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Abstract
It has recently been demonstrated that accurate near surface electrostatic potentials can be calculated for proteins from solvent 
paramagnetic relaxation enhancements (PREs) of amide protons measured using spin labels of similar structures but different 
charges (Yu et al. in Proc Natl Acad Sci 118(25):e2104020118, 2021). Here we develop methodology for extending such 
measurements to intrinsically disordered proteins at neutral pH where amide spectra are of very poor quality. Under these 
conditions it is shown that accurate PRE values can be measured using the haCONHA experiment that has been modified 
for recording 1Hα transverse relaxation rates. The optimal pulse scheme includes a spin-lock relaxation element for sup-
pression of homonuclear scalar coupled evolution for all 1Hα protons, except those derived from Ser and Thr residues, and 
minimizes the radiation damping field from water magnetization that would otherwise increase measured relaxation rates. 
The robustness of the experiment is verified by developing a second approach using a band selective adiabatic decoupling 
scheme for suppression of scalar coupling modulations during 1Hα relaxation and showing that the measured PRE values from 
the two methods are in excellent agreement. The near surface electrostatic potential of a 103-residue construct comprising 
the C-terminal intrinsically disordered region of the RNA-binding protein CAPRIN1 is obtained at pH 5.5 using both 1HN 
and 1Hα-based relaxation rates, and at pH 7.4 where only 1Hα rates can be quantified, with very good agreement between 
potentials obtained under all experimental conditions.

Keywords  1H relaxation · Scalar coupled modulation · Intrinsically disordered proteins · CAPRIN1 · Electrostatic potential

Introduction

NMR spectroscopy is an extremely powerful technique for 
quantifying site-specific molecular dynamics (Mittermaier 
and Kay 2006; Palmer 2014; Anthis and Clore 2015). Most 
frequently this is accomplished through the measurement of 
heteronuclear (15N, 13C, 2H, 31P, 19F) spin relaxation rates 

that can then be recast in terms of motional parameters in the 
context of a preferred model of dynamics (Lipari and Szabo 
1982a, b). In this regard, the use of heteronuclear spins as 
probes of motion, as opposed to measurements involving 
1H spins, offers several advantages. Importantly, it is often 
the case that the relaxation of heteronuclei can be quantita-
tively analyzed in terms of a small number of well-defined 
interactions, greatly simplifying data analysis. An example 
is the popular series of 15N R1, R2, and heteronuclear NOE 
experiments where a relatively simple two-spin 15N–1HN 
spin system is sufficient to describe the experiments (Kay 
et al. 1989). The situation is more complex for 13C, as cou-
pled relaxation between spin interactions, such as 13C–1H 
dipolar pairs in methylene and methyl groups (Vold and Vold 
1976; Werbelow and Grant 1977), complicates the analysis 
(Kay and Torchia 1991), as does scalar coupling and relaxa-
tion between proximal 13C spins in uniformly 13C labeled 
samples (Yamazaki et al. 1994). The development of labe-
ling schemes involving the placement of isolated 13C spins 
in the system of interest (Goto et al. 1999; Kainosho et al. 
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2006; Teilum et al. 2006; Lundström et al. 2007; Kasinath 
et al. 2013), in concert with the substitution of protons with 
deuterons (Ishima et al. 1999; Tugarinov and Kay 2005), can 
simplify the spin system so that it is well approximated as a 
two-spin 13C–1H pair. In some cases experiments are rela-
tively benign to the effects of scalar couplings that manifest 
in uniformly 13C labeled molecules, such as carbon-13 CEST 
(Vallurupalli et al. 2013), for example, while special pulse 
schemes have been developed for mitigating the effects of 
the homonuclear 13C couplings in 13C relaxation measure-
ments (Yamazaki et al. 1994). Other applications exploit 
the inherent complexity that is introduced by the multiplic-
ity of interactions within methylene and methyl groups to 
obtain additional insights into dynamics using experiments 
that rely on cross-correlated relaxation (Sun et al. 2011; 
Tugarinov and Clore 2021). Measuring 2H spin relaxa-
tion (Muhandiram et al. 1995) is advantageous in that the 
decay is dominated by the quadrupolar interaction, and the 
obtained rates can be cross-validated by recording as many 
as five independent decay times for each deuteron (Millet 
et al. 2002). A limitation is that the experiments are less sen-
sitive than those quantifying 15N and, often, 13C relaxation, 
so that applications are largely focused on methyl groups 
(Kay et al. 1998).

Far fewer biomolecular applications involving 1H relaxa-
tion have appeared in the literature, reflecting the fact that 
1H spins are most often both dipolar and scalar coupled to 
neighboring protons in fully protonated molecules, leading 
to the facile transfer of magnetization between protons and, 
therefore, contaminating measured relaxation rates. Labeling 
strategies involving partial deuteration are helpful in this 
regard, producing isolated 1H spins at significant numbers 
of backbone and sidechain positions (Lundström et al. 2009; 
Hansen et al. 2012). However, it remains of interest to estab-
lish robust methods for measurement of relaxation rates in 
fully protonated proteins, in particular focusing on backbone 
1Hα spins, which is the subject matter of this report. Our 
interest in the measurement of 1Hα relaxation rates concerns 
quantification of solvent paramagnetic relaxation enhance-
ments (PREs) in an attempt to map near surface electrostatic 
potentials (Yu et al. 2021) in intrinsically disordered proteins 
(IDPs). As PRE effects scale with the square of the gyro-
magnetic ratios of the probe spins (Abragam 1961), there 
are clear advantages to proton-based experiments. The obvi-
ous choice is to record 15N–1HN HSQC spectra that meas-
ure 1HN rates, as these can be faithfully obtained via simple 
spin-echo schemes in which evolution from 1HN–1H scalar 
couplings is refocused by the application of an 1HN-selective 
pulse in the center of a relaxation period (Donaldson et al. 
2001). Alternatively, the effects of 1HN–1H J-modulation can 
be “removed” during analysis of spectra recorded with non-
selective 1HN chemical shift refocusing pulses by using iden-
tical relaxation times for both paramagnetic and diamagnetic 

samples and fitting paramagnetic relaxation rates directly 
from intensity ratios of corresponding peaks in the result-
ing pairs of spectra (Iwahara et al. 2004, 2007). Yet in some 
applications, especially those involving IDPs or intrinsically 
disordered regions (IDRs) in otherwise folded molecules 
that must be performed at neutral pH, amide spectra are 
severely compromised due to rapid hydrogen exchange. In 
these cases an approach that circumvents both the record-
ing of 1HN chemical shifts and measurement of 1HN relaxa-
tion rates, that are likely to be contaminated by exchange 
with water, complicating extraction of robust exchange 
rates, would be preferred. Herein we develop a pseudo-4D 
experiment for measurement of 1Hα relaxation rates based 
on the haCONHA pulse scheme that records (13COi,15Ni+

1,1Hα
i) correlations, where the chemical shifts of 13CO and 

1Hα spins of residue i are correlated with the 15N spin of 
the subsequent residue, i + 1 (Mäntylahti et al. 2011; Wong 
et al. 2020a). Important considerations for the design and 
optimization of the pulse scheme are described, along with 
applications to the C-terminal region of the RNA binding 
protein CAPRIN1 (Kedersha et al. 2016; Nakayama et al. 
2017), so as to establish the robustness of the approach and 
its utility in studies of IDPs at neutral pH values and higher.

