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Abstract Cellular redox states can regulate cell metabolism,
growth, differentiation, motility, apoptosis, signaling pathways,
and gene expressions etc. A growing body of literature suggest
the importance of redox status for cancer progression. While
most studies on redox state were done on cells and tissue
lysates, it is important to understand the role of redox state in
a tissue in vivo/ex vivo and image its heterogeneity. Redox
scanning is a clinical-translatable method for imaging tissue
mitochondrial redox potential with a submillimeter reso-
lution. Redox scanning data in mouse models of human
cancers demonstrate a correlation between mitochondrial re-
dox state and tumor metastatic potential. I will discuss the
significance of this correlation and possible directions for
future research.
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Introduction

As a hallmark of cancer, abnormal metabolism has taken the
center stage of research in recent years (Pedersen 2007;
Christofk et al. 2008; Hsu and Sabatini 2008; Cairns et al.
2011; Hanahan and Weinberg 2011; Koppenol et al. 2011;
Lisanti et al. 2011). Most cancers exhibit the Warburg effect –
increased glucose consumption even in the presence of
oxygen, on which FDG-PET (fluorine-18-2-D-deoxyglucose
positron emission tomography) is based to stage tumors
and monitor treatment response (Quon and Gambhir 2005;
Mac Manus and Hicks 2008). In addition, mitochondrial

bioenergetic/genetic abnormalities have been shown to
mediate carcinogenesis and tumor progression (King et al.
2006;Modica-Napolitano et al. 2007;Mayevsky 2009; Kaelin
and Thompson 2010). Genetic mutations have been identified
in cancer patients for certain mitochondrial metabolic enzymes
in the TCA cycle including isocitrate dehydrogenase, succinate
dehydrogenase and fumarase (Thompson 2009). The expres-
sions of genes or activities of proteins known to drive
tumor progression such as Myc/HIF1α/p53 have been shown
to regulate cellular metabolism including mitochondrial
metabolism (Dang 1999; Semenza 2010; Cairns et al. 2011).
On the other hand, tumor microenvironment and metabolism
may be upstream regulators of signaling pathways (Hsu
and Sabatini 2008). Therefore, it has become increasingly
important to understand the interwined relationship among
tumor signaling pathways, metabolism, andmicroenvironment.

Maintenance of redox state homeostasis has been
regarded as important for cancer cells (Dorward et al.
1997; Grek and Tew 2010; Cairns et al. 2011; Locasale
and Cantley 2011). As a matter of fact, tremendous research
studies (Puppi and Dely 1983; Dorward et al. 1997; Adler et
al. 1999; Nkabyo et al. 2002; Weir et al. 2002; Cook et al.
2004; Olschewski et al. 2004; Agarwal and Auchus 2005;
Ido 2007; Sattler et al. 2007; Banerjee 2008; Ying 2008;
Gough 2009; Maccarrone and Brune 2009; Pani et al. 2009;
Sarsour et al. 2009; Grek and Tew 2010; Ishimoto et al.
2011) have demonstrated or implicated redox state as a key
mediator of many cellular functions and activities including
metabolism, growth, differentiation, cell cycle, motility/
invasion, apoptosis, survival, immunological response, oxida-
tive stress, gene transcription, and signaling (Fig. 1). Some
studies have implied a connection between the redox potentials
(or NADH levels) and the metastatic potential of cancers
(Zhang et al. 2006; Ishikawa et al. 2008b; Pani et al. 2009;
Pelicano et al. 2009; Grek and Tew 2010). Reactive oxygen
species (ROS) are known to cause oxidative stress on proteins,
lipids, DNA/RNAs and also act as signalingmolecules to drive
cancer cell motility/invasion and tumor progression. ROS can
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induce a higher risk of metastasis either by causing more
DNA mutagenesis or regulating tumor progressions directly
by enhancing cell invasion and metastasis. A mitochondrial
DNA mutation encoding a subunit of NADH dehydrogenase
(complex I) was shown to control the development of metas-
tasis in animal models by generating more ROS, which, in
turn, directly regulates certain nuclear genes that promote
metastasis (Ishikawa et al. 2008a, b). However, a high level
of ROS or oxidants does not necessarily indicate more oxi-
dized redox potential. It has been known that tumors with high
levels of ROS are often counter balanced with high levels of
reductants such as vitamin C, reduced glutathinone (GSH) and
NADPH (Hyodo et al. 2006; Pelicano et al. 2009; Pani et al.
2010; Keshari et al. 2011). It is the balance between oxidants
and reductants that define the cellular redox potential. Still
redox potential is a complex issue due to multiple intracellular
redox systems and their dependence on subcellular compart-
ments (cytosol, nuclear, mitochondrion, etc.). Currently the
relationship between cellular redox potential and cancer meta-
static potential is far from clear.

