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Abstract The alkylating agent 3-Bromopyruvate (3-BrPA)
has been used as an anti-tumoral drug due to its anti-
proliferative property in hepatomas cells. This propriety is
believed to disturb glycolysis and respiration, which leads to
a decreased rate of ATP synthesis. In this study, we evalu-
ated the effects of the alkylating agent 3-BrPA on the respi-
ratory states and the metabolic steps of the mitochondria of
mice liver, brain and in human hepatocarcinoma cell line
HepG2. The mitochondrial membrane potential (ΔYm), O2

consumption and dehydrogenase activities were rapidly
dissipated/or inhibited by 3-BrPA in respiration medium
containing ADP and succinate as respiratory substrate.
3-BrPA inhibition was reverted by reduced glutathione
(GSH). Respiration induced by yeast soluble hexokinase
(HK) was rapidly inhibited by 3-BrPA. Similar results were
observed using mice brain mitochondria that present HK
naturally bound to the outer mitochondrial membrane.
When the adenine nucleotide transporter (ANT) was
blocked by the carboxyatractiloside, the 3-BrPA effect was
significantly delayed. In permeabilized human hepatoma
HepG2 cells that present HK type II bound to mitochondria

(mt-HK II), the inhibiting effect occurred faster when the
endogenous HK activity was activated by 2-deoxyglucose
(2-DOG). Inhibition of mt-HK II by glucose-6-phosphate
retards the mitochondria to react with 3-BrPA. The HK
activities recovered in HepG2 cells treated or not with
3-BrPA were practically the same. These results suggest that
mitochondrially boundHK supporting the ADP/ATP exchange
activity levels facilitates the 3-BrPA inhibition reaction in
tumors mitochondria by a proton motive force-dependent
dynamic equilibrium between sensitive and less sensitive
SDH in the electron transport system.
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Introduction

Cancer cells are characterized by a high-energy demand in
order to support growth and invasion of healthy tissues.
However, different than healthy tissues, which have suffi-
cient oxygen supply for carrying out essential functions,
cancer cells display an altered energy metabolism in which
a highly glycolytic phenotype and a depressed respiration,
either in normoxia or hypoxia conditions, are observed. This
phenomenon, known as “Warburg Effect”, is considered a
metabolic signature of many tumors (Pedersen 1978;Warburg
1956). Although mitochondria contribute less to cellular ATP
synthesis, the organelle participates in several key processes
for the survival and propagation of tumors cells.

A compound capable of blocking the formation of ATP in
the metabolic pathways of the tumors cells could potentially
interrupt the growth of glycolytic tumors. The compound
3-BrPA greatly inhibits the major pathways of ATP synthe-
sis, glycolysis and oxidative phosphorylation, inducing the

C. Rodrigues-Ferreira :A. Galina (*)
Laboratório de Bioenergética e Fisiologia Mitocondrial,
Programa de Bioquímica e Biofísica Celular,
Instituto de Bioquímica Médica,
Universidade Federal do Rio de Janeiro,
Av. Carlos Chagas Filho 373 – CCS, Bl. D, ss13,
Rio de Janeiro 21941-902 RJ, Brazil
e-mail: galina@bioqmed.ufrj.br

A. P. P. da Silva
Laboratório de Metabolismo Energético,
Departamento de Química, Setor de Bioquímica,
Instituto de Ciências Exatas,
Universidade Federal Rural do Rio de Janeiro,
Seropédica, RJ, Brazil

J Bioenerg Biomembr (2012) 44:39–49
DOI 10.1007/s10863-012-9413-8



depletion of ATP (Ko et al. 2001; Pauser et al. 1996;
Geschwind et al. 2000, Ko et al. 2004). 3-BrPA is an
alkylating agent analog to lactate that is able to react with
thiol (SH) and hydroxyl (OH) groups of several enzymes.
The redox status of the cell depends in great part on the
amounts of reduced/oxidized glutathione ratio ([GSH]/
[GSSG]). This condition may play a determinant role on
how 3-BrPA reacts to these groups present in biomolecules
(Sanborn et al. 1971; Chang and Hsu 1977; Tunnicliff and
Ngo 1978; Satterlee and Hsu 1991; Korotchkina et al. 1999).

