
MINI-REVIEW

Signaling pathways leading to ischemic
mitochondrial neuroprotection

John W. Thompson & Srinivasan V. Narayanan &

Kevin B. Koronowski & Kahlilia Morris-Blanco &

Kunjan R. Dave & Miguel A. Perez-Pinzon

Received: 16 July 2014 /Accepted: 20 August 2014 /Published online: 28 September 2014
# Springer Science+Business Media New York 2014

Abstract There is extensive evidence that ischemic/
reperfusion mediated mitochondrial dysfunction is a major
contributor to ischemic damage. However data also indicates
that mild ischemic stress induces mitochondrial dependent
activation of ischemic preconditioning. Ischemic precondi-
tioning is a neuroprotective mechanism which is activated
upon a brief sub-injurious ischemic exposure and is sufficient
to provide protection against a subsequent lethal ischemic
insult. Current research demonstrates that mitochondria are
not only the inducers of but are also an important target of
ischemic preconditioning mediated protection. Numerous
proteins and signaling pathways are activated by ischemic
preconditioning which protect the mitochondria against ische-
mic damage. In this review we examine some of the proteins
activated by ischemic precondition which counteracts the
deleterious effects of ischemia/reperfusion thereby maintain-
ing normal mitochondrial activity and lead to ischemic
tolerance.
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Introduction

Mitochondria are the primary source of ATP production in the
cell and are required for the continued activity of energetically
expensive pumps and energy consuming enzymatic reactions
which maintain normal cellular homeostasis. However, expo-
sure to even a brief period of ischemia can impede normal

mitochondrial function thereby affecting the maintenance of
cellular ATP levels and resulting in the generation of free radical
production (Zadori et al. 2012; Ferrari 1995; Flamm et al. 1978).
Mitochondrial dysfunction following ischemia is considered to
be a primary contributor to ischemia/reperfusionmediated injury.
Numerous studies have demonstrated that mitochondrial respira-
tion is severely affected by ischemia/reperfusionwhichmay stem
from hyperoxidation of respiratory chain proteins, substrate un-
availability and reactive oxygen species (ROS) production
(Perez-Pinzon et al. 1997a; Rosenthal et al. 1995, 1997).
Activation of pro-apoptotic Bcl-2 family members further exac-
erbate mitochondria dysfunction through outer mitochondrial
membrane permeabilization which allows for the release of
NADH and cytochrome c and initiates both caspase dependent
and independent cell death pathways (Penna et al. 2013;
Halestrap 2006; Christophe and Nicolas 2006). Furthermore
mitochondria are the primary site of ROS formation and oxida-
tive damage following ischemia/reperfusion (Chen and Zweier
2014; Olsen et al. 2013; Thompson et al. 2012). Mitochondria
therefore are a major contributing factor to ischemia/reperfusion
injury and as such are a major therapeutic target in the search for
protection against ischemic damage.

Ischemic preconditioning (IPC) is an innate neuroprotec-
tive mechanism whereby a stressful but non-injurious ische-
mic episode followed by a period of reperfusion protects
against a subsequent injurious ischemic attack. IPC has been
demonstrated by numerous laboratories at the organismal,
organ, and cellular levels (Gidday 2006). IPC is characterized
by an immediate window of protection which last for a few
hours and is followed 24 to 48 h later by a second, more robust
window of protection which can last for days to weeks
(Gidday 2006; Perez-Pinzon et al. 1997b). The early window
of protection is initiated through the posttranslational modifi-
cation of proteins whereas the second or delayed window of
protection requires alteration in gene expression (Gidday
2006; Thompson et al. 2013a).