Most prior work on redox status was done on the molec-
ular and cellular levels under in vitro conditions or on tissue
lysates. To investigate the role of redox potential in tumor
progression, it is necessary to image the redox status and its
spatial distribution in tissue. The tissue heterogeneity in
functional/metabolic/genomic status has been regarded as
an important characteristic for malignancy (Gaustad et al.
2005; Schroeder et al. 2005; Gerlinger et al. 2012; Shah et
al. 2012). Intra-tumor heterogeneity has been shown to be
an important factor for studying tumor metastasis (Nowell
1976; Fidler and Kripke 1977; Fidler and Hart 1982). The
heterogeneity in a tumor metabolic microenvironment can
occur on a small distance <1 mm (Mueller-Klieser et al.
1991; Li et al. 2009b; Xu et al. 2010). Therefore, effective
sub-millimeter imaging methods are needed to measure the
tumor redox state in vivo/ex vivo. Redox imaging on the basis
of the fluorescence signals from NADH and flavoproteins is

the only clinically-translatable method that can achieve 3D
imaging of the tissue mitochondrial redox state at a submilli-
meter resolution.

In this mini-review we will cover some basic biological
roles of NAD(H) and flavins, and the principles and meth-
odology of mitochondrial redox imaging. We will then
review the work studying the link of mitochondrial redox
potential to tumor metastatic potential using the redox im-
aging. In the end, we will discuss the significance of these
studies in terms of basic research and clinical management
for cancer.

NAD(H), flavins and mitochondrial redox imaging

As universal free energy carriers in bioenergetics, NAD+

(oxidized nicotinamide adenine di-nucleotides) and NADH
mediate a number of oxidation-reduction reactions along
pathways of energy metabolism. By controlling glycolysis
in the cytosol and the Krebs cycle in mitochondria, the
redox potential NAD+/NADH is linked to the phosphoryla-
tion potential [ATP]/([ADP]·[Pi]) in living tissues and pro-
vides a key parameter for the metabolic control of normal
and diseased phenotypes (Veech 2006). In addition, NAD+/
NADH is a key component in cellular redox homeostasis as
NAD(H) is coupled to NADP(H) by transhydrogenase ac-
tivity (Lemasters and Nieminen 2001) and, thus, can indi-
rectly affect the oxidation-reduction couples of glutathione
and thioredoxin systems as well (Banerjee 2008). These
redox couples and related redox-sensitive enzymes may
affect almost all major signaling pathways including p53,
PI3K and MAPK (Adler et al. 1999; Olovnikov et al. 2009).
Accumulating evidence has shown that NAD+ is also a key
signaling molecule serving as a precursor to calcium-
releasing agents and a substrate for protein modification of
transcription factors by PARP (poly-ADP-ribosylation po-
lymerase) (Banerjee 2008). NAD+ can mediate many cellu-
lar activities including signaling, reactive oxygen species
(ROS) generation, growth, differentiation, survival, and ap-
optosis (Ziegler 2005; Orrenius et al. 2007; Ying 2008).