Studies with hepatocellular carcinoma (HCC) cells have
suggested that the metabolic blocking site of 3-BrPA is the
mitochondrial hexokinase type II (mt-HK II). It was sug-
gested that, when mt-HK II is blocked, an irreversible im-
pairment of glycolytic flux occurs (Ko et al. 2001; Gwak et
al. 2005). Considering that the HK-II-mitochondria bound is
found in most tumor cells, the enzyme has become an
attractive target for therapeutical interventions. More
recently, studies have confirmed that 3-BrPA has the
potential to deplete ATP in tumour cells, with no apparent
effect on non-transformed cells (Ko et al. 2001; Geschwind et
al. 2002; Ko et al. 2004; Xu et al. 2005). Nevertheless, our
group has recently shown that 3-BrPA mainly affects two
glycolytic enzymes (glyceraldehyde dehydrogenase and
3-phosphoglycerate kinase) in HepG2 cells (Pereira da
Silva et al. 2009). The mitochondrial respiration is affected
mainly at the level of complex II (succinate dehydrogenase,
SDH) supported respiration and lactate transporter, a
monocarboxylate transporter (MCT) whereas HK-II is
not affected (Pereira da Silva et al. 2009). The exact
mechanism causing mitochondrial collapse has not been
identified. Whether the inhibition promoted by 3-BrPA
is modulated by a non-inhibited mitochondrial HK activity is
not known either. It is still unknown if 3BrPA inhibits
mitochondrial respiratory states and ΔYm levels.

Under non-phosphorylating conditions, the ΔYm is high
and the rate of respiration is low being limited in great part
by the proton leak through the inner mitochondrial mem-
brane. However, ADP stimulates the rate of oxygen con-
sumption (state 3) in which the ANT and ΔYm are essential
components for ATP synthesis (Chance and Williams 1955).
The limitation of respiration is greatly imposed by the rate
of ADP-ATP exchange flux.

In the present study, we show for the first time that brief
exposure of isolated liver mitochondria to 3-BrPA, at low
micromolar range concentration, leads to a severe impair-
ment of mitochondrial respiration, affecting mainly the SDH
activity. This happens even when multiple oxidative sub-
strates are present. In this study we investigated the effect of
the ADP/ATP exchange activity induced by coupled hexo-
kinase reaction, in which the ANT carrier greatly contributes
to the respiratory activity. In addition, the effect of GSH was
also evaluated regarding 3-BrPA inhibition of respiration

and of ΔYm. Our findings suggest that the mitochondria-
bound HK type II found in tumors facilitates 3-BrPA inhi-
bition of SDH in mitochondria of tumors through ADP/ATP
exchange activity.

Experimental procedures

Animals and reagents

Male Swiss mice (2 months), maintained on a 12-h light/
dark cycle (lights on at 7:00), with free access to tap water
and standard laboratory chow were used. All experimental
protocols (including statistical evaluation) were designed
aiming to keep the number of animals used, as well as their
suffering, to a minimum. The reagents were purchased from
Sigma (USA), Amersham Biociences (USA), Invitrogen
(USA) and Merck (Germany).

Mitochondrial isolation

Mitochondria from forebrains and liver were isolated by
differential centrifugation and kept at 4 °C throughout the
isolation procedure. Briefly, the two tissues were rapidly
removed to an ice-cold isolation buffer containing 0.32 M
sucrose, 1 mM EDTA, 1 mM EGTA, and 10 mM Tris-HCl
(pH 7.4). After five washes to remove contaminating blood,
the tissues were sliced into little pieces in isolation buffer.
The tissues were manually homogenized during 11 strokes
in a Teflon glass potter. The liver homogenates were centri-
fuged at 600×g for 5 min in a Hitachi Himac SCR20B RPR
20-2 rotor. The supernatant were carefully removed and
centrifuged again at 12,000×g for 10 min. The supernatant
of the second centrifugation was centrifuged at 12,000×g
for 10 min. The pellets obtained were re-suspended in the
isolation buffer. For isolation of brain mitochondria, the
forebrain homogenate was centrifuged at 2,000×g for
3 min. The supernatant was carefully removed and centri-
fuged again at 12,000×g for 10 min. The supernatant of the
second centrifugation was centrifuged at 12,000×g for
10 min. The pellets obtained were re-suspended in the
isolation buffer. All of the experiments with isolated mito-
chondria were carried out at 37 °C with continuous stirring
in a respiration buffer containing 10 mM Tris-HCl, pH 7.4,
0.32 M mannitol, 8 mM inorganic phosphate, 4 mM MgCl2,
0.08 mM EDTA, 1 mM EGTA and 0.2 mg/ml fatty acid-free
bovine serum albumin.