Material and methods

Sample preparation

The C-terminal region of CAPRIN1 (residues 607–709, Uni-
prot: Q14444) was expressed and purified as described pre-
viously (Kim et al. 2019; Wong et al. 2020a). As reported in 
our previous study (Wong et al. 2020a), residues N623-G624 
and N630-G631 slowly form isoaspartate (IsoAsp)-Gly pep-
tide linkages over time. As the formation of IsoAsp can alter 
the charge distribution of the CAPRIN1 molecule, N623T 
and N630T double mutations were introduced; the dou-
ble Thr mutant was used in all of the experiments (and is 
referred to as CAPRIN1 in the discussion which follows). 
These mutations were introduced by using Quikchange site-
directed mutagenesis (Agilent). Uniformly 13C, 15N-labeled 
CAPRIN1 was produced by bacterial growth, with expres-
sion using minimal media supplemented with [U-13C]-
glucose and 15NH4Cl as the sole carbon and nitrogen 
sources, respectively. The NMR samples were comprised of 
280–300 μM U-13C,15N CAPRIN1, 25 mM MES-NaOH (pH 
5.5) or 25 mM HEPES–NaOH (pH 7.4), and 3% D2O. For 
solvent PRE measurements, 3-carboxy-PROXYL (Sigma-
Aldrich) or 3-carbamoyl-PROXYL (Sigma-Aldrich) was 
added to a final concentration of 5 mM from a ~ 100 mM 
stock solution. The concentration of the paramagnetic co-
solutes in the stock solution was measured by 1H 1D NMR 
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after reducing the spin-label, using a procedure established 
by Iwahara and co-workers (Yu et al. 2021).

NMR measurements

All NMR measurements were performed at 23.5 Tesla 
(1 GHz 1H frequency) on a Bruker Avance Neo spectrom-
eter or at 14.0 Tesla (600 MHz 1H frequency) on a Bruker 
Avance III HD spectrometer, equipped with cryogenically 
cooled x, y, z pulsed-field gradient triple-resonance probes. 
All spectra were processed and analyzed using the NMRPipe 
suite of programs (Delaglio et al. 1995) and visualized using 
the Python package nmrglue (Helmus and Jaroniec 2013). 
Peak intensities were extracted either by using the Peakipy 
software package (https://​github.​com/j-​brady/​peaki​py) for 
2D datasets, or by analyzing the time-domains of pseudo-
4D datasets (haCONHA of Fig. 1A.1 or A.3), as described 
previously (Long et al. 2015; Wong et al. 2020b). In time-
doming fitting, the reference 3D spectrum recorded with the 
first relaxation delay was reconstructed using SMILE (Ying 
et al. 2017), and the peak list required for the time-domain 
fitting was obtained by analyzing the processed data.

1Hα R2 or 1Hα–13Cα longitudinal order relaxation measure-
ments were recorded with pulse schemes that are based on 
the haCONHA experiment (Wong et al. 2020a) (see Fig. 1), 
and were performed in a pseudo-4D manner where the indi-
rect 13CO and 15N dimensions were non-uniformly sampled 
using a Poisson-gap sampling schedule (Hyberts et al. 2010) 
(1Hα R2, measured using the schemes of Fig. 1A.1 or A.3) 
or by measuring 2D 13CO–1Hα or 15N–1Hα planes (1Hα R2, 
measured by the adiabatic scheme of Fig. 1A.2; 2I�

z
C�
z
 lon-

gitudinal order relaxation using the scheme shown schemati-
cally in Fig. 3B that replaces A in Fig. 1). Measurements 
were performed at 600 MHz and 25 °C with relaxation 
delays set to 0, 4, 8, 12, 16, 20, 25, and 30 ms for the scheme 
of Fig. 1A.1 and A.3, or 0–40 ms, in 8 ms steps, for the 
scheme of Fig. 1A.2. Longitudinal order decay rates were 
quantified with delays of 0, 4, 8, 12, 16, 20, 25, and 30 ms.

1HN R2 relaxation measurements (pH 5.5 sample) were 
performed using a transverse relaxation-optimized spectros-
copy (TROSY) scheme (Pervushin et al. 1997), with a 1H 
spin-echo variable delay interval inserted immediately prior 
to direct detection. A selective REBURP pulse (Geen and 
Freeman 1991) (length of 1800 μs and centered at 7.7 ppm, 
1 GHz) during the 1H spin-echo period refocuses homo-
nuclear J-evolution of 1HN spins. The measurements were 
performed at 1 GHz and 25 °C, with relaxation delays of 2, 
4, 6, 8, 12, 16, 22, and 30 ms.

Fitting of 1Hα and 1HN relaxation rates

1Hα PREs were quantified by fitting intensity ratios of 
corresponding peaks in the “paramagnetic” (with 5 mM 

3-carboxy-PROXYL or 5  mM 3-carbamoyl-PROXYL, 
denoted by − or N, respectively) and “diamagnetic” (no PRE 
co-solute molecules) experiments to the single exponential 
decay function,

where Ipara.,i(Trelax) and Idia.
(
Trelax

)
 are signal intensities at 

time Trelax for peaks in the paramagnetic and diamagnetic 
samples, and Γ2,i is the PRE contribution to the 1Hα R2 rate 
(i ∈ {− , N}). As described by Iwahara, Clore and co-workers 
(Iwahara et al. 2004, 2007; Yu et al. 2022), by taking the 
ratio of intensities it is possible to divide out contributions 
from 1H–1H J-modulations that would otherwise contami-
nate the relaxation rates. Nevertheless, scalar-coupled evolu-
tion does attenuate the signals so that it is highly desirable 
to suppress the modulations in the first place, and this is 
possible for 1Hα spins from all residues with the exception 
of Ser and Thr, as described in detail below. We have also 
observed that for a number of non-Ser/Thr residues there is 
a slight deviation from single exponential decay, presumably 
because of modulation from couplings that are not com-
pletely suppressed by the 1 kHz spin-lock field of Fig. 1A.1 
that selectively locks 1Hα magnetization. Use of Eq. (1) is 
beneficial for these cases as well.

1HN PREs are quantified by fitting the decay of signals 
to a single exponential function to obtain Rpara.,i

2
 and Rdia.

2
 

rates, from which the PRE contribution is calculated as 
Γ2,i = R

para.,i

2
− Rdia.

2
 . Fits made use of in-house written pro-

grams (Python 3.7), exploiting the Levenberg–Marquardt 
algorithm of the Lmfit python software package (https://​
lmfit.​github.​io/​lmfit-​py/).

Calculations of near‑surface electrostatic potentials

Near-surface electrostatic potentials were calculated from 
the PRE rates obtained with 3-carboxy-PROXYL ( Γ2,− ) and 
3-carbamoyl-PROXYL ( Γ2,N ) derivatives using the follow-
ing equation, as described previously (Yu et al. 2021),

where kB is Boltzmann’s constant (8.62 × 10–5 eV/K), T is 
temperature (298.15 K), and e is the charge of an electron. 
Note that the denominator was set to 1e as the difference 
in charge between 3-carboxy-PROXYL and 3-carbamoyl-
PROXYL is 1. In the calculations, residues with Γ2,− or Γ2,N 
larger than 0.5 s−1 were used.