J. W. Thompson : S. V. Narayanan :K. B. Koronowski :
K. Morris-Blanco :K. R. Dave :M. A. Perez-Pinzon (*)
Cerebral Vascular Disease Research Laboratories, Department of
Neurology and Neuroscience Program, Miller School of Medicine,
University of Miami, P.O. Box 016960, Miami, FL 33136, USA
e-mail: perezpinzon@miami.edu

J Bioenerg Biomembr (2015) 47:101–110
DOI 10.1007/s10863-014-9574-8



Ischemia activates many trigger mechanisms which initiate
a precondition response including neuroactive cytokines (Lin
et al. 2009), adenosine receptors (Zhou et al. 2004), ATP-
sensitive potassium channels (Perez-Pinzon and Born 1999),
and oxidative stress (Otani 2004). These preconditioning trig-
gers in turn activate numerous kinase signaling cascades
which orchestrates upregulation of the cellular protective re-
sponse. One aspect of IPC mediated protection is the preven-
tion of mitochondrial dysfunction following ischemia/
reperfusion (Perez-Pinzon et al. 2012). Our laboratory has
previously demonstrated that IPC preserved mitochondrial
respiration following injurious ischemia during the delayed
but not the early window of protection; suggesting that the
regulation of mitochondrial physiology is an important com-
ponent of prolonged ischemic tolerance (Perez-Pinzon et al.
2002; Perez-Pinzon 2004; Dave et al. 2001). Therefore in this
review we will examine some of the mechanisms and signal-
ing pathways bywhich IPCmay protect mitochondrial against
ischemia/reperfusion injury (Fig. 1).

IPC and mitochondrial neuroprotection

Mitochondrial substrate limitation during IPC leads to a rapid
reduction in cellular ATP levels. An earlier study demonstrat-
ed that the ATP/ADP ratio is depleted within minutes of
mitochondrial ATP synthase inhibition in cerebellar granule
cells (Budd and Nicholls 1996). This decrease in cellular ATP
levels and the parallel increase in ATP metabolites, ADP,
AMP, and adenosine, may serve as initiation signals for the
induction of ischemia tolerance pathways. For example, bind-
ing of adenosine to its A1 receptors activates numerous pro-
tective pathways. Confirmatory studies using in vivo and
in vitro models demonstrated that adenosine pre-treatment is
neuroprotective against an otherwise lethal ischemic insult
(Hiraide et al. 2001; Blondeau et al. 2000; Reshef et al.

2000). Altering the levels of ATP metabolites by mild inhibi-
tion of the mitochondrial electron transport chain complex I
with haloperidol, or complex II with 3-nitropropionate, has
been demonstrated to protect the brain from an otherwise
lethal hypoxic / ischemia insult (Sugino et al. 1999; Riepe
and Ludolph 1997). Similarly an increase in the AMP:ATP
ratio following IPC also leads to activation of AMP-activated
protein kinase (AMPK). In an earlier study we observed that
AMPK is also required for induction of ischemia tolerance
and for protein kinase c epsilon (PKCε)-induced ischemic
protection (Morris-Blanco et al. 2014; Tokunaga et al.
2004). Finally, the decline in cellular ATP levels following
IPC may also directly regulate mitochondrial activity through
the opening of mitochondrial ATP-sensitive potassium chan-
nels (mito-K+

ATP channels). Numerous studies have demon-
strated that opening of the mito-K+

ATP channels is involved in
the induction of ischemia tolerance. For example pharmaco-
logical pre-treatment with mito-K+

ATP channels openers have
been demonstrated to induce cerebral ischemia tolerance
(Blondeau et al. 2000; Roth et al. 2006). In contrast, selective
inhibition of mito-K+

ATP channels using 5-hydroxydecanoate
leads to the loss of ischemia tolerance, further confirming a
role of mito-K+

ATP channels in induction of ischemia toler-
ance (Liu et al. 2002). In our laboratory, we observed that
activation of PKCε following IPC leads to the opening of this
channel, by phosphorylation of the mito-K+

ATP channel sub-
unit Kir6.2 (Raval et al. 2007). It is suggested that opening of
mito-K+

ATP channels induces a mild increase in reactive oxy-
gen species (ROS) generation which may trigger ischemia
tolerance pathways (Thompson et al. 2012; Raval et al.
2007; Busija et al. 2005). This contention is supported by
the observation that cellular ROS level is increased following
preconditioning and quenching of ROS during precondition-
ing by antioxidants abolished preconditioning-mediated neu-
roprotection (Ravati et al. 2001). Activation of mito-K+

ATP

channels has also been demonstrated to increase the level of
the anti-apoptotic protein, Bcl-2 and decrease the pro-
apoptotic mitochondrial protein Bax in staurosporine-
induced neuronal apoptosis, suggesting mito-K+

ATP channels
may also participate in modulation of apoptotic processes
(Ravati et al. 2001). Overall, the above-presented literature
thus highlights the importance of mitochondria in induction of
ischemia tolerance in the brain.