Cell culture

HepG2, a human HCC cell line, was obtained from American
Type Culture Collection and grown inMEM (minimal essential
medium) with 5 mM glucose, supplemented with 10%(v/v)
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FBS (fetal bovine serum), 0.22% sodium bicarbonate and 0.2%
Hepes (pH 7.4) at 37◦C in a humidified incubation chamber
with 5% CO2. Cells were seeded at a density of 105 cells/ml.
Cells were sub-cultured every 2 to 4 days and used when they
were nearly 95% confluent.

Animal care and use

The experimental protocols using animals were approved by
the Committee for Ethics in Animal Research of the Uni-
versidade Federal do Rio de Janeiro in compliance with the
Brazilian College for Animal Experimentation.

Preparation of type II mt-HK of HepG2 cells

Mitochondrial fractions for measurements of type II mt-HK
(HepG2 cells) activities were obtained by centrifugation of
the cellular extracts at 10,000×g for 15 min at 4 °C. The
resulting pellets were resuspended in lysis buffer and used
for enzymatic assays (Graham and Rickwood 1997).

Determination of type II mt-HK of HepG2 cells

The direct effect of 3-BrPA on type II mt-HK of HepG2
cells was evaluated by incubating the enzyme preparation
with 100 μM 3-BrPA. The assay was performed at 37 °C in
reaction medium containing 0.25 M mannitol, 0.1% fatty-
acid-free bovine serum albumin, 10 mM MgCl2 and 10 mM
KH2PO4 (pH 7.2) as previously described (da-Silva et al.
2004; Wilson 1989). After incubation, the activity of type II
mt-HK was determined based on a previously described
method with minor modifications (da-Silva et al. 2004;
Wilson 1989). Briefly, mitochondrial protein used in this
assay was 0.1 mg/mL and mt-HK activity was determined
by NADH formation following the absorbance at 340 nm at
37 °C. The assay medium contained 10 mM TrisHCl pH 7.4,
5 mM glucose, 10 mM MgCl2, 1 mM NADP, 2 units/mL
G6PDH (glucose 6-phosphate dehydrogenase) from
Leuconostoc mesenteroides and 50 μM Ap5A (P1,P5
di(adenosine 50)-pentaphosphate), in a final volume of
1 mL. The reaction was started adding 1 mM ATP.

Spectrofluorometric measurements of Δ<m

The ΔYm was measured by using the fluorescence signal of
the cationic dye safranine O, which is accumulated and
quenched inside energized mitochondria as previously
described (Åkerman and Wikström 1976). Mitochondria
(0.1 mg protein/mL) were incubated in the standard respi-
ration buffer supplemented with 6 μM safranine O. FCCP
(carbonyl cyanide p-trifluoromethoxyphenylhydrazone)
(from 0.4 to 1 μM) was used to collapse Δ<m as a control.
Fluorescence was detected with an excitation wavelength of

495 nm (slit 5 nm) and an emission wavelength of
586 nm (slit 5 nm) using a Hitachi (Tokyo, Japan)
model F-3010 spectrofluorometer. Alternatively, ΔYm

was monitored in a microplate reader (SpectraMax M5,
Molecular Devices). Data are reported as percentage of
maximal depolarization induced by FCCP and maximal
hyperpolarization induced by oligomycin. Experiments
were repeated at least three times using different mito-
chondrial preparations.

