested that albumin may leak across
the damaged BBB and cause a higher efflux of fluid to the
interstitial spaces (Myburgh and Finfer 2009).

Proper fluid infusion is crucial in TBI treatment due to the
critical role that cerebral edema plays in mitochondrial dys-
function. Most of the mitochondria in the enlarged astrocytic
cytoplasm are swollen, including the mitochondrial matrix
and the cristae. In contrast, cerebral dehydration was associ-
ated with mitochondrial shrinking in both astrocytes and
neurons (Koizumi and Shiraishi 1970). The morphological
changes associated with edema may suggest that controlling
edema is significant in maintaining the normal mitochondrial
dynamics and quality control that allow for repair.

Evidence to support mitochondrial neuroprotection,
in severe TBI

Cellular energetic failure in critical illness

Cellular energetic failure caused by the inability to use oxygen
at the cellular level has been increasingly recognized as a
fundamental disorder contributing to organ dysfunction in
the critically ill patient (Wallace 1999; Singer 2007; Carre
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and Singer 2008; Kozlov et al. 2011; Galley 2011). Recent
evidence in multiple organ failure suggested that altered mi-
tochondrial biogenesis could affect the possibility to recover
after a critical illness, thus affecting outcome (Carre and
Singer 2008; Singer 2007; Carre et al. 2010; Piantadosi and
Suliman 2012).

Clinical studies in septic patients admitted to the intensive
care unit (ICU) have demonstrated a decrease in mitochondri-
al respiratory chain complex protein subunits and activities on
muscle biopsy as compared to controls. This decrease is seen
to a greater extent in patients who had a poor outcome,
demonstrating an association between mitochondrial dysfunc-
tion and outcome (Carre et al. 2010). Patients who survived
showed early activation of the transcriptional program for
mitochondrial biogenesis, while failure to activate it led to a
reduction of mitochondrial content and determined cellular
energetic failure (Carre et al. 2010). It may also be postulated
that in the event of a prolonged systemic inflammatory insult,
overproduction of cytokines and ROS, associated hypoperfu-
sion and tissue hypoxia, the organ responds by switching off
its energy-consuming biophysiological processes (Brealey
et al. 2004), which would then need to be reactivated for
recovery to take place. In this way, mitochondria can be
instrumental both in failure and in recovery of cell and organ
function.

Because mitochondria can directly or indirectly affect cell
survival and organ function, clinical investigators in the ICU
have focused on defining strategies that could be effective in
preventing and reversing mitochondrial dysfunction in the
critically ill patient (Kozlov et al. 2011).

As a key cellular event in critical illness, several types of
mitochondrial targeted therapies have been proposed (Galley
2011) including mitochondrial substrate provision, mitochon-
drial cofactor provision, mitochondrial antioxidant quenching,
mitochondrial ROS scavengers, and mitochondrial membrane
stabilizers (Dare et al. 2009).

Since mitochondria are ubiquitous in all cells, a dis-
ruption in cellular energetic metabolism is implicated in
almost all areas of critical illness. This is crucial espe-
cially in the neurocritical care arena, since mitochondrial
dysfunction occurs both in acute and chronic neurode-
generative disorders (Mazzeo et al. 2009a; Soane et al.
2007). In particular, energetic failure is one of the most
important mechanisms responsible for brain damage, ear-
ly after a TBI. Consequently, the central question in the
care of critically ill patient “Do ICU patients die from
mitochondrial failure?” (Kozlov et al. 2011), should also
be considered in the acute care of TBI patients.

The consequences of mitochondrial dysfunction after TBI
are numerous including energetic and metabolic failure, loss
of cellular calcium homeostasis, oxidative stress and promo-
tion of apoptotic processes. These alterations contribute to
secondary damage that can continue for days after the initial

injury and consequently mitochondria have become a natural
target of neuroprotection, after TBI (Perez-Pinzon et al. 2012).

Evidence for mitochondrial dysfunction after severe TBI is
enormous and ranges from altered mitochondrial morphology
to depressed mitochondrial activities, loss of mitochondrial
electron transport system (ETS), dissipation of membrane
potential, release of mitochondrial proapoptotic proteins, and
N-acetylaspartate (NAA) reduction on magnetic resonance
(MR) spectroscopy (Fig. 5). Structural damage is expressed
in term of swollen mitochondria, fragmented cristae, expand-
ed matrix compartment and rupture of outer membrane, in-
dicative of the onset of loss ofΔψm. In an experimental TBI
model, mitochondrial swelling has been observed as early as
10 min after the injury (Lifshitz et al. 2004). Changes in
cortical mitochondrial calcium buffering are also evident early
after injury, with impaired calcium uptake by 3 h post injury
(Singh et al. 2006).