IPC also participates in suppressing mitochondrial dys-
function following cerebral ischemia. We have observed that
IPC leads to increased levels of synaptosomal PKCε which,
upon activation during ischemia, increases the efficacy of the
mitochondrial electron transport chain by altering phosphory-
lation status of its different components. This may, in part, be
responsible for preservation of mitochondrial function follow-
ing cerebral ischemia and the prolonged neuroprotection of
IPC characterized by the second window of neuroprotection
(Dave et al. 2001; Perez-Pinzon et al. 1997c). Activation of
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Fig. 1 Ischemic preconditioning (IPC) activates numerous signaling
pathways which act in concert to protect the mitochondria against the
deleterious effects of ischemia/reperfusion
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mito-K+
ATP channels prior to otherwise injurious cerebral

ischemia also attenuates cerebral ischemia-induced mitochon-
drial calcium overload and in turn inhibits opening of the
mPTP (Wu et al. 2006). IPC also deactivates the pro-
apoptotic molecule BAD via the hypoxia inducing factor 1 -
erythropoietin - phosphoinositide 3-kinase - protein kinase B
pathway (Dirnagl and Meisel 2008). Different paradigms of
preconditioning are also shown to inhibit ischemia-induced
release of cytochrome c from the mitochondria (Liu et al.
2002; Nakatsuka et al. 2000), which initiates caspase activa-
tion and apoptotic cell death. This literature demonstrates that
preconditioning suppresses post-ischemic mitochondrial dys-
function and thus helps the recovery from ischemia-induced
damage. Overall, it appears that mitochondria act as signaling
process house for preconditioning-induced ischemia
tolerance.

IPC and signaling pathways leading to increase
antioxidant capacity roles of Nrf2 and STAT3

Nrf2

An important neuroprotective mechanism of IPC is the ame-
lioration of oxidative stress through upregulation of endoge-
nous antioxidant defense systems. A critical component of the
antioxidant defense system is the transcription factor nuclear
factor erythoid-2 related factor (Nrf2) which is activated by
free radicals and electrophilic stress. Nrf2 is normally bound
to its cytosolic repressor protein, Keap1, and degraded under
conditions of abundant oxygen tension. However, Keap1 and
Nrf2 may be chemically modified through various post-
translational modifications, such as PKC-dependent phos-
phorylation (Kaspar et al. 2012; Huang et al. 2002), SIRT1-
dependent deacetylation (Kawai et al. 2011), and nitric oxide-
dependent S-nitrosylation (Um et al. 2011). Most of these
chemical modifications enhance Nrf2 disassociation from
Keap-1, thus facilitating Nrf2 nuclear translocation and sub-
sequent Nrf2-dependent gene expression. In the nucleus Nrf2
binds to the antioxidant response element (ARE) which allows
for the expression of the various target genes involved in
global cellular antioxidant response. Prototypical Nrf2 regu-
lated genes include glutathione synthase, heme oxygenase-1,
and catalase (Dreger et al. 2009; Dong et al. 2008; Reichard
et al. 2007; Chan et al. 2001) .

While Nrf2 has been demonstrated to be activated follow-
ing oxidative stress in various tissues and species, there is
debate as to whether transient hypoxic stress can induce
neuroprotection via Nrf2. A previous study demonstrated
upregulation of Nrf2-targeted gene transcription following
IPC in human and rat astrocytes. More importantly, IPC-
mediated neuroprotection was mitigated in Nrf2 −/− knockout
cultures, suggesting a vital role for Nrf2 in IPC

neuroprotection (Bell et al. 2011a). Bell et al. (Bell et al.
2011a) demonstrated that both transient ischemia and subtoxic
levels of hydrogen peroxide were capable of inducing neuro-
protection following lethal oxygen glucose deprivation
(OGD, in vitro ischemia model) in mice astrocyte/neuronal
mixed cultures (Haskew-Layton et al. 2010). However, mice
neuronal-enriched cultures were unable to upregulate Nrf2-
dependent gene transcription, suggesting that astrocytes are
the primary source of Nrf2. Finally, Nrf2−/− mixed cortical
cultures were not protected by exposure to hydrogen peroxide
following OGD, supporting a role for Nrf2 in mediating a
response to oxidative stress (Bell et al. 2011b).