O2 consumption

Oxygen uptake was measured using high-resolution res-
pirometry (Oroboros Oxygraph-O2K). The electrode was
calibrated between 0 and 100% saturation with atmo-
spheric oxygen at 37 °C. Mitochondria (from 0.1 to
0.2 mg/mL) were incubated with 2 mL of the standard
respiration buffer described above. For O2 consumption
of digitonin-permeabilized HepG2 cells, the cells were
removed from culture dishes through trypsinization and
after four washes with BSS (balanced saline solution),
5×106 cells were added to a standard respiration medium
described above followed by addition of 0.003% (w/v)
digitonin as previously described (Pereira da Silva et al.
2009). The cuvette was closed immediately before start-
ing the experiments. Each experiment was repeated at
least three times with different mitochondrial or cells
preparations. For isolated mitochondria, respiratory control
ratio (RCR) values were obtained by using both pyruvate
andmalate, as complex I substrates, or succinate, as a complex
II substrate (after complex I inhibition by 2 μM rotenone)
(Sims 1990).

Succinate dehydrogenase activity

The activity of SDH was determined spectrophotometri-
cally using DCPIP (2, 6-dichlorophenol-indophenol) as
an artificial electron acceptor and succinate as the sub-
strate (Kenney 1975). The assay was performed at room
temperature (25 °C) in 1.0 ml of reaction medium con-
taining 20 mM phosphate buffer (pH 7.2), 0.1%Triton
X-100, 4 mM sodium azide, 5 mM succinate, 50 μM
DCPIP and 3-BrPA at different concentrations. Blanks
were obtained in the absence of succinate. The reaction
was started by adding 0.1 mg of mitochondria and the
reduction of DCPIP monitored for 3 minutes at 600 nm.
SDH activity was calculated using the molar absorption
coefficient of reduced DCPIP (21.0 mM−1 · cm−1).

Protein determination

The protein concentration in the samples was determined as
described by Lowry et al. (Lowry et al. 1951).
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Statistical analysis

Statistical analyses were performed using Origin® 7.5
(OriginLab). All results are expressed as means ± S.E.M. for n
independent experiments. Statistical significance was deter-
mined using a Student’s t test. Differences were considered
statistically significant for P<0.05 or P<0.01.

Results

Respiratory states, substrates and reactivity of 3-BrPA
to inhibits mouse liver mitochondria (MLM) respiration

To investigate the inhibition effect on respiration promoted
by 3-BrPA in MLM in phosphorylating (state 3) and non-
phosphorylating states (state 4), we measured the oxygen
flux rate in increasing amounts of 3-BrPA using different
combinations of energy-linked substrates for complex I and
complex II (Fig. 1). We observed that lower concentrations
of 3-BrPA inhibited the respiration when MLM was in state
3, even at a short reaction time (1 min) (Fig. 1c and d), but
not when MLM was in state 4 (Fig. 1a and b). A stronger
inhibition was observed at a longer reaction time (10 min)
(Fig. 1d). The inhibition promoted by 3-BrPAwas observed
either for energy-linked substrates for complex I and complex
II. However, 25 μM 3-BrPA inhibited the succinate-induced
respiration more than 70% (Fig. 1d, closed circles) if com-
pared to the inhibition obtained with energy-linked sub-
strates for complex I, which was no higher than 40%
(Fig. 1d, closed triangles and square).

3-BrPA affects mitochondrial membrane
potential (ΔYm) formation

Previous studies by our group and by others (Sanborn et al.
1971; Satterlee and Hsu 1991; Korotchkina et al. 1999;
Pereira da Silva et al. 2009; Jones et al. 1995; Baker and
Rabin 1969; Maldonado et al. 1972) showed that mitochon-
drial dehydrogenases, such as SDH, are potential targets for
alkylation by 3-BrPA in hepatoma cells and MLM. To
investigate the effect of 3-BrPA in other components of
the electron transport system (ETS), we tested its relative
sensitivity in inhibiting the ΔYm formation by using differ-
ent respiratory substrates for complexes I, II and IVof MLM
(complex I – pyruvate/malate; complex II – succinate and
complex IV – TMPD/ascorbate). Figure 2a and b show that
ΔYm formation is strongly impaired when MLM was pre-
viously incubated for 2 min with 250 μM 3BrPA in
succinate-induced ΔYm in a non-phosphorylating state of
respiration (state 4). We tested whether or not inhibition of
ΔYm formation by 3-BrPA is dose-dependent (Fig. 2c). We
observed that the inhibition of 3-BrPA onΔYm formation in