In addition to NAD(H), another group of redox-important
molecules flavin nucleotides including flavin adenine dinu-
cleotide (FAD) or flavin mononucleotide (FMN) also play
important roles in various biological processes including
metabolism and signaling events (Lehninger et al. 1993;
Taylor et al. 2001; Senda et al. 2009; Becker et al. 2011)
FAD or FMN are coenzymes or prosthetic groups for vari-
ous flavoproteins including the NADH dehydrogenase
(complex I) and pyruvate dehydrogenase in mitochondria.
These flavoproteins are quite often coupled with NAD+/
NADH. FADH2 is also a free energy carrier in electron
transport and the FAD-coupled redox potential FAD/
FADH2 regulates key reactions in the TCA cycle, oxidative

Fig. 1 Important roles of redox state in biology
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phosphorylation, and fatty acid metabolism (Lehninger et al.
1993). Both FADH2 and NADH levels may regulate the ROS
generation in mitochondria. Flavin prosthetic groups also
induce redox-dependent conformational and functional
changes in flavoproteins which are important for protein tran-
scription, signaling pathways and environmental adaptation
(Taylor et al. 2001; Senda et al. 2009; Becker et al. 2011).

The roles of NADH, flavins, and mitochondrial redox
potential NAD+/NADH or FAD/FADH2 in tumor progres-
sion to metastasis are not clear. However, the fluorescence
signals from these molecules (NADH and FAD) enable the
development of the mitochondrial redox imaging, a useful
tool to investigate these questions.

Dr. Chance and coworkers have pioneered in and made
major contributions to using endogenous fluorescence sig-
nals of NADH and oxidized flavoproteins (Fp including
FAD) to probe mitochondrial metabolic states in isolated
mitochondria, intact cells and tissues ex vivo/in vivo since
the 1950s (Chance and Baltscheffsky 1958; Chance and
Jobsis 1959; Chance et al. 1962, 1979; Chance 1966;
Chance and Schoener 1966; Hassinen and Chance 1968;
Mayevsky and Rogatsky 2007). When excited by UV light
(~366 nm), NADH emits fluorescence peaked at ~450 nm.
Oxidized flavoproteins have green fluorescence (~525 nm)
if excited by blue light (~425 nm). The NAD and reduced
flavoproteins do not have such fluorescence signals. These
fluorescence signals mainly originate from the mitochondri-
al compartment (Scholz et al. 1969; Rocheleau et al. 2004;
Nichols et al. 2005; Mayevsky and Rogatsky 2007; Blinova
et al. 2008), and the indices e.g. NADH, Fp, Fp/NADH,
NADH/(NADH+Fp), and Fp/(NADH+Fp) have been
shown as sensitive to mitochondrial metabolism and redox
state (Chance and Williams 1955a; Chance and Williams
1955b; Chance and Baltscheffsky 1958; Chance and Schoener
1966; Fisher et al. 1976; Chance et al. 1979; Masters et al.
1981; Mayevsky et al. 1983; Kitai et al. 1992; Sato et al.
1995). The ratiometirc quantities reduces their sensitivity to
hemodynamic artifacts andmitochondrial densities (Chance et
al. 1979; Li et al. 2009a).

To image tissue mitochondrial redox state at a high
spatial resolution, redox scanning (Quistorff et al. 1985;
Gu et al. 2002; Li et al. 2009a; Xu et al. 2009b) a cryogenic
NADH/flavoproteins fluorescence imager was developed by
the Chance laboratory to provide 3D maps (resolution 50×
50×20 μm3) of mitochondrial redox status by acquiring ex
vivo the NADH and Fp fluorescence images of frozen
organs/tissues in liquid nitrogen. Its submillimeter spatial
resolution is suitable for probing the spatial heterogeneity of
the tissue metabolic state. Redox scanning employs snap-
freezing procedures to maintain the tissue metabolic state
the same as or similar to the in vivo situation. Tissues
mounted in a liquid nitrogen chamber are grounded away
at various depths to expose surface planes for a flying-spot

scanning with a fiberoptic probe. The fluorescence signal
acquisition is time-shared between NADH and Fp channels
and recorded by a photomultiplier tube (PMT). CCD-based
cryogenic redox imager was also developed by replacing the
scanning probe and PMT with a cryogenic microscope and
CCD detection system (Li et al. 2009a; Ranji et al. 2009; Xu
et al. 2009a). The CCD redox imager can acquire redox
images of tissues much faster (tens of minutes versus sec-
onds) and a higher spatial resolution (5 μm vs 50 μm) than
the redox scanner.