Some of the debate over Nrf2’s neuroprotection may stem
from conflicting evidence on how Nrf2 regulates certain
chemical modifiers. A recent study suggested that SIRT1, a
NAD+ -dependent histone deacetylase, inhibited Nrf2’s tran-
scriptional activity (Kawai et al. 2011), while conflicting
results have been reported with the use of resveratrol, a
polyphenolic antioxidant known to activate SIRT1.
Resveratrol was demonstrated to stabilize and restore levels
of Nrf2 in the cerebellum in a rodent model of fetal alcohol
syndrome (Kumar et al. 2011). Finally, histone deacetylase
inhibitors increased Nrf2 activation following focal cerebral
ischemia in mice, and resulted in decreased infarct volumes
when administered shortly after the induction of focal cerebral
ischemia (Wang et al. 2012a) . A consensus on the activation
of Nrf2may clarify its neuroprotective role following transient
hypoxic or ischemic preconditioning.

STAT3

In addition to Nrf2, STAT3 is another transcription factor which
is associated with increasing the cells resiliency to oxidative
stress. STATs, or Signal Transducers and Activators of
Transcription, have diverse roles inmaintaining cellular function.
STAT3, specifically, has been shown to be activated following
cellular injury through phosphorylation by JAK kinase
(Mascareno et al. 2001); this phosphorylation event promotes
STAT3 nuclear translocation in the brain, where it can modulate
apoptosis (Chin et al. 1997), inflammation (Chen et al. 2013),
and ameliorate oxidative stress through Mn Superoxide
dismutase (MnSOD) upregulation (Negoro et al. 2001).

Previous studies have highlighted the ability of STAT3 to
translocate to the nucleus following a brief exposure to oxy-
gen glucose deprivation (in vitro ischemia model) in mixed
rodent cortical cultures. In addition, this study showed that
activation of cyclooxygenase 2 (COX-2) by STAT3 resulted in
neuroprotection, while inhibition of STAT3 nuclear transloca-
tion mitigated the neuroprotective effects of IPC (Kim et al.
2008). Another study noted that STAT3 knockdown in astro-
cytes increased production of ROS through downregulation of
important free radical scavengers (i.e. MnSOD) (Sarafian
et al. 2010). As mitochondria are potent producers of ROS
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in the cell, these studies suggest that STAT3 may interact with
mitochondria; indeed, previous work has described a mito-
chondrial pool of STAT3 (Boengler et al. 2010). In rodent
cardiac myocyte mitochondria, STAT3 has been shown to
interact with complex I and II of the electron transport chain.
Functionally, STAT3-difficient mitochondria displayed in-
creased ROS production from complex I of the electron trans-
port chain (Gagliardi et al. 1988). Loss of STAT3 has also
been shown to decrease the enzymatic activity of complex I,
while co-immunoprecipitation experiments have shown that
STAT3 interacts directly with complex I (Wegrzyn et al. 2009)
and the mitochondrial permeability transition pore (MPTP)
(Boengler et al. 2010). In regards to the MPTP, loss of STAT3
resulted in increased frequency of opening and activation of
the MPTP, causing cytochrome c release and dissolution of
mitochondrial membranes (Boengler et al. 2010). The results
of these studies suggest that STAT3mitigates ROS production
from complex I, which is a potent site of superoxide genera-
tion within mitochondria.

Taken together, Nrf2 and STAT3 are two transcription
factors that can activate diverse pathways within a cell to
ameliorate oxidative stress. The induction of antioxidant sys-
tems and amelioration of mitochondrial ROS production are
the primary neuroprotective mechanisms of these factors and
appear to be involved in ischemic tolerance.