succinate-induced respiration was stronger than that observed
when other substrates were used (almost full inhibition was
achieved with 1 mM 3-BrPA as compared to 40% inhibition
with two other substrates under state 4 respiration). The effect
of 3-BrPA onΔYm (Fig. 2a, b and c) can be explained by the
fact that inhibition of SDH activity depends on the dose of
3-BrPA (determined directly using DCPIP as an artificial
electron acceptor) (Fig. 2d). Previous work (Gutman et al.
1971; Gutman 1978) revealed that SDH activity is regulated
by adenine nucleotides. However, the presence of 1 mMADP
did not alter the apparent affinity of 3-BrPA in reacting with
SDH (Fig. 2d, open circles).

ΔYm dissipation induced by 3-BrPA is potentialized
by succinate

Previous studies (Rossignol et al. 2003) have shown that the
combination of complex I and II substrates increases the
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Fig. 1 Respiratory states, substrates and reactivity of 3-BrPA to cause
inhibition of the oxygen consumption in mouse liver mitochondria.
The mitochondria reacted with 3-BrPA for 1 minute (a and c) or 10
minutes (b and d) in a non-phosphorylating state (without added ADP,
open symbols in a and b panels); or in a phosphorylating state (with
1 mM added ADP, closed symbols in C and D panels) at different 25–
1000 μM 3-BrPA concentrations. The respiratory substrates were: (■, □)
2.5 mM pyruvate/5 mM malate and 2 mM glutamate - PGM; (▲, Δ)
2 mM glutamate and 5 mMmalate - GM; or (●, ○) 10 mM succinate – S.
Values of respiration without 3-BrPAwere taken as “1” (Vo) and the other
values (3-BrPA) were relative to it (Vi). The figure shows the values
(Vi/Vo) of a representative experiment. Similar results were obtained
in, at least, five independent mitochondrial preparations
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mitochondrial respiratory capacity. Thus, we checked if the
inhibition of ΔYm formation by 3-BrPA in succinate-
induced respiration is attenuated by replacing succinate
with the substrates of complex I (Pyruvate/Glutamate/
Malate - PMG) (Fig. 1c and d), or by PMG + succi-
nate (PMGS) (Fig. 3). The dissipation of ΔYm by 3-
BrPA with PMGS followed a similar pattern of that
observed for succinate alone. When added together
with PMG, succinate accelerated the ΔYm dissipation,
if compared to PMG alone under phosphorylating conditions
(Fig. 3a and b).

Reduced glutathione prevents 3-BrPA-induced ΔYm

dissipation

The 3-BrPA-induced ΔYm dissipation in succinate-induced
respiration was almost completely prevented by adding
2 mM glutathione to the reaction (Fig. 4a). The increment
rate in the safranine O fluorescence was monitored as an
index of ΔYm depolarization (Fig. 4b). The maximal rate of
fluorescence enhancement achieved with our assay condi-
tions was obtained when using the ionophore carbonyl
cyanide p-trifluoromethoxyphenylhydrazone (FCCP) for
protons and it occurred regardless of the substrate used
(PMG or succinate alone) (data not shown). The rate incre-
ment of 3-BrPA-induced ΔYm dissipation (25 to 1000 μM)
(Fig. 4a) remained close to zero when 2 mM glutathione was
added together with 3-BrPA (Fig. 4b).

Real time inhibition of mitochondrial respiration by 3-BrPA
depends on ADP/ATP-exchange and not on the redox level
of ETS