Furthermore, mitochondrial architectural profiles have re-
cently been characterized in human tissue surgically resected
within 1 week from injury from three contiguous cortical
injury zones (Balan et al. 2013). Four mitochondrial structural
patterns were distinguished: normal, normal reactive, reactive
degenerating, and end-stage degenerating profiles. End-stage
degenerating mitochondria were identified as spherical fission
products, showing high amplitude swelling and swollen, col-
lapsing mitochondria. Early after injury reactive/degenerative
and end-stage degenerative changes in mitochondrial mor-
phology were observed in the central or near zone of injury,
while the more peripheral far zone and penumbra exhibit
primarily normal and normal reactive mitochondrial
morphotypes. Within the intermediate post-injury period (at
approximately 36–42 h post-injury), the near zone of injury
contains primarily reactive/degenerating and end-stage
degenerating mitochondria, while penumbra and far zone
exhibit all four mitochondrial profile categories. In the late
phase post-injury, reactive/degenerating mitochondria were
abundant in the penumbra and far zones, while the near zone
showed end-stage degenerating mitochondria. The study also
demonstrated that levels of irreversible (end-stage
degenerating) and reversible (normal reactive) mitochondrial
changes reflected regional levels of brain injury severity
(Balan et al. 2013).

Furthermore, in an in vitro study of isolated brain mito-
chondria to measure concentration dependent effects of calci-
um on mitochondrial functions, it was observed that increas-
ing calcium concentration directly reduced mitochondrial res-
piration in a dose dependent manner, as an immediate primary
event following calcium exposure, while free radical produc-
tion and oxidative stress can be considered secondary events
after energetic failure (Pandya et al. 2013).

In order to provide an “image” of mitochondrial dysfunc-
tion after human severe TBI, the NAA level, a surrogate
marker of mitochondrial status, has been measured using
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MR spectroscopy in patients with severe head injury.
Significant reduction of NAA was observed in all patients
compared to controls with more severe, irreversible reduction
in patients with poor outcome. Comparatively higher levels of
NAA were observed in patients who experienced a good
outcome, suggesting minor, but recoverable mitochondrial
impairment (Signoretti et al. 2008).

Recently, the role of mitochondrial polymorphisms on
mitochondrial function have also been investigated, suggest-
ing that mitochondrial DNAvariation could factor into patient
outcomes after TBI (Conley et al. 2014).

Cyclosporine A for mitochondrial neuroprotection
after severe TBI

Experimental and clinical studies support the concept that
strategies aimed at preventing or reversing mitochondrial
dysfunction and cellular energetic failure after acute brain

injury may represent a viable neuroprotective approach.
Given the role ofΔψm in neuropathological events following
TBI, it is a possible target for intervention (Kristal et al. 2004;
Mazzeo et al. 2009a; Korde et al. 2005). Opening of Δψm
determines leaking of protons and massive entry of water and
solutes with subsequent swelling of the mitochondria, dissi-
pation of transmembrane mitochondrial potential, failure of
oxidative metabolism and eventual breakage of the outer
mitochondrial membrane (Soustiel and Larisch 2010).
Cyclosporine A, for its ability to preserve mitochondrial in-
tegrity, thus inhibiting the opening of Δψm, has been exten-
sively investigated both in the experimental and in the clinical
setting in the last two decades (Mazzeo et al. 2009a;
Aminmansour et al. 2014; Hatton et al. 2008; Mazzeo et al.
2008; Okonkwo et al. 1999; Sauerbeck et al. 2011; Sullivan
et al. 2000; Uchino et al. 1995).

In CCI rats, administration of CsA 15 min post-injury was
able to significantly attenuate mitochondrial dysfunction in

Fig. 5 The Bioenergetic failure after traumatic brain injury (TBI). The
figure illustrates some of the most powerful evidences for mitochondrial
dysfunction after TBI: a Image of human brain mitochondria showing a
swollen collapsing mitochondrion as evidence of mitochondrial structural
damage (Balan et al. 2013). bCerebral microdialysate lactate and glucose
after fluid percussion injury (FPI) showing increased lactate and reduced
glucose, as expression of metabolic dysfunction, after TBI. SI = saline
injection (Chen et al. 2000). c Assessment of mitochondrial dysfunction
bymeasuringN-acetylaspartate (NAA) levels in patients with severe head

injuries, using magnetic resonance (MR) spectroscopy, showing greater
reduction of NAA/Choline (Cho) and NAA/Creatinine-containing com-
pounds (Cr) ratios in patients with less favorable outcomes (Signoretti
et al. 2008). d Changes in mitochondrial respiration measured using a
Clark-type electrode in a Oxytherm System: Respirator control ratio
(RCRs) significantly drops with increasing injury severity, suggesting
that mitochondria are displaying an uncoupling of respiration from ATP
production, with a decreased ability to produce ATP (Gilmer et al. 2009)
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several measured parameters of mitochondria integrity and
energetics, restoring mitochondrial membrane potential, re-
ducing intra-mitochondrial calcium levels, and reducing reac-
tive oxygen species production following TBI (Sullivan et al.
1999). Furthermore, the continuous administration of CsA
early post-injury was able to ameliorate cortical damage fol-
lowing TBI, with significant reduction in lesion volume in
animals (Sullivan et al. 2000). CsA was able to ameliorate
mitochondrial dysfunction, preserving mitochondrial bioener-
getic state even in immature models of focal and diffuse TBI
in rats and piglets (Kilbaugh et al. 2011), suggesting a possi-
bility for use in adolescents.