(1)
Ipara.,i(Trelax)

Idia.(Trelax)
= exp(−Γ2,iTrelax)

(2)�
ENS

= −
k
B
T

e
ln

(
Γ2,N

Γ2,−

)

https://github.com/j-brady/peakipy
https://lmfit.github.io/lmfit-py/
https://lmfit.github.io/lmfit-py/
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Simulations of 1Hα scalar coupled evolution 
with and without a spin‑locking field

The scalar-coupled evolution of 1Hα magnetization was 
simulated by calculating the time-evolution of the density 
matrix (Sørensen et al. 1984). The operative Hamiltonian 
( ̂H0 ) is composed of chemical shift ( ̂HCS ), scalar coupling 
( ̂HJ ), and spin-lock field ( ̂HSL ) terms, as follows,

where Ωi is the offset frequency (rad/sec) of proton spin i 
from the radio frequency carrier, Ix and Iz denote the x and 
z components of 1H spin angular momentum, respectively, 
Jij is the homonuclear scalar coupling constant between 

(3)

Ĥ0 = ĤCS + ĤJ + ĤSL =
∑

i

ΩiI
i
z
+
∑

i≠j

2�JijI
i
⋅ I

j +
∑

i

�1I
i
x

spins i j, ω1 is the 1H spin-lock field strength in rad/sec 
(1000 × 2π rad/sec was used in experiments), and it is under-
stood that only one of the terms of the form 2πJαβ1Iα·Iβ1 or 
2πJβ1αIβ1·Iα is included, for example. The number of spins, 
and the chemical shifts and J coupling constants used in 
each simulation are indicated in the schematics of Fig. 2. 
In the calculations, only 2-bond or 3-bond homonuclear 
J couplings were considered and heteronuclear couplings 
were not included. In the case of a “typical amino-acid”, 
such as shown in Fig. 2A (top left), for example, a set of 4 
spins i,j ∈ {α, β1, β2, HN} was considered. Relaxation was 
not included in the simulations. The time evolution of the 
density matrix, evolving with the scheme of Fig. 2A (top 
right), was calculated by numerically solving the Liouville 
von-Neumann equation,
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with σ(0) = I�
x
 (in-phase 1Hα magnetization). Terms from 

other spins were set to zero initially. Note that, experimen-
tally, the proton magnetization of interest during the relaxa-
tion period is antiphase with respect to the attached 13C 
spin ( 2I�

x
C�
z
 , see Fig. 1) and other transverse magnetization 

components coupled to 13Cα (such as 2I�
x
C�
z
 ) are not present 

at the beginning of this period. Thus, when considering a 
homonuclear spin system exclusively, the analogous situ-
ation is one where initial magnetization components with 
the exception of I�

x
 are set to 0. The expectation value of 

the x-transverse magnetization at time Trelax (M(Trelax)) was 
calculated by taking the trace of the product of σ(Trelax) and 
I�
x
 . M(Trelax) profiles for 0 ≤ Trelax ≤ 30 ms, with a time step 

of 1 ms, were calculated from

and plotted in Fig. 2A, B.

Simulating the effects of cross‑relaxation

As described in the text, a spin-lock field has been used to 
minimize evolution of magnetization due to homonuclear 
scalar couplings. We wondered whether dipolar cross-
relaxation between neighboring spins would become an 
issue (ROE effect) under these conditions, leading to non-
exponential decay of 1Hα magnetization and to mixing of 
PREs from proximal 1H spins. We have, therefore, simulated 
an I-C-M three spin system, where I, C, and M are 1Hα, 13Cα, 
and 1Hβ spins, respectively, considering relaxation and scalar 
coupled evolution. In principle, a complete description of 
this spin system requires a basis of 64 elements. However, 
as Cz is the only 13C operator considered (13C pulses are 
not applied), a reduced basis set suffices, composed of 30 
elements (excluding the identity operator). The normalized 
basis set can be expressed by using a column vector with 

(4)

�
�
Trelax

�
= U�(0)U−1

U = exp
�
−iĤ0

Trelax

2

�
exp(−i�

∑
i I

i
y
)exp

�
−iĤ0

Trelax

2

�

U−1 = exp
�
iĤ0

Trelax

2

�
exp(i�

∑
i I

i
y
)exp

�
iĤ0

Trelax

2

�

(5)M
(
Trelax

)
=

tr
{
�
(
Trelax

)
⋅ I�

x

}

tr

{(
I�
x

)†
⋅ I�

x

}

Fig. 1   The haCONHA pulse sequence for measuring 1Hα R2 rates 
by observing (13COi,15Ni+1,1Hα

i) correlations. Many of the details of 
the pulse scheme are as described previously (Wong et  al. 2020a); 
however, for completeness they are repeated here. All 90° (180°) 
rectangular pulses are denoted by narrow (wide) bars and applied 
along the x-axis unless otherwise indicated. The 1H carrier is on reso-
nance with the water line (~ 4.7 ppm), the 13C carrier is at 176 ppm 
between points b and c and otherwise at 58  ppm, and the 15N car-
rier is at 119  ppm (but see below for specific details about each of 
the schemes in panel A). 1H WALTZ-16 decoupling is applied with 
a field of ~ 6.25 kHz. 13Cα and 13CO 90° and 180° rectangular pulses 
are applied with fields of ΔΩ/√15 and ΔΩ/√3, respectively, where 
ΔΩ = 118 ppm, ensuring minimal excitation of 13CO spins when 13Cα 
pulses are applied and vice versa (Kay et al. 1990). 13Cα WALTZ-16 
decoupling during t3 acquisition uses a field of ~ 2  kHz (600  MHz 
spectrometer). Inset A shows three approaches for measuring 1Hα R2 
rates, including (i) application of a 1H spin lock (A.1), (ii) applica-
tion of 1Hβ, 1HN adiabatic decoupling (A.2), and a spin-echo scheme 
(A.3). In scheme A.1 the 1H and 13C carriers are placed at 4.35 ppm 
and 50  ppm, respectively, with the placement of the 13C carrier so 
as to reduce off-resonance effects for 13Cα of Gly. The 1H spin-lock 
is achieved with a 1  kHz CW field along x, at the center of which 
a high power 180y pulse is applied. Prior to the spin-lock, 1H spins 
are aligned along their effective fields via a pulse/delay scheme, 
described previously (Hansen and Kay 2007), where χ and ζ are 
set to 1/ωSL − (4/π)pw and (2/π)pw, respectively, where ωSL is the 
RF field strength for the 1H spin-lock and pw is the 1H high power 
90° pulse width. The relaxation delay, Trelax, was varied from 0 to 
30  ms. In scheme A.2, selective 1H decoupling is achieved using a 
constant adiabaticity WURST decoupling element (Kupce and Wag-
ner 1996) swept from 1.1  to 3.3  ppm (8  ms WURST (Kupce and 
Freeman 1995) pulse width) centered at 2.2  pm, a typical 1Hβ shift 
value, along with a second field swept from 7.4 to 8.6  ppm cen-
tered on the amide 1HN protons. Trelax was varied from 0 to 40 ms in 
8  ms spacing intervals so as to be synchronous with the 1H decou-
pling sequence. The delays are: τ1 = 1.7 ms, τ3 = 4.5 ms, τ4 = 15 ms, 
with τe sufficiently long to accommodate gradient g13. The delay τ2 
is set to 2.3 ms, a compromise so as to obtain cross peaks from all 
residues including Gly. 13Cβ decoupling is achieved using a constant 
adiabaticity WURST decoupling element swept from 41 to 15  ppm 
(5 ms WURST pulse width), along with a second field swept from 68 
to 72 ppm. 13CO chemical shift evolution during t1 is acquired in a 
semi-constant time mode (Grzesiek et al. 1993; Logan et al. 1993) as 
depicted in B. The phase cycle used is: φ1 = 2(x),2(− x); φ2 = y + 48.5° 
(600  MHz); φ3 = x, − x; and φrec = x,2(− x),x. The phase change 
applied to φ2 corrects for the Bloch-Siegert shift caused by applica-
tion of the uncompensated 13Cα pulse during the t1 period. Quadra-
ture detection in t1 and t2 is achieved by STATES-TPPI (Marion et al. 
1989) of φ1 and φ3, respectively. Gradients are applied with the fol-
lowing durations (ms) and strengths (in % maximum): g1: (0.5, 24%), 
g2: (1.0, 24%), g3: (0.256, 15%), g4: (0.5, 52.8%), g5: (1.0, 40%), 
g6: (1.25, 80%), g7: (1.5, 80%), g8: (0.9, 50%), g9: (1.0, 15%), g10: 
(0.512, 90%), g11: (0.4, 40%), g12: (0.3, 15%), g13: (0.256, 90.3%)