We observed that the inhibition of MLM by 3-BrPA was
stronger in state 3-like respiration. In non-phosphorylating
states (state 4) the inhibition by the same 3-BrPA concen-
tration was weaker than that observed in state 3 (Fig. 2). To
investigate the reasons for this difference we tested if the
ADP-ATP exchange through FoF1-ATP synthase-ANTsystem
plays a role in the inhibition rate of 3-BrPA in MLM and in
mouse brain mitochondria (MBM) (Fig. 5). The MBM prep-
arations had a native mitochondrially tightly bound hexoki-
nase type I (mt-HK type I) activity, in contrast toMLM, which
did not contain HK bound to the outer mitochondrial mem-
brane. After adding ADP and 2-DOG (a substrate of mt-HK)
to both MLM and MBM preparations we tested the effect of
adding 3-BrPA on respiration. No stimulation of respiration
was observed after adding 2-DOG in MLM (Fig. 5a). In
MLM, there was a 4 min delay until inhibition of respiration
was observed and the time required to inhibit 50% of the
respiration was about 6 min (Fig. 5a). In MBM, the 2-DOG
stimulated respiration through ADP-ATP exchange is mediat-
ed by mt-HK (Fig. 5b). Additionally, in MBM, 3-BrPA inhi-
bition of respiration was immediately observed after adding 2-
DOG to the respirationmedium (Fig. 5b). The time required to
inhibit 50% of the highest respiration rate previously obtained
was about 2 min.
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Fig. 2 3-BrPA impairs mitochondrial membrane potential (ΔYm)
formation by substrates of the electron transporter system (ETS) and
inhibits the SDH activity in the presence and in the absence of ADP.
The results represent the effect of 3-BrPA on the maximal change in
ΔYm (a, b and c). a Effect of substrates, inhibitors and proton iono-
phore in a control MLM (Mito) or (b) pre-incubated with 250 μM 3-
BrPA for 10 min. The substrates were: for complex I, 2.5 mM pyru-
vate/5 mMmalate (PM); for complex II, 10 mM succinate (Su); and for
complex IV, 0.3 mM TMPD/0.2 mM ascorbate (T + Asc). When used
5 μM rotenone (Rot), 1 μg/ml antimicin A (AA) or 1 μM proton
ionophore (FCCP) were added sequentially where indicated by the

vertical thick lines (│). In panel (C) is showed the Δ<m formation in
a dose response curve for increasing 25–1000 μM 3-BrPA concentra-
tions in 10 minutes of pre-incubation. Then the MLM were energized
in the non-synthesizing ATP state (without ADP) with 10 mM succi-
nate (●); 2.5 mM pyruvate/5 mM malate (○); or 0.3 mM TMPD/
0.2 mM ascorbate (▲). In panel (D) is shown the succinate dehydro-
genase activity (SDH). In open circle, it was included 1 mM of ADP
and closed circles without ADP. The preparation was pre-incubated for
1 minute with 3-BrPA. Values (Vi/Vo) are means ± SE of at least five
independent experiments
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To investigate if the ADP re-cycling itself plays a role in
facilitating the reaction of 3-BrPA with ETS (SDH), two
types of isolated mitochondria were analyzed in high-
resolution respirometry. We used MBM (Fig. 6) that was
previously treated with glucose-6-phosphate (G6P) (Fig. 6a,
c and e) and controls (no previous treatment with G6P)
(Fig. 6b, d and f). The idea was to use the same endogenous
mitochondrial redox buffering capacity as previously tested
(GSH, thioredoxin and NAD(P)H2) to analyze the effect of

the mt-HK induced ADP re-cycling through ANT and the
influence of the redox background on 3-BrPA-induced inhi-
bition of respiration. Figure 6 shows that the 3-BrPA inhib-
iting effect was stronger and occurred faster in 2-DOG-
activated mt-HK (Fig. 6b, b, f and g, circles) if compared
to the effect observed in mt-HK previously inhibited by its
natural activity regulator G6P (Fig. 6a, c, e and g, triangles).
Soluble yeast HK was added together with glucose in MLM
to induce the ADP recycling activity to reach a level of
oxygen consumption similar to that observed in MBM.
Figure 7 shows that 3-BrPA was unable to inhibit the
MLM uncoupled respiration as fast as it did in respiration
coupled to G6P formation (Fig. 7b and c).

ADP-ATP exchange through ANT enhances the inhibition
of MLM respiration by 3-BrPA

Our results indicate that the mechanism by which 3-BrPA
inhibits respiration is facilitated by the ADP-ATP exchange
through ANT (Fig. 7c). Thus, we asked if the ANT activity
is an essential component of the 3-BrPA-induced inhibition
of MLM respiration. We expected that increasing amounts
of carboxyatractiloside leading to the progressive blocking
of ANT activity would in turn inhibit the respiration in a
manner similar to that observed in state 4. Figure 8a and b
show that at saturating carboxyatractiloside concentrations
(0.1 to 0.5 μM), no activation of respiration by 200 μM
ADP was observed. Under these conditions, the addition of
100 μM 3-BrPA inhibited MLM respiration differently, and
the respiration was partially activated and then virtually
fully inhibited.