NAD and ischemic tolerance

Nicotinamide adenine dinucleotide (NAD) is an essential
coenzyme used by the TCA cycle and electron transport chain
in the maintenance of mitochondrial membrane potential and
production of ATP. Cerebral ischemia causes severe reduc-
tions in NAD which lead to DNA damage, energy depletion,
and neurodegeneration (Zheng et al. 2012; Bi et al. 2012;
Wang et al. 2008; Iwashita et al. 2004). Thus, enhancing
cellular levels of NAD has been shown to prevent mitochon-
drial dysfunction and neurodegeneration following ischemic
injury (Zheng et al. 2012; Bi et al. 2012). Previous studies
have shown that IPC regulates NAD in the hippocampus and
cortex (Morris-Blanco et al. 2014; Centeno et al. 1999) which
may contribute to the ability of IPC to enhance mitochondrial
functioning and neuronal survival.

Studies from the heart and brain have shown that IPC
enhances levels of nicotinamide phoshphoribosyltransferase
(Nampt) (Morris-Blanco et al. 2014; Yamamoto et al. 2014),
the rate-limiting enzyme in the major biosynthetic pathways
for the production of NAD (Revollo et al. 2007). Nampt
converts nicotinamide to NMN (nicotinamide mononucleo-
tide), which is then converted to NAD by NMNAT (NMN
adenyltransferase) (Ying 2008). Nampt contains hypoxia re-
sponse elements in its promoter (Segawa et al. 2006) and is

important for mediating protection during ischemic events.
For example, Nampt overexpression was shown to prevent
neurodegeneration following MCAO, whereas Nampt inhibi-
tion exacerbated ischemic infarction (Wang et al. 2012a, b).
Furthermore, a study performed in primary neuronal cultures
revealed that Nampt maintains mitochondrial function and
neuroprotection against oxygen-glucose deprivation (in vitro
ischemia model) through its ability to produce NAD (Bi et al.
2012).

The importance of Nampt in IPC-mediated protection has
been shown in studies of the heart where Nampt inhibition
attenuated cell survival at both early and late phases of
ischemia/reperfusion injury (Yamamoto et al. 2014;
Nadtochiy et al. 2011). However, the mechanism by which
IPC regulates Nampt and NAD has not been fully defined.
Recent studies performed by our laboratory and others have
indicated that in the cortex, IPC activates AMPK (Morris-
Blanco et al. 2014; Jiang et al. 2014) an enzyme involved in
increasing Nampt mRNA and whole-cell NAD levels (Fulco
et al. 2008). Interestingly, Nampt overexpression has been
shown to protect the brain against ischemic injury in an
AMPK-dependent manner (Wang et al. 2011), demonstrating
an important functional network between Nampt and AMPK.

In contrast to Nampt, the contribution of NMNAT to IPC
mediated ischemic tolerance is hitherto undefined. Numerous
studies have demonstrated that NMNAT is protective against
axonal degeneration which is an early hallmark of many
neuronal disorders such as ischemia/reperfusion. Recent re-
search suggests that NMNAT neuroprotection may be inde-
pendent if its NAD synthesis activity. For example Sasaki
et al. (Sasaki et al. 2009) demonstrated that NMNAT enzy-
matic activity but not NAD levels were required to prevent
axonal degeneration. In a different study, overexpression of
NMNAT increased tau degradation which was dependent
upon NMNAT binding to phosphorylated tau but independent
of NMNAT enzymatic activity (Ali et al. 2012). Studies by
Zhia et al. (Zhai et al. 2008) suggest that NMNAT is a stress
activated chaperone which act similar to heat shock protein 70
in the proteasome mediated pathway and functions indepen-
dently of its enzymatic activity. Therefore it appears that
NMNAT may act in parallel to its NAD salvage pathway
function to protect against neuronal degeneration following
neurotoxic events such as ischemia/reperfusion.