◂
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A

B

Fig. 2   Simulating the evolution of 1Hα magnetization due to 1Hα-1H 
scalar couplings. A Evolution of 1Hα magnetization in a spin system 
typical for amino acids, where 1HN and two 1Hβ protons are scalar-
coupled to 1Hα. (top left) The chemical shifts of each spin and the 
J-coupling constants used are shown. (top right) Pulse scheme ele-
ments, similar to those used in experiments of Fig. 1A.1 (orange; 1Hα 
magnetization, 2I�

x
C�
z
 , is locked along its effective field at the start of 

the spin-lock, as is done experimentally) and in 1A.3 (navy, starting 
from I�

x
 ). (bottom) Plots of the trajectories of 1Hα x-magnetization 

calculated with different 1Hβ chemical shifts (left: 2  ppm, center: 
3  ppm, and right: 3.5  ppm), in the presence (orange) and absence 

(navy) of a 1 kHz spin-lock field centered at 4.35 ppm. B Evolution 
of 1Hα magnetization in methionine (left), serine (center), and threo-
nine (right) spin systems. (top) The chemical shifts of each spin and 
the J-coupling constants are shown. (bottom) Trajectories of calcu-
lated 1Hα x-magnetization with (orange) and without (navy) a 1 kHz 
spin-lock field centered at 4.35 ppm. The chemical shifts of each 1H 
spin were taken from a tabulation of random coil values (Wishart 
et al. 1995) and the J-coupling constants were set to those measured 
in unfolded proteins (Hähnke et al. 2010) or those typically observed 
in folded proteins
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30 Cartesian product operators (Ernst et al. 1987; Allard 
et al. 1998),

where + denotes the transpose operation.
The operative Hamiltonian in this case is,

where ΩI and ΩM are the offsets of 1H spins I and M from 
the 1H carrier, JIM and JIC are I-M and I-C homo- and het-
ero-nuclear scalar coupling constants, respectively, and ω1 
(1000 × 2π rad/sec) is the strength of an applied field on 
spins I and M. In all simulations, JIM = 7 Hz, JIC = 140 Hz 
and a static magnetic field of 14.0 Tesla (600 MHz 1H reso-
nance frequency) was used.

The evolution of the density matrix, σ, during the scheme 
of Fig. 2A (top right) was calculated by numerically solving

In Eq. (8) ̂̂L is a 30 × 30 Liouvillian matrix that includes 
J and chemical shift evolution, ̂̂R is a relaxation matrix, 
including auto- and cross-relaxation terms, and ̂̂U

y,�
 is a rota-

tion matrix that “applies” a 1H 180° pulse along y in the 

center of the spin lock element. Each component of ̂̂L and 
̂̂
U

y,�
 was calculated as

(6)

� = [I
x
, I

y
, I

z
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x
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z
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z
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where |r > and |s > are density elements listed in Eq. (6).
The relaxation matrix, ̂̂ , includes auto-relaxation 

terms for each operator and cross-relaxation terms coupling 
Ix ↔ Mx, Iy ↔ My, Iz ↔ Mz, 2IxMz ↔ 2IzMx, 2IyMz ↔ 2IzMy, 
2IxMy ↔  2IyMx,  2IxCz ↔  2MxCz,  2IyCz ↔  2MyCz, 
2IzCz ↔ 2MzCz, 4IxMzCz ↔ 4IzMxCz, 4IyMzCz ↔ 4IzMyCz, 
and 4IxMyCz ↔ 4IyMxCz. Auto-relaxation was calculated by 
including 1H-1H dipolar interactions between each of spins 
I and M and a pair of external proton spins (one unique 
external 1H for each of I and M; rHH,ext = 2.1 Å for both I and 
M spins), 1H-1H dipolar interactions between spins I and M 
(rHH,IM = 1.9 Å), and 1H-13C dipolar interactions between 
spins I and M and their directly bonded 13C nuclei (rCH = 1.1 
Å). Only terms proportional to the spectral density evaluated 
at zero frequency are included in our analysis. Although 
a separate carbon spin one-bond coupled to spin M is not 
explicitly included in the spin system under consideration 
(Eq. (6)), we have, nevertheless, included a C-M dipolar 
interaction that would normally be present in the U-13C,15N 
proteins that are studied experimentally. The relaxation 
matrix can, thus, be defined as follows (Allard et al. 1997),

The auto-relaxation rates (R11–R1515), anti-phase and 
multiple-quantum cross-relaxation terms (R79, R97, R810, 
R108, R1213 and R1312) are given by Desvaux et al. (1994) 
and Allard et al. (1997)

(10)̂̂
U

y,�

rs
=

⟨r�[exp(−i�(Iy +My))s exp(i�(Iy +My))]⟩
⟨r�r⟩

(11)
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and the transverse and longitudinal cross-relaxation rates, 
σROE and σNOE, are defined as 

where μ0 denotes the vacuum permeability, γH and γC are 
the gyromagnetic ratios of 1H and 13C spins, respectively, ℏ 
is Planck’s constant devided by 2π, and τC is the correlation 
time (Abragam 1961; Cavanagh et al. 2007). Relaxation of 
longitudinal magnetization to its thermal equilibrium is not 
included in the calculation, as the evolution of anti-phase 
magnetization is considered (see below).