Furthermore, in an experimental model of TBI investigat-
ing the effect of CsA upon NAA reduction and ATP loss, the
drug was able to blunt a 30 % NAA reduction and restore
26 % of ATP loss, thus demonstrating significant neuropro-
tection (Signoretti et al. 2004).

In addition, improvement in cognitive performance,
amelioration of acute motor deficit, and attenuation of
the decrease in O2 consumption have been documented
when the drug is given after fluid percussion injury in
rats (Alessandri et al. 2002).

Besides its use in preclinical models, CsAwas also proven
to reduce reperfusion injury in a randomized control trial in
patients with acute ST-elevation myocardial infarction, with a
reduction in infarct size of approximately 40 % (Piot et al.
2008).

Almost 10 years ago our research group at Virginia
Commonwealth University in Richmond designed a prospec-
tive randomized double-blind, placebo-controlled study to
evaluate safety, tolerability and pharmacokinetics of a single
intravenous infusion of CsA in patients with severe TBI.
Patients were assigned to receive, within 12 h of injury, either
an intravenous infusion of 5 mg/Kg/day of CsA administered
over 24 h, or placebo. It was observed that the administration
of CsA early after injury resulted in a significant increase in

extracellular fluid glucose and pyruvate, important energy
substrates after TBI, representing the most robust result of
the study. Drug administration also resulted in higher levels of
brain extracellular lactate than in placebo, which could be
explained by a more complex metabolic response in which
lactate increase could reflect higher glycolytic rate and hyper-
metabolism (Mazzeo et al. 2008). Lactate increase could also
provide a metabolic substrate for neurons, to aid in ionic
restoration, helping in recovery following TBI (Chen et al.
2000). A significant increase in mean arterial pressure and
cerebral perfusion pressure was also demonstrated in patients
receiving CsA than in the placebo group, which could help in
the case of a reduced cerebral blood flow after TBI. No
evidence of suppression of immune function was seen
(Mazzeo et al. 2006), while a good safety profile of the drug
was reported (Mazzeo et al. 2009b). Our research group also
described the pharmacokinetics of CsA and reported the ex-
posure of CsA in multiple biofluids following neurotrauma,
by assessing drug concentrations in whole blood, cerebrospi-
nal fluid (CSF), and dialysate brain extracellular fluid (ECF)
(Brophy et al. 2013). Average CsA concentrations in the
blood, CSF, and ECF dialysate over time are shown in
Fig. 6. CSF exposure achieved 0.37 % of whole blood area
under curve (AUC), while ECF dialysate exposure achieved
0.04% of whole blood AUC.We could demonstrate that CsA,
given via a 24 h continuous infusion, penetrates into the CSF,
ECF as measured via brain microdialysis, as well as brain
tissue. Measurement of concentration of a putative
neuroprotectant in the ECF dialysate can provide a valuable
feedback method to infer the concentration of the drug in the
brain and thus to understand the in vivo dosage necessary to
provide the desired neurochemical effect (Brophy et al. 2013).

The possibility of combination therapy, targetingmore than
one of the affected pathways should also be considered when
dealing with mitochondrial neuroprotection, and this could
open future clinical investigations.

Fig. 6 Cyclosporine A
concentrations in the blood,
cerebrospinal fluid and brain
extracellular fluid dialysate in
brain injured patients. Average
concentrations are log
transformed and error bars
represent the standard deviation
(Brophy et al. 2013)
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Conclusions

Normal mitochondrial function is essential to maintain cere-
bral homeostasis. Following TBI, mitochondria sustain struc-
tural and functional impairments that are responsible for met-
abolic dysfunction, cellular energetic failure and eventually
contribute to secondary brain damage. The consequent meta-
bolic crisis persists even after adequate restoration of sub-
strates of energy metabolism, lasting for days. Targeting mi-
tochondrial function has been proposed as a new strategy for
neuroprotection, alone or in combination with other
treatments.

This review summarized the data on normal mitochondrial
function in central nervous system and impairment of cerebral
oxygen metabolism following TBI and penetrating TBI, and
discussed old and new therapeutic strategies with an aim to
clean up dysfunctional mitochondria and rebuild metabolic
capacity via mitochondrial biogenesis after injury.

Restoration of cerebral tissue oxygenation by use of hyper-
baric oxygen, normobaric hyperoxia, and perfluorocarbons
has been evaluated, after TBI, but their attractive role carries
several limitations and inability to use supplied oxygen is
likely due to mitochondrial dysfunction. Previously, preclini-
cal and clinical studies on TBI induced mitochondrial dys-
function have focused on opening of the mitochondrial per-
meability transition pore, consequent neurodegeneration, and
attempts to mitigate it with cyclosporine A or analogous drugs
unsuccessfully. A promising future approach to TBI treatment
could be to relieve the metabolic load placed upon the dam-
aged mitochondria, to promote repair “mitochondrial pit-stop
(Liu et al. 2009)” via mitophagy and to enhance mitochondrial
biogenesis via ketogenic diet or novel PINK agonists such as
ATP analog kinetin triphosphate (KTP) (Hertz et al. 2013).
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