In the brain, the mitochondria contain a large portion of the
total cellular NAD (Alano et al. 2007), indicating the impor-
tance of mitochondrial pools of NAD to neuronal and astro-
cyte function. Several studies in the heart and brain have
indicated that mitochondrial NAD can be maintained despite
substantial depletion of cytoplasmic NAD (Alano et al. 2007;
Yang et al. 2007; Du et al. 2003; Di Lisa et al. 2001). In
neurons, enhancements in mitochondrial NAD following ox-
idative stress preserved mitochondrial membrane potential,
enhanced respiration, and prevented the release of apoptosis-
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inducing factor (Du et al. 2003). Our laboratory has recently
shown that IPC enhances levels of mitochondrial Nampt and
NAD in the cortex by activating PKCε (Morris-Blanco et al.
2014). We showed that PKCε is involved in the translocation
or maintenance of a mitochondrial specific pool of Nampt
which functions to enhance levels of mitochondrial-localized
NAD (Morris-Blanco et al. 2014). These increases in mito-
chondrial NAD may not only be important for maintaining
mitochondrial bioenergetics, but also for the functioning of
NAD-dependent mitochondrial-localized enzymes such as
poly-ADP ribose polymerases (PARPs) and sirtuins, which
are linked to cell survival following ischemic injury (Iwashita
et al. 2004; Wang et al. 2011).

SIRT1 and mitochondria

Recently it has been demonstrated that the class III NAD+

dependent deacetyltransferase, sirtuin 1 (SIRT1), is required
for preconditioning-mediated ischemic tolerance (Della-
Morte et al. 2009; Raval et al. 2006). SIRT1 is a member of
the sirtuin family of deacetylase and ADP-ribosylase enzymes
which are involved in numerous cellular activities including
cellular stress response, genome stability and energy metabo-
lism (Thompson et al. 2012, 2013a; Pantazi et al. 2013;
Orozco-Solis and Sassone-Corsi 2014; Chang and Guarente
2014; Morris et al. 2011). The activities of SIRT1 are primar-
ily characterized in the nucleus while those of SIRT3, 4 and 5
are localized to the mitochondria (Morris et al. 2011). The
requirement of NAD+ for sirtuin activity places the sirtuins in
a position of linking the energy status of the cell to nuclear and
mitochondrial signaling. Although the role of SIRT3, 4 and 5
in preconditioning-mediated ischemic tolerance is not known,
there is increasing evidence that SIRT1may play a pivotal role
in protecting mitochondria from ischemic damage.

Mitochondrial physiology is finely controlled by a network
of transcriptional regulatory proteins which regulate the ex-
pression of nuclear encoded mitochondrial proteins. SIRT1
controls gene expression by deacetylating both histone and
non-histone proteins including numerous transcription factors
such as p53, forkhead box O (FOXO), and NF-KappB (Yeung
et al. 2004; Brunet et al. 2004; Cheng et al. 2003; Zhang et al.
2011). Therefore SIRT1 mediated ischemic protection may
stem from the regulation of nuclear encoded mitochondrial
gene expression. For example SIRT1 has emerged as a major
regulator of mitochondrial biogenesis through the activation
of peroxisome proliferator-activated receptor γ co-activator
1α (PGC-1α), an important metabolic transcriptional co-
activators of genes involved in mitochondrial metabolism
(Rodgers et al. 2008; Nemoto et al. 2005; Knutti and Kralli
2001). These studies are consistent with a SIRT1 dependent
regulation of mitochondrial physiology.