In our experimental scheme (Fig. 1A.1) antiphase 1Hα 
magnetization ( 2I�

x
C�
z
 ) is spin-locked along its effective field 

using a previously described alignment element (Hansen and 
Kay 2007). Thus, in our simulations the initial value of the 
density matrix is given by

where I ′
z
 is the aligned magnetization in the tilted frame and 

θI is the angle between the z-axis of the tilted frame and the 
axis parallel to the static magnetic field (tanθ = ω1/ΩI). The 
expectation value of the spin-locked magnetization at time 
Trelax (M(Trelax)) was obtained by solving Eq. (8) and then 
extracting the 2I ′

z
Cz element as,

In our simulations a value of τC = 2 × 10–9 s was assumed, 
consistent with previous relaxation measurements (Kim et al. 
2021), so that the corresponding cross-relaxation rates are 
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σROE = 4.84 s−1 and σNOE =  − 2.42 s−1. In all simulations, the 
chemical shift of spin I and the carrier position were fixed to 
4.4 and 4.35 ppm, respectively (ΩI = (4.4 − 4.35) × 600 × 2π 
rad/sec), and the chemical shift of spin M was varied from 
2 to 4 ppm (ΩM = (2 to 4 − 4.35) × 600 × 2π rad/sec). The 
trajectory of 2I ′

z
Cz was calculated from 0 to 120 ms (fourfold 

longer than experimental relaxation times, Fig. 3A) with a 
time step of 1 ms. Similar simulations were performed in the 
absence of cross-relaxation by setting σROE and σNOE to 0 in 
the relaxation matrix of Eq. (11).

Results and discussion

Description of pulse scheme for the measurement 
of 1Hα transverse relaxation rates in IDPs

The original experiments to quantify near surface electro-
static potentials of proteins, developed by Iwahara and co-
workers (Yu et al. 2021), based in part on work from the 
Clore group (Okuno et al. 2020), focused on the measure-
ment of amide 1HN transverse relaxation rates in the pres-
ence and absence of variously charged spin labels. The 
measurement of 1HN as opposed to other proton relaxation 
rates has the obvious advantage in that there is only a sin-
gle homonuclear scalar coupling to consider, involving 1Hα 
spins, and evolution from the 3JHN-Hα coupling can be refo-
cused by the application of a 1HN-selective 180° pulse in the 
center of the 1H evolution period that is required to quantify 
transverse relaxation (Donaldson et al. 2001). Unfortunately, 
however, studies of IDPs at physiological pH values can-
not be performed using amide correlation spectra as the 
rapid exchange of amide protons with water deteriorates the 
quality of the resulting spectra. Moreover, in such cases the 
relaxation of 1HN spins is contaminated by exchange with 
water, with effective rates that are often non-exponential. 
These rates, further, can vary significantly depending on 
where in the pulse scheme they are interrogated (Ishima 
et al. 1998; Yuwen et al. 2016). By contrast, relaxation 
rates of 1Hα protons are not sensitive to pH (exchange with 
water) and 1Hα-detect experiments remain of high quality 
even when amide protons exchange rapidly with solvent. As 
the resolution of 1Hα-13Cα correlations in 2D heteronuclear 
spectra of IDPs is poor, we prefer to measure relaxation data 
using 3D haCONHA-type experiments in which correlations 
of the form (ωCO, ωN, ωHα) are recorded, exploiting the reso-
lution in 13CO and 15N dimensions (Mäntylahti et al. 2011; 
Wong et al. 2020a). A pseudo-4D dataset is, thus, obtained, 
in which each 3D spectrum corresponds to a single time 
point that is used to quantify transverse relaxation.

Figure  1 highlights the pulse scheme that we prefer 
(Scheme A.1), along with a sequence that is used to cross-
validate the results (Scheme A.2). For completeness, we 
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also show a simple spin-echo variant, similar to a recently 
described experiment by Yu et al. (2022), to illustrate some 
of the challenges with recording 1Hα relaxation rates that 
must be overcome in the design of a robust pulse scheme. 
The initial element of the pulse sequence (A, in Fig. 1) is 
of interest to the relaxation experiment described here and 
in what follows we provide a brief overview of the mag-
netization pathway during this interval. Focusing on A.1, 
after the creation of longitudinal order ( 2I�

z
C�
z
 ) by the first 

INEPT element, where Ij and Cj are the proton and carbon 
spins that are one-bond coupled and j = α denotes either the 
1Hα or 13Cα spin, the water magnetization is dephased by 
application of a pulsed field gradient to minimize the radia-
tion damping field (gradient g4); failure to do so can lead 
to apparent 1Hα PREs that are significantly elevated, by 1.5 
to 2-fold, in applications involving CAPRIN1 (see below). 
Subsequently, the 1Hα spins are locked along their respective 

effective fields in a manner that is efficiently achieved for 
the narrow 1Hα chemical shift range for IDPs (~ 4–4.8 ppm 
for CAPRIN1) using a 1 kHz 1H continuous-wave (cw) field 
applied in the center of the 1Hα spectrum (along the x-axis; 
a 1H 180y pulse is included in the center of the cw element), 
and the magnetization subsequently restored to the z-axis 
prior to magnetization transfers to 13CO(t1) and 15N(t2) that 
are identical to those in a regular haCONHA experiment 
(Wong et al. 2020a).

Although the haCONHA approach circumvents issues 
with hydrogen exchange, other problems are introduced 
when using aliphatic proton spins, such as 1Hα, and Scheme 
A.1 of Fig. 1 is our best attempt to minimize these. For 
example, 1Hα protons are three-bond scalar coupled to 1HN 
and 1Hβ spins and evolution of 1Hα transverse magnetization 
from 3JHα-Hβ couplings is not as readily refocused as for 
3JHN-Hα couplings in the context of 1HN-based 

A

B

Fig. 3   Cross-relaxation has a minimal effect on the evolution of 
2I′

�

z
C�
z
 magnetization.  A (top) Schematic of the 3-spin {I, C, M}-

spin system used in the simulations; a pair of external protons are 
included, in addition, contributing only to the auto-relaxation of 
proton spins I and M. (bottom) The evolution of anti-phase 1Hα mag-
netization ( 2I′�

z
C�
z
 ) spin-locked along its effective field (Eq.  (14)) in 

the presence (navy, line) and absence (pink, dotted line) of cross-
relaxation. The chemical shift of spin M (1Hβ mimic) was set to 2 
(left), 3 (center), and 4 (right) ppm, respectively. A 1 kHz spin-lock 
field is applied, centered at 4.35  ppm. Note that the distinctly non-

exponential profile for the case where the 1Hβ resonance frequency is 
4 ppm is due to homonuclear J-evolution that is not suppressed using 
the 1H spin-lock field.  B Relaxation of longitudinal order ( 2I�

z
C�
z
 ) 

was quantified using the scheme (left) that replaces A in Fig. 1. The 
delay τ1 and gradient strengths of g3 and g5 are indicated in the 
Fig. 1 legend. Water magnetization is either initially in the transverse 
plane (Scheme  1) or dephased at the start of the relaxation interval 
(Scheme 2) during Trelax. The relaxation rates of 2I�

z
C�
z
 two-spin order 

(CAPRIN1, 25 °C, 600 MHz) are shown as a function of 1Hα chemi-
cal shift (right)
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measurements, for example. In a simple spin-echo scheme 
that might be considered for measurement of transverse 
relaxation rates (Fig. 1, Scheme A.3, starting from I�

x∕y
 ) this 

evolution would proceed for the complete Trelax period, mod-
ulating the signal, and complicating extraction of accurate 
transverse relaxation rates. To illustrate this, as well as our 
solution to the problem (Scheme A.1, starting from 2I�

x
C�
z
 ), 

in more detail, we consider the “generic” spin system shown 
in Fig. 2A, top left, and simulate the evolution of transverse 
1Hα x-magnetization during the spin-echo element shown in 
Fig. 2A, top right. We consider the case where 1Hα spins are 
locked along their respective effective fields or when the spin 
lock field is removed. In the simulations shown in Fig. 2A 
(bottom) ωHα = 4.4 ppm and ωHβ is varied from 2 to 3.5 ppm 
with the orange (navy) profiles obtained with (without) the 
1 kHz spin-lock field centered at 4.35 ppm. Notably, for 
ωHβ = 2 ppm (bottom left) or 3.0 ppm (bottom center) the 
orange profiles are flat, as if the scalar couplings involving 
1Hα were “turned off” (3JHα,NH = 7, 3JHα,Hβ1 = 5.5, and 
3JHα,Hβ2 = 7.5 Hz are used in the simulation). In contrast, if 
the spin-lock field is omitted the navy curves result, clearly 
showing modulation from 1Hα–1Hβ and 1Hα–1HHN scalar 
couplings. When the chemical shifts of the 1Hβ protons are 
increased to 3.5 ppm (bottom right), closer to the position 
of the spin lock, a slight amount of modulation (approxi-
mately 1–2%—between 1 and 0.98) is obtained for the spin 
lock case.

It is noteworthy that in IDPs all 1Hβ protons resonate 
upfield of 3.5 ppm with the exception of those from Ser 
and Thr (Wishart et al. 1995), so that flat profiles (i.e., 
unmodulated by homonuclear scalar couplings) would be 
expected for all non-Ser/Thr 1Hα protons using a spin lock 
scheme to measure relaxation. As might be expected, the 
presence of more spins on the side-chain does not affect the 
trajectory of x-magnetization, as shown in the simulation 
for a Met spin system containing 6 spins, where random 
coil chemical shifts are taken from Wishart et al. (1995) 
(Fig. 2B, left). The proximity of 1Hα and 1Hβ chemical shifts 
in Ser (ωHα = 4.47 ppm, ωHβ = {3.87, 3.89} ppm) leads to 
significant modulation that cannot be suppressed by the 1H 
spin-lock field (Fig. 2B, center), with a similar situation 
occurring for Thr (Fig. 2B, right). For both of these residues 
homonuclear J-modulation simply decreases magnetization 
intensity; there is no net transfer of observable magnetiza-
tion between spins, as there would be in a Hartmann-Hahn 
scheme where in-phase 1Hα/β… magnetization is initially 
created. This is because the initial magnetization for each 
proton is anti-phase with respect to its attached carbon and 
13C–1H scalar coupled evolution is largely suppressed by 

the 1H cw field. Thus, while the transfer, 2I�
x
C�
z

JH�H�

→ 2I�
x
C�
z
 , 

does occur, the transfer, 2I�
x
C�
z

JH�H�

→ 2I�
x
C�
z
 , does not, with 

only antiphase magnetization of the form 2I�
x
C�
z
 ultimately 

detected. This ensures that the measured 1Hα relaxation rates 
are not ‘contaminated’ by contributions from relaxation of 
other scalar coupled protons in the case of Ser and Thr. For 
1Hα spins from these residues, however, the scalar coupled 
evolution, 2I�

x
C�
z

JH�H�

→ 2I�
x
C�
z
 , prohibits extraction of accurate 

relaxation rates from exponential fits of the “decay” curves. 
In contrast, as J-coupled modulation of non-Ser/Thr 1Hα 
protons does not occur, there is no “leakage” of magnetiza-
tion from 2I�

x
C�
z
 to 2I�

x
C�
z
 in these cases, and exponential 

decays are expected. Finally, for Gly, the 1Hα spins become 
very strongly coupled in the presence of the cw field (i.e., 
essentially equivalent), and the sum of 1Hα magnetization 
does not evolve under scalar coupling in this limiting case 
since 

[
I�1
x

+ I�2
x
, I

�1
⋅ I

�2
]
= 0 , where [] denotes the com-

mutator operation. Thus, flat profiles are observed for the 
1Hα spins of Gly in simulations even when scalar coupled 
evolution is considered. Of course, even in the case where 
the two 1Hα Gly spins are resolved (typically with chemical 
shift differences of 0.05–0.1 ppm), the observed relaxation 
rates would represent the average of the values from the 
two Hα positions, which are expected to be very similar, as 
magnetization is very efficiently transferred between the 1Hα 
spins during the application of the spin-lock. It is worth not-
ing that complications from J-modulation can be prevalent 
in non-1H homonuclear spin systems and similar strategies 
involving band-selective locking schemes have been used 
previously to measure 13Cα relaxation rates in uniformly 
13C-labeled proteins (Yamazaki et al. 1994).

Figure 2 illustrates the importance of the 1H cw spin-
lock field in the suppression of homonuclear J-modulation of 
magnetization for the majority of the spin systems in IDPs. 
Spin-locking of magnetization can, however, potentially lead 
to non-exponential relaxation from magnetization transfer 
mediated by dipolar cross-relaxation (spin diffusion). As 
described above, in the context of magnetization transfer 
through scalar couplings, the dipolar transfer can also be 
minimized by recording relaxation rates of 1Hα magnetiza-
tion that is anti-phase with respect to the one-bond coupled 
13C (Sekhar et al. 2016). Thus, in the case of a pair of dipolar 
coupled 1H spins, I and M, relaxation proceeds as

where ρI' and σI'M' are auto- and cross-relaxation rates of the 
aligned magnetization in the tilted spin-lock frame that is 
germane for spin-locked magnetization considered in our 
experiments (the primes in I ′

z
 and M′

z
 denote ‘tilted’ magneti-

zation). As hetero-spins M and CI are not scalar coupled (CI 
is one bond coupled to proton spin I) there is no longitudinal 
order of the form 2M′

z
CI
z
 initially so that the decay of the 

magnetization of interest is essentially single exponential, 

(16)
d2I

�

z
CI
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dt
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with magnetization transfer between 2M′

z
CI
z
 and 2I ′

z
CI
z
 effec-

tively suppressed over the relatively short range of relaxa-
tion times considered (Trelax_max = 30 ms in our experiments). 
This is in contrast to what would be expected if the relaxa-
tion of in-phase 1H magnetization was quantified. Figure 3A 
illustrates the evolution of anti-phase I spin magnetization 
during the relaxation element for a 3-spin {I, C, M}-spin 
system, with the chemical shift of the M spin varied between 
2 and 4 ppm; cross-relaxation introduces a negligible effect, 
using an effective I–M distance of 1.9 Å for relaxation times 
extending to 120 ms and for a rotational correlation time of 
2 ns, appropriate for the experimental system considered 
here (Kim et al. 2021). Note that the evolution of magnetiza-
tion is decidedly non-exponential when ωHβ = 4 ppm, due to 
I–M scalar coupled evolution.