Redox scanning has been extensively employed to study
mitochondrial metabolism and redox state in normal tissues
and diseases (Barlow et al. 1979; Mayevsky et al. 1983;
Haselgrove et al. 1990; Kitai et al. 1992; Sato et al. 1995;
Shiino et al. 1999; Ramanujam et al. 2001; Zhang et al.
2004a; Xu et al. 2010; Xu et al. 2011a, b, c). The redox ratio
Fp/NADH of freeze-trapped liver mitochondria was shown
to correlate with the oxidation-reduction state modulated by
the β-hydroxybutyrate/acetoacetate couple (Chance et al.
1979). The Fp/NADH ratio of frozen liver samples from
human subjects as measured by NADH-flavoprotein fluo-
rescence imaging correlated linearly with the blood ketone
body ratio (acetoacetate/β-hydroxybutyrate) (Ozawa et al.
1992), which might reflect the NAD+/NADH redox poten-
tial coupled via β-hydroxygutyrate dehydrogenase in the
mitochondria.

Redox scanning may be applied to biopsy samples snap-
frozen right after being removed from the body (Ramanujam
et al. 2001; Xu et al. 2012). This diagnostic tool requires
only a small tissue sample (~1 mm×1 mm×500 μm) to
image. The remaining tissue samples can be further pro-
cessed with histological assays and correlated with redox
images. Another direction of research development is to
employ two-photon fluorescence imaging of NADH and
Fp (Ramanujan et al. 2005; Skala et al. 2007b) which has
a deeper tissue penetration depth than single photon fluo-
rescence and can image the mitochondrial redox state in live
tissues. But this approach is still limited by the tissue pen-
etration depth of less than 1 mm. This technique has been
used to study the redox state in precancerous tissues in vivo
in animal models (Skala et al. 2007a; Levitt et al. 2011) and
can be used for deep tissues in patients if coupled with an
endoscope or optical biopsy needles (Brown et al. 2009;
Zhu et al. 2009).

In summary, the NADH/Fp fluorescence imaging obtains
the tissue redox state information which is specific to a
mitochondrial compartment and at a high spatial resolution.
Although invasive, the redox scanning is the major method
currently available for 3D imaging of the mitochondrial
redox state in tissue with a wide field of view (~cm) and a
submillimeter resolution. A number of other methods
(Chung and Jue 1992; Mueller-Klieser and Walenta 1993;
Matsumoto et al. 2006; Sattlar et al. 2007; Tisdall et al.
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2007; Hyodo et al. 2008; Bohndiek et al. 2011; Keshari et
al. 2011; Tachtsidis et al. 2011) may measure tissue redox
status but they are limited by lack of specificity for redox
couples or mitochondrial compartment or having low spatial
resolutions. In recent years genetically-encoded redox-
sensitive fluorescence proteins (Dooley et al. 2004;
Gutscher et al. 2008; Hung et al. 2011) have been developed
so that it is feasible to image the redox state with specificity
for redox couples and subcellular compartments at a high
spatial resolution. However, these approaches require the
genetic transfection of cells with fluorescence proteins and
clinical translations would be difficult.

Mitochondrial redox state linked to tumor metastatic
potential

Mitochondrial redox imaging using NADH/Fp fluorescen-
ces has been extensively used in cancer studies (Drezek et
al. 2001; Ramanujam et al. 2001; Zhang et al. 2004b; Li et
al. 2007, 2009a; Xu et al. 2010; Liu et al. 2011; Xu et al.
2011b, c). By using the redox scanner we have demonstrat-
ed in mouse models that mitochondrial redox imaging indi-
ces may potentially provide sensitive biomarkers for tumor
metastatic potential. To date we have not found studies other
than our own work to probe the connection between mito-
chondrial redox state of primary tumors and the risk of
metastasis or tumor metastatic potential.