Recent studies by our laboratory (Thompson et al. 2013b)
and Aquilano et al. (Aquilano et al. 2010) have demonstrated
that SIRT1 can also localize to the mitochondria; suggesting a
direct regulation of mitochondrial activity by SIRT1.
Aquilano et al. (Aquilano et al. 2010) showed that in the
mouse brain, liver and muscle SIRT1 was localized to the
mitochondrial matrix where it interacted with mitochondrial
DNA, PGC-1α and the transcription factor TFAM; suggesting
a transcriptional regulatory role of SIRT1 in the mitochondria
which may allow coordination of both nuclear and mitochon-
drial gene expression. Our laboratory has further demonstrat-
ed that mitochondrial SIRT1 protein levels and activity are
increased following IPC (Thompson et al. 2013b). This in-
crease in mitochondrial SIRT1 protein levels was only ob-
served in neuronal cells and only in somal mitochondria. This
specificity for a subpopulation of neuronal mitochondria ap-
pears to be related to the dependency of SIRT1 on HSP90,
which shows a similar localization pattern, for mitochondrial
import. Increases in mitochondrial SIRT1 correlated tempo-
rarily with a delayed increase in nuclear SIRT1 activity and
with ischemic tolerance suggesting a protective role of mito-
chondrial SIRT1. In the heart, caloric restriction, a known
activator of sirtuins, prime the mitochondria for ischemic
stress by altering the acetylation levels of the electron trans-
port chain proteins NADH-ubiquinone oxidoreductase 75-
kDa subunit (NDUFS1) and cytochrome bc 1 complex
Rieske subunit leading to a reduction in reactive oxygen
species formation (ROS) (Shinmura et al. 2011). These results
were mimicked by resveratrol treatment, but not by
Kaempferol, which increases expression and mitochondrial
localization of SIRT3 (Shinmura et al. 2011); suggesting the
possibility that NDUFS1 and Rieske may be regulated by
other sirtuins such as SIRT1. However, in contrast to this
study our laboratory found that the respiration rate of non-
synaptic mitochondria isolated from the brain of
preconditioned animals, which display increased SIRT1
levels, was unaffected by acute SIRT1 inhibition (Thompson
et al. 2013b). Therefore, it is unlikely that mitochondrial
SIRT1, alone, is sufficient to regulate global reprogramming
of the mitochondria such as has been described for SIRT3
(Hebert et al. 2013) but rather it may work in concert with
mitochondrial SIRT3, 4 or 5 to impart mitochondrial ischemic
tolerance.

Uncoupling proteins (UCPs)

“Coupled” mitochondrial oxidative phosphorylation is when
the electron transport chain (ETC) which harvests energy from
the pumping of protons across the inner mitochondrial mem-
brane, giving rise to the proton motive force that ultimately
drives ATP synthesis. Mitochondrial “uncoupling” is a pro-
cess that “short circuits” oxidative phosphorylation by
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allowing protons to leak back into the mitochondrial matrix
and in essence releases potential energy as heat. This is
accomplished physiologically via the mitochondrial
uncoupling proteins (UCP) family of anion-carrier proteins
located on/in the inner mitochondrial membrane (reviewed in
(Krauss et al. 2005)). UCPs have been identified as potential
targets for ischemic tolerance.

Uncoupling was originally thought to be an artifact of
mitochondrial isolation, however the discovery of UCP1
(Nicholls and Locke 1984), UCP2 (Fleury et al. 1997) and
UCP3 (Boss et al. 1997), as well as the closely related UCP4
(Mao et al. 1999) and 5 (also known as BMCP1) (Sanchis
et al. 1998), has led to intense investigation into the biological
functions of this protein family. UCP2 is expressed in the
brain and has been the most widely studied thus far. UCP2
has been implicated in regulating the speed of neurotransmis-
sion via local heat production, reducing the buffering capacity
and ATP synthesis efficiency of mitochondria by decreasing
mitochondrial membrane potential, induction of mitochondri-
al biogenesis, basal mitochondrial ROS production and pain
sensation in the spinal cord, among others (an extensive
review of the CNS UCPs can be found in (Andrews et al.
2005)). UCP4 and 5 also exhibit CNS expression and have
been linked to similar functions such as attenuation of oxida-
tive stress and modulation of synaptic transmission (Ramsden
et al. 2012).

The exact role of UCPs and neuroprotection is unclear with
evidence suggesting that activation or upregulation is protec-
tive while others suggest that inhibition or downregulation is
beneficial. For example, Mattiasson et al. (Mattiasson et al.
2003) demonstrated that mice overexpressing human UCP2
are protected from transient focal ischemia, possibly through a
reduction in ROS production. In a subsequent study by
Deierborg et al. (Deierborg et al. 2008) UCP2 overexpression
was shown to protect thalamic neurons from global cerebral
ischemia. Likewise, Haines et al. (Haines et al. 2010) demon-
strated that transient focal ischemia-induced injury is exacer-
bated in UCP2−/− mice and in a separate study confirmed
previous work that UCP2 overexpression is neuroprotective
(Haines and Li 2012). In both cases the authors provide
evidence for a potential mechanism involving modulation of
the neuroinflammatory response. On the other hand, de Bilbao
and colleagues (de Bilbao et al. 2004) showed that the same
UCP2−/− mice were actually resistant to ischemic injury in a
model of permanent focal ischemia. Here, ischemic tolerance
was attributed to enhanced antioxidant defenses in the UCP2−/
− mice.