We detected an enhancement in the MLM respiration by
ADP-ATP exchange at sub-saturating concentrations of
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carboxyatractiloside (from 0.005 to 0.01 μM). However,
addition of 100 μM 3-BrPA promoted an almost imminent
and full inhibition of MLM respiration (Fig. 8c to e). In

order to evaluate the possible correlation between the flux of
nucleotides through the ANT and the 3-BrPA reactivity in
MLM, we measured the time required to inhibit 50% of the
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oxygen flux after addition of 3-BrPA. We also measured the
rate of respiration sustained by exogenous hexokinase
activity (as an ADP-regenerating system) as a function of

different concentrations of carboxyatractiloside (from 0.005
to 0.5 μM) (Fig. 8f). The data show that the higher the rate
of the hexokinase sustained ADP-ATP exchange through
ANT (Fig. 8f, closed circles), the faster is the inhibition
promoted by 3-BrPA in MLM respiration (2 min against
13 min, Fig. 8f, open circles).

Effect of 3-BrPA on ADP/ATP exchange induced by mt-HK
in human HepG2 cells

To check whether 3-BrPA inhibition depends on mitochon-
drial respiratory states in human cells the same way it does
in MLM, we tested a permeabilized human hepatocarci-
noma cell line HepG2 that presents mt-HK type II bound
to the outer mitochondrial membrane (Fig. 9). Inclusion of
intact HepG2 cells to the medium increased oxygen flow,
but adding digitonin immediately promoted the leaking of
respiratory substrates out, lowering the oxygen flow to
residual flux levels (Fig. 9). The addition of 2 mM G6P
was used in order to inhibit and detach the mt-HK type II
from HepG2 mitochondria. It can be noted that HK
inhibited-mitochondria retain respiratory control after two
sequential additions of 200 μM ADP. However, 2-DOG did
not stimulate the respiration. The addition of 3-BrPA at this
stage did not promote any alteration in oxygen flow
(Fig. 9a). A totally different profile in oxygen flow was
observed when the endogenous mt-HK type II was activated
by 2-DOG (Fig. 9b). The inclusion of succinate promoted a
two-fold increase in O2 flow, as compared to mt-HK
inhibited HepG2 respiration (Fig. 9a and b). This difference
reflects the stimulation of respiration by endogenous adeny-
lates (ADP + AMP) present in the matrix, which contribute to
reach a phosphorylating state of HepG2 respiration. Further
addition of ADP did not increase stimulation of respiration,
which supports that the VO2 is close to the VO2 maximal of
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the HepG2 mitochondria. Under this state of respiration
(phosphorylating state), the addition of 3-BrPA immediately
inhibited human HepG2 mitochondria (Fig. 9b). This fact
agrees with our data on phosphorylating state conditions in
MLM and MBM. Lastly, inhibition of oxygen flow promoted
by 3-BrPA was not reverted by the subsequent addition of
ADP and 2-DOG. More important, at the end of the 3-BrPA
inhibited O2 consumption, it was recovered the same activities
of mt-HK type II in the 3-BrPA and control assays (Fig. 9c).

Discussion

It has been proposed that 3-BrPA acts as a potent inhibitor of
certain tumors, particularly hepatocellular carcinoma. How-
ever, the biochemical mechanism of action of this drug is
not completely understood. Pedersen (Pedersen 2007) have
stated that the cellular target of this drug would be preferred
in the glucose phosphorylation catalyzed by hexokinase
type II present in high levels in liver carcinomas. The
tumors have a high glycolytic rate even in the presence of
oxygen, an effect observed by Otto Warburg in 1930
(Warburg 1930). Previous studies (Sanborn et al. 1971;
Pereira da Silva et al. 2009; Baker and Rabin 1969;Maldonado

et al. 1972) have described the effects of 3-BrPA preparations
on the activity of mitochondrial enzymes such as pyruvate
dehydrogenase and succinate dehydrogenase.