We first conducted a redox scanning study on mouse
xenografts of five human melanoma cell lines (Li et al.
2007; Li et al. 2009b). These cell lines have been well
characterized in vitro and in vivo regarding their aggressive-
ness. The invasive potentials of these cell lines as measured
by the Boyden chamber method fall in the increasing rank
order A375P < A375M < A375P10 < A375P5 < C8161.
The amount of lung metastases of these cell lines in exper-
imental metastasis mouse models have a rank order A375P
< A375P5 < A375P10 < A375M < C8161 (Li et al. 2009a).
We implanted these melanoma cells subcutaneously in athy-
mic nude mice and grew tumors within a few weeks.
Tumors were then subject to in situ snap-freezing by liquid
nitrogen and then excised for redox scanning to obtain
multi-slice images at different tissue depths with an in-
plane resolution of 80 μm. Significant tissue heterogeneity
was identified in these redox images, i.e., NADH, Fp and Fp
redox ratio. The aggressive tumors exhibited significant
difference between the tumor core and rim, with the cores
having higher Fp, low NADH and higher Fp redox ratio. In
comparison, the indolent A375P tumors were largely uni-
form except for sporadic “hot” spots with high Fp redox
ratios. We found that the Fp redox ratio could differentiate
five human melanoma mouse xenografts spanning a full
range of aggressiveness. The more metastatic melanomas

exhibited a localized area (the tumor core) with higher Fp
redox ratios (more oxidized) than the less metastatic mela-
nomas. A highly significant correlation (R200.97, p00.002)
was obtained between the Fp redox ratios of tumor cores
and the invasive potentials of the corresponding cell lines
that were measured by the Boyden chamber method. In
comparison, the redox ratios averaged over the whole tumor
sections have a less significant correlation (R200.63, p00.1)
with the invasive potentials. The redox ratios of the whole-
section average can only predict the differences between
extremes, i.e., A375P versus other more metastatic xeno-
grafts, but not among A375P5, A375P10, A375M and
C8161 melanomas (data not published).

We then studied mouse xenografts of two human breast
cancer cell lines, the more metastatic MDA-MB-231 line
and the less metastatic or indolent MCF-7 line (Xu et al.
2010). Redox scanning has again identified oxidized cores
in aggressive tumors and a relatively uniform distribution in
the indolent tumors. The redox imaging biomarkers (NADH
in the rim, Fp and Fp redox ratio in the core) can readily
differentiate between these two types of xenografts with
very high statistical significance (p<0.0001). The average
redox indices of whole tumor sections do not show statisti-
cally significant difference between the two lines, demon-
strating the importance of imaging tumor heterogeneity.
Furthermore, we have preliminarily observed heterogene-
ities in mitochondrial redox indices in tumor biopsy samples
from breast cancer patients and the redox index differences
between cancerous and normal tissues (Xu et al. 2012). The
redox index differences between tumor core and rim have
also been observed in prostate cancer mouse xenografts as
well (Cai et al. 2012).

Note that the more oxidized Fp redox ratio does not
necessarily correlate with the high tumor growth rate. In
melanoma xenografts of five lines aforementioned, the more
invasive ones have faster tumor growth. But the more meta-
static MDA-MB-231 breast tumors grow more slowly than
the MCF-7 tumors.

Another interesting question is about the metabolic state
of cancer cells in the tumor cores. Previously Chance and
coworkers (Chance andWilliams 1955a; Chance andWilliams
1955b; Chance and Baltscheffsky 1958; Chance 1966) have
defined 5 metabolic states for mitochondria under different
conditions of oxygen, ADP and substrate availability. State
1–4 have adequate oxygen. With low levels of endogeneous
substrates and ADP, state 1 represents low levels of oxidative
metabolism accompanied by high NADH and low Fp, i.e., low
Fp redox ratio. State 2 corresponds to mitochondria starved of
substrate but having adequate ADP; this state exhibits low
respiratory activity with high levels of Fp and low levels of
NADH, i.e., high Fp redox ratio. The State 3 corresponds to
adequate levels of substrate andADP and, hence, high levels of
oxidative metabolism. This condition is also indicative of a
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high Fp redox ratio, a high Fp but not as high as State 2,
and a low NADH but not as low as State 2. State 4,
typically a state at rest with adequate supplies of sub-
strate but low ADP, exhibits low mitochondrial respiratory
activity with a low Fp redox ratio. State 5 corresponds to
anoxic conditions with maximum NADH, lowest Fp redox
ratio and minimum (~0) respiration rate. In our melanoma
xenograft studies, we found the aggressive melanoma
(C8161) had a lower blood perfusion and/or vessel permeabil-
ity in the tumor core compared to rim or to the indolent
melanoma (A375P) based on the measurements of dynamic
contrast enhanced MRI (DCE-MRI) in vivo. We also
found lower microvasculature patency in the aggressive
tumor cores compared to the corresponding rim accord-
ing to Hoechst dye staining of histological tissue sections.
These results indicate a possible substrate starvation
(State 2) in the aggressive tumor cores with a high Fp
redox ratio.