The importance of “water” management, even in 1Hα-
based experiments is illustrated in Fig. 3B. Here, by means 
of example, we consider the relaxation of longitudinal 
order, 2I�

z
C�
z
 , during an interval, Trelax, where a gradient that 

dephases water is applied either at the start or the end of 
the relaxation period. If the water transverse magnetization 
is not dephased initially, its precession induces an oscillat-
ing current in the receiver coil, and hence, a magnetic field, 
oscillating at the frequency of precession. This induced field 
rotates water magnetization and other spins resonating close 
to the water line back to their equilibrium (Krishnan and 
Murali 2013). Thus, the effect of the induced magnetic field 
would be expected to be more pronounced for 1Hα spins 
whose chemical shifts are closer to the water line. With 
this in mind, the measured longitudinal order relaxation 
rate for each 1Hα–13Cα spin pair in CAPRIN1 (described 
below) is plotted as a function of 1Hα chemical shift, show-
ing a clear elevation in rates for spins resonating near the 
water line when water is not dephased. As the water is ini-
tially in the transverse plane in this experiment, as it would 
be at point a in Schemes A.1–A.3 of Fig. 1 the radiation-
damping field from bulk water can be considerable, unless 
water magnetization is initially dephased (Saturation of the 
water line significantly attenuates sensitivity of the experi-
ment and is not a good option). Similar experiments, starting 
from anti-phase 1Hα magnetization ( 2I�

x
C�
z
 ), show a 1.5- to 

2-fold increase in measured 1Hα PRE rates, in the absence 
of dephasing. Water magnetization is therefore dephased in 
schemes A.1 and A.2 immediately after the initial INEPT 
transfer and prior to the Trelax period.

Experimental validation

The RNA binding protein CAPRIN1 has been shown to 
play an essential role in the formation of neuronal and 
stress granules in cells (Kedersha et al. 2016; Nakayama 
et al. 2017), and the C-terminal low complexity disordered 

region comprising residues 607–709, and referred to in 
what follows as CAPRIN1, phase separates in vitro (Kim 
et al. 2019). Because of the small size of CAPRIN1 it has 
been used as a model system in our laboratory, both for 
the development of NMR methodology for characterizing 
IDPs in condensates, and, importantly, to understand the 
interactions that give rise to phase separation in the first 
place (Kim et al. 2021). CAPRIN1 has a pI of 11.5 and 
a charge of + 13 under the conditions of our experiments 
and the resulting unfavorable electrostatic interactions 
between proximal molecules must be screened before phase 
separation can occur. This can be achieved typically by the 
addition of negatively charged molecules or by adding salt 
(Kim et al. 2019; Wong et al. 2020a). Here we have used 
low salt buffers (25 mM MES-NaOH (pH 5.5) or 25 mM 
HEPES–NaOH (pH 7.4)) to ensure that the protein solu-
tions studied are fully mixed (i.e., not phase separated), 
and, therefore, CAPRIN1 is expected to have a positive 
electrostatic potential, as established below. Figure 4A, top, 
shows the 13CO–15N projection of a 3D haCONHA dataset 
recorded with the pulse sequence of Fig. 1 (Scheme A.1), 
Trelax = 0 ms, along with the magnetization transfer pathway 
that gives rise to the spectrum (bottom). Three peaks are 
highlighted, along with the residues from where the cor-
relations originate; analysis of these peaks in a series of 
3D datasets recorded as a function of Trelax, generates the 
decay curves in Fig. 4B. As our goal is to calculate the near 
surface electrostatic potential (Yu et al. 2021) of CAPRIN1, 
we have measured 1Hα transverse relaxation rates in the pres-
ence or absence (Diamagnetic, purple) of 5 mM negative 
(Carboxy-PROXYL, red) or neutral (Carbamoyl-PROXYL, 
grey) solvent spin labels. A comparison of intensity profiles 
using Schemes A.3 and A.1 (titled Scheme A.3 and Scheme 
A.1 in the figure) clearly shows the effects of scalar coupling 
on the evolution of 1Hα magnetization when recording data 
with the spin-echo scheme (Fig. 1A.3) relative to the spin-
lock element of Fig. 1A.1. Notably, J-modulation gives rise 
to decidedly non-exponential decays of 1Hα magnetization 
(left column, Scheme A.3), as is particularly apparent in the 
profile of G609, where the magnetization becomes nega-
tive for Trelax values in excess of approximately 20 ms. The 
effective intensity decays are slower when using the spin-
lock, including for T705, despite the fact that scalar coupling 
effects are not completely eliminated for 1Hα spins of this 
residue when magnetization is locked (see above).

Recognizing the deleterious effects of homonuclear sca-
lar couplings to the measurement of 1Hα relaxation rates 
using spin-echo type experiments (Fig. 1A.3), Iwahara and 
co-workers determined PRE rates by simultaneous analysis 
of the ratios of signal intensities in paramagnetic and dia-
magnetic samples in spectra recorded with identical Trelax 
values (Iwahara et al. 2004; Clore and Iwahara 2009; Yu 
et al. 2022). In this way the scalar coupling terms cancel, 
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and ratios are sensitive only to the PRE. However, the signal 
intensities themselves are reduced by the modulation mak-
ing this approach more error prone than if coupled evolution 
was not present in the first place. For example, the large 
germinal 1Hα coupling in Gly residues results in low peak 
intensities for Trelax values greater than approximately 15 ms 
(Fig. 4B); in our applications Trelax values between 16 and 
25 ms had to be omitted when data were recorded using a 
spin-echo based sequence (Fig. 1A.3). For other residue-
types (non-Gly residues), the reduction in intensities of 
resonances is less severe, on average a ratio of 0.46 ± 0.12 
for Trelax = 30 ms is obtained, when comparing the schemes 
shown in Fig. 1A.1 and A.3. Also shown in Fig. 4B are 
exponential fits of intensity ratios, Ipara.,i(Trelax)/Idia.(Trelax), 
of cross-peaks from spectra recorded with the spin-echo 
and spin-lock schemes. Notably, while the PRE rates from 
Schemes A.1 and A.3 are somewhat different, the ratio of 
rates recorded with different combinations of solvent spin 
labels tends to be similar (with the exception of a number of 
Gly residues, for which the germinal coupling is particularly 
detrimental for the spin-echo scheme).