In preconditioning studies, both up and down-regulation of
UCP2 have been observed. Preconditioning rat brain with
sublethal ischemia both in vivo and in vitro was shown to
upregulate UCP2, which was associated with protection
(Mattiasson et al. 2003).Work from our laboratory determined
that the IPC mimetic resveratrol decreases UCP2 expression

which correlated with protection from global cerebral ische-
mia (Della-Morte et al. 2009). Despite the discrepancy in
UCP2 regulation by preconditioning, the extent to which
UCP2 is up or down regulated could produce differential
effects in terms of functional benefits. Mild uncoupling (in-
creased UCP levels) is thought to be protective by decreasing
the mitochondrial membrane potential and in turn ROS pro-
duction whereas coupling (decrease in UCP levels) may in-
crease the membrane potential and possibly make utilization
of energy substrates more efficient.

The disparity of these results in the contribution of UCP
proteins in ischemic tolerance may be attributed to several
factors. Without inducible systems to circumvent genetic
compensation the effects of overexpression or deletion of
UCP2 could represent a chronic adaptation to the overabun-
dance or lack of the protein, as the authors of these studies
have noted. Additionally, the expression pattern of UCP2 (as
well as UCP4 and 5) differs in the mouse and the rat, perhaps
accounting for some inconsistency of results across species
(Alan et al. 2009). Moreover, varying models of cerebral
ischemia have been utilized in these studies and while the
pathophysiology is similar, transient vs permanent occlusion
in the UCP2−/− mice experiments may underlie the contradic-
tory results (Sicard and Fisher 2009). Similarly, while IPC and
IPCmimetics share common pathways for ischemic tolerance,
they do not completely overlap and can have separate and
distinct molecular outcomes (Morris et al. 2011), which
should be considered when comparing IPC and other precon-
ditioning agents.

Further studies are warranted to explicate the role of UCPs
in neuroprotection, ischemic tolerance and preconditioning.
Improved techniques that allow for temporal and spatial ma-
nipulation of UCPs will greatly enhance our ability to tease
apart the intricacies of their function and manipulation.
Undoubtedly, expansion of our knowledge of these novel
proteins will help evaluate their clinical potential in the treat-
ment of neurological diseases.

Conclusions

Therapeutic intervention for the treatment of ischemia has
proven extremely elusive and has ended in the failure of
numerous clinical trials. However the body is endowed with
an innate neuroprotective program against ischemic damage
which is activated by mild ischemic stress. The therapeutic
potential of IPC has increased interest in understanding the
signaling pathways and mechanisms by which IPC mediates
neuroprotection; with the ultimate goal being the pharmaco-
logical emulation of IPC in a clinical setting. Significant
research indicates that mitochondrial dysfunction is a pivotal
trigger in inducing cellular death pathways following ische-
mia. As discussed in this review, it is also becoming clear that
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mitochondria are both an inducer and a major target of IPC
mediated neuroprotection. It appears that IPC preserves mito-
chondrial function through upregulation of pathways which
counteract the damaging effects of ischemia on the mitochon-
dria, such as antioxidant defense (Nrf2 and STAT’s), mito-
chondrial biogenesis and reprogramming (SIRT1 and other
sirtuin’s), substrate availability (Nampt) and mitochondrial
efficiency (UCP’s), to name a few. Although significant steps
have beenmade in understanding how IPC protects mitochon-
dria against ischemic injury there is still lots to be learned
about the submitochondrial targets which are differentially
modulated by IPC allowing for continued normal mitochon-
drial activity following ischemic exposure.
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