Although the H&E staining of aggressive tumors often
appear morphologically different (more reddish) in the
core than in the rim, the tumor cores (not necessarily in
the geometrical center) with oxidized redox state may not
be regarded as complete necrotic centers for the follow-
ing several reasons: 1) The tumor regions with compara-
ble high redox ratios were also observed in tumors of
small size (4~6 mm in diameter) which are less likely to
develop necrotic centers (data not published); 2) MRI of
these melanomas and breast tumors seldom showed
hyperintensity on T1-weighted images, a feature com-
monly observed for necrotic tissues (data not published); 3)
Another MRI imaging technique sensitive to tissue necrosis,
i.e., magnetization transfer MRI indicated viable tissues
in some aggressive breast tumor cores with oxidized
redox states (data not published); 4) Microscopic obser-
vation of melanoma tissue slides stained with DAPI and
TUNEL indicated the existence of viable cells with
intact nuclei (DAPI) and low apoptosis in those core
regions (Xu et al. 2009c); 5) Fluorescence imaging of
the pyro-2-deoxy-glucose uptake in MDA-MB-231
tumors indicates heterogeneity in the cores with some
areas having high glucose uptake and thus probably not
substrate limited (Xu et al. 2011c). The high redox ratio
for those regions might indicate high respiratory activi-
ties (State 3). Based on all these observations, it is quite
possible that the biological states and micro-environment
of those cancer cells in the oxidized tumor cores are
heterogeneous spatially and temporally. More investiga-
tions are needed to understand the significance of these
heterogeneities.

The existence of viable cells in the aggressive tumor
cores possibly under an inhospitable environment such as
starvation led to the hypothesis that those cancer cells may
be in the state of autophagy. Autophagy may facilitate the

survival of cancer cells under environmental/nutritional
stresses and is expected to increase the success rate of
metastasis (Lum et al. 2005; Amaravadi et al. 2007). In
collaboration with Julian Lum, Ravi Amaravadi and
Xiaohong Ma et al., we demonstrated that the more
invasive/aggressive melanomas exhibit higher autophagy
than the less invasive/aggressive melanoma in 3D cell
spheroids and mouse xenografts. Higher autophagy in-
dices predict shorter progression-free survival and over-
all survival in melanoma patients, and high autophagy
activity predicts drug resistance in melanomas (Ma et al.
2011). Further research is needed to investigate the link
between mitochondrial redox state, autophagy and tumor
metastatic potential.

Significance

Although the underlying mechanism is not clear, our
redox scanning studies on cancer mouse models indicate
a possibly fundamental connection between mitochon-
drial redox state and tumor progression to metastasis.
Our work also indicates the importance of characterizing
the tumor redox state heterogeneity by high resolution
imaging methods to predict tumor aggressiveness. It is
the redox ratios in the oxidized tumor cores not the
whole tumor average that can differentiate better be-
tween aggressive and indolent tumors.

With the results across cancer types, we may wonder
whether mitochondrial redox potential can be a general
mediator in tumor progression to metastasis. As the Warburg
effect has been demonstrated as a hallmark in the majority
of cancers, further studies about the role of mitochondrial
redox state in tumor progression to metastasis might open
new pages in cancer research.

On the other hand, redox imaging biomarkers can be
useful for clinical cancer management. A major challenge
in cancer research is to develop surrogate biomarkers for the
risk of tumor metastasis. With ~90 % of cancer patients
dying of tumor metastasis, the prognosis of cancer patients
is largely determined by the risk of metastasis rather than the
tumor size. Compared with other biomarkers that may only
provide binary differentiation of malignant from benign
lesions, the “scaling” of neoplasia on the basis of the redox
imaging indices has an advantage of providing continuously
quantitative biomarkers for tumor metastatic potential,
which, if successfully established, are expected to facilitate
personalized clinical cancer management.
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