The relevance of the ADP/ATP exchange activity shown
in this study (Fig. 7) supports a crucial role for ANT on the
timing of inactivation of the respiration by 3-BrPA. We
concluded that an activation of MLM respiration coupled
to the phosphorylation of glucose mediated by an exoge-
nous yeast hexokinase mimics the respiration of cancer cell
mitochondria and that an activation of MLM respiration
uncoupled from the ATP synthesis by the inclusion of FCCP
(the same rate of oxygen consumption as that observed by
the respiration coupled to G6P formation by exogenous HK)
is not sufficient for 3-BrPA to accelerate inactivation of mito-
chondria. This excludes, at least in part, a voltage-dependent
component of the proton motive force (Δρ) as a modulator of
SDH reactivity with 3-BrPA.

We observed that the phosphorylating state of respiration
has higher affinity for 3-BrPA promotion of SDH inactiva-
tion than the non-phosphorylation state. The previous
experiments suggested that low concentrations of 3-BrPA
inhibit the respiration in the phosphorylating state induced
by succinate faster than that with complex I substrates
(Figs. 1 and 2). Nevertheless, accordingly, the dissipation
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of ΔYm induced by 3-BrPA is faster when a mixture of
oxidizable substrates containing succinate (glutamate/ma-
late/pyruvate/succinate-GMPS) is used than when no succi-
nate is added (Fig. 3). When multiple substrates are used to
sustain respiration there is an enhancement in the respiratory
capacity of ETS and a mobilization of the respiration com-
plexes. These results are expected when the pool of ubiqui-
none is not totally reduced by the electrons coming from one
type of electron donor. Curiously, under this condition there
is a loss of ΔYm. A possible explanation for this collapse in
proton motive force could be that the alkylation of SDH by
3-BrPA facilitates the cascade of activation of cyclophilin D,
located in the matrix of mitochondria. This may allow
formation of the mitochondrial permeability transition pore
(MPTP). The open pore raises the permeability of the
mitochondrial inner membrane, which increases the matrix
volume and disrupts the mitochondrial outer membrane
and ΔYm. The opening of the pore plays an important
role in cell death.

We have shown that the activity of HK favors ADP
formation. In tumors, the strategic localization of mt-HK
with the mitochondrial outer membrane supports the oxida-
tive phosphorylation via an ADP channeling to the ANT:
FoF1ATPsynthase complex (Nakashima et al. 1988;Mathupala
et al. 1995; Rose and Warms 1982; Pastorino and Hoek 2003;
Marín-Hernandez et al. 2006; Nakashima et al. 1986; Parry and
Pedersen 1983). There is biochemical evidence of a large
protein complex extracted from tumor mitochondria that the
HK: ANT: PC: FoF1ATPsynthase can be altogether associated
(ATP synthasome) (Ko et al. 2003; Wittig and Schägger 2008).
According to this idea, the kinetics profile of these 3-BrPA
MLM respiration inhibition complexes suggest the presence of
multiple binding and alkylating sites sharing a cooperative
binding and alkylation behavior. Thus, the inhibition kinetics
of mitochondrial respiration promoted by 3-BrPA seems to be
complex and to induce phase transitions of the electron trans-
port system (Fig. 8). Therefore, our data support with the notion
that the high rate of glucose consumption by tumor cells (War-
burg’s phenotype) there will be a respiration permanently acti-
vated by the exchange ADP/ATP coupled to the entrance of
hexose to the cell. This would favor the inhibition reaction by
3-BrPA at SDH, which in turn would culminate in inhibiting
the respiration and in a collapse of theΔYm, as indicated by our
data (Figs. 1b, 2, 3b, 5, 6 and 7). The effect of 3-BrPA onΔYm

(Fig. 2a, b and c) can be explained by the fact that SDH
inhibition depends on the dose of 3-BrPA (which was directly
determined using DCPIP as an artificial electron acceptor)
(Fig. 2d).

In conclusion, the collapse of ΔYm represents an impor-
tant step towards activation of cell death. While in one hand
the preferential localization of HK to VDAC prevents the
apoptosis, in the other the VDAC-associated mt-HK activity
in tumors makes these cells vulnerable to the alkylating

agent 3-BrPA. These findings may represent one of the first
mechanisms reporting the fragility of the metabolic energy
reprogramming of cancer cells.
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