The simulations and experimental data presented in 
Figs. 2, 3, and 4 strongly suggest that the spin-lock scheme 
of Fig. 1A.1 suppresses J-modulation (except for 1Hα from 

Ser and Thr) without introducing magnetization transfer via 
the ROE. A more rigorous evaluation of the robustness of 
the experiment can be made through comparison to an analo-
gous yet distinct approach, illustrated in Fig. 1A.2 where the 
relaxation of transverse (not spin-locked) 1Hα magnetization 
is measured. In this pulse scheme suppression of 1Hα-1H sca-
lar coupled evolution is achieved for the majority of amino 
acids through the use of band-selective 1H adiabatic decou-
pling (Kupce and Wagner 1996) that is carefully adjusted 
so as to minimally perturb the 1Hα signals of interest, while 
decoupling 1Hβ and 1HN proton spins. Since adiabatic 
decoupling of 1Hβ is applied over a chemical shift range 
of ~ 2.2 ± 1.1 ppm, Ser, and Thr, whose 1Hβ chemical shifts 
do not fall within this region (and overlap with those of 1Hα) 
are not effectively decoupled. In addition, the large germinal 
(two-bond) 1Hα1–1Hα2 coupling (~ −15 Hz) for Gly results in 
a severe modulation of the 1Hα signals for this residue, as is 
observed in experiments recorded with Fig. 1A.3. Figure 5 
compares carboxy-PROXYL PRE values obtained via the 
schemes of Fig. 1A.1 and A.2 omitting Gly residues, and 
the agreement is excellent (RMSD = 0.69 s−1 for Γ2,− , sig-
nificantly better than when PRE rates are compared between 
spin-echo (Fig. 1A.3) and spin lock (Fig. 1A.1) schemes 
(RMSD = 2.21 s−1). Thus, accurate PRE values are obtained 

A B

Carbamoyl

Carbamoyl

Carbamoyl

Carbamoyl

Carbamoyl

Carbamoyl

Fig. 4   Suppression of J-modulation via spin locking of 1Hα magneti-
zation.  A 13CO-15N projection of a 3D haCONHA dataset recorded 
with the pulse sequence of Fig. 1A.1, Trelax = 0 ms. Several peaks are 
highlighted from which the 1Hα relaxation profiles shown are derived. 
The magnetization transfer pathway is indicated at the bottom.  B 
Decay curves of selected residues measured in the presence or 
absence (Diamagnetic, purple) of 5 mM negative (carboxy-PROXYL, 
red) or neutral (carbamoyl-PROXYL, grey) solvent spin labels. Solid 

lines connect the experimental points in the panels titled Scheme A.3 
and Scheme A.1. Ratio of corresponding peak intensities in spectra 
recorded with the sequences of either Fig.  1A.3 (left) or Fig.  1A.1 
(right) and either with, Ipara.i(Trelax) , or without, Idia.(Trelax) , solvent 
spin-labels, along with exponential fits of the data and extracted PRE 
rates, are shown. All measurements were performed on a 300  μM 
U-13C, 15N CAPRIN1 sample at pH 5.5, 25 °C and 14.0 Tesla
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by using the 1H cw spin-lock field in Fig. 1A.1, without del-
eterious effects from residual J-evolution or cross-relaxation. 
As the 1Hα signals from Gly residues are not modulated by 
geminal scalar couplings using the sequence of Fig. 1A.1, 
we prefer it, and in what follows all results were obtained 
using this experiment.

Figure 6A shows 15N–1HN TROSY-HSQC spectra of 
CAPRIN1 recorded at pH 5.5 (left) and at pH 7.4 (center); 
all other experimental conditions are identical. The degra-
dation of spectral quality with pH is obvious. However, the 
13CO–15N projection of the 3D haCONHA dataset (non-
TROSY acquisition in the 15N dimension) recorded on the 
pH 7.4 sample is of high quality (right), so that electrostatic 
potentials (ϕENS) can be obtained at neutral pH values using 
relaxation rates measured with the sequence of Fig. 1A.1. 
A comparison of ϕENS values measured at pH 5.5 using 
haCONHA and 15N-1HN TROSY pulse schemes is presented 
in Fig. 6B, C (left), with good agreement between the two 

Fig. 5   Correlation plot of carboxy-PROXYL 1Hα PRE rates using 
schemes A.1 and A.2 of Fig. 1. The carboxy-PROXYL 1Hα PRE rates 
(Γ2,− = paramagnetic  −  diamagnetic) measured using two schemes 
of Fig.  1 are plotted. The PRE rates plotted along the y-axis were 
measured using a 1H adiabatic decoupling approach (A.2) and those 
plotted along the x-axis were quantified via a spin-lock element 
(A.1). PRE measurements were performed on a 300 μM U-13C, 15N 
CAPRIN1 sample at pH 5.5, 25  °C and 14.0 Tesla, with and with-
out 5 mM 3-carboxy-PROXYL. R2 is the squared Pearson correlation 
coefficient

Fig. 6   Validation of the meth-
odology. A 15N-1HN TROSY-
HSQC spectra of CAPRIN1 
recorded at pH 5.5 (left) and at 
pH 7.4 (center) with all other 
experimental conditions identi-
cal (25 °C, 23.5 T), along with 
a 13CO-15N projection of the 3D 
haCONHA dataset (right, pH 
7.4, 14.0 T) B, C comparison 
of ϕENS values measured at 
pH 5.5 using haCONHA and 
15N-1HN TROSY pulse schemes 
(left) and between ϕENS values 
measured at pH 5.5 and pH 7.4 
using the haCONHA experi-
ment (right)

A

B

C
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methods. A strong correlation between ϕENS values meas-
ured at pH 5.5 and pH 7.4 is also found (Fig. 6B, C, right), 
as expected, since CAPRIN1 does not contain His residues. 
Slightly higher errors in the haCONHA based ϕENS measure-
ments at pH 7.4 are noted compared to those at pH 5.5. This 
reflects the fact that solvent exchange is close to two orders 
of magnitude more rapid at the higher pH so that the amide 
protons are more effectively saturated through exchange with 
water (that is saturated using this pulse scheme). In turn, 
this leads to saturation transfer to the 1Hα protons via spin-
diffusion, decreasing the initial 1Hα polarization and hence 
the resulting signal intensities in 3D datasets.

Concluding remarks

Herein we have described a robust method for the measure-
ment of backbone 1Hα relaxation rates in IDPs, a first step 
for obtaining near surface electrostatic potentials of IDPs at 
neutral pH values. The experiment avoids 1HN magnetiza-
tion, leading to high quality IDP spectra even when recorded 
at high pH where solvent exchange can often be a limiting 
factor. A number of issues associated with the measure-
ment of 1Hα relaxation in fully protonated protein systems 
are discussed and solutions presented so that robust rates 
can be obtained. Notably, the use of a band-selective spin-
lock significantly suppresses homonuclear scalar coupling 
modulation for all 1Hα protons, except those from Ser and 
Thr, improving the accuracy of measured PRE values, since 
signal decay is attenuated only by relaxation. The excellent 
agreement between PRE rates measured using 1H spin-lock 
and 1H adiabatic decoupling schemes, the close correlation 
between ϕENS values measured on CAPRIN1 at pH 5.5 using 
1HN- and 1Hα-based experiments, where amide exchange is 
not limiting, and the good agreement for CAPRIN1 ϕENS 
calculated from experiments on samples at pH 5.5 and 7.4 
(where exchange is severe), provides strong confidence in 
the developed methodology. During the completion of this 
study we became aware of related work by Yu et al (2022) 
where 1Hα transverse relaxation rates were used to establish 
the surface potential of ubiquitin using 2D (HCACO)NH-
based experiments. This approach is most clearly appropri-
ate for studies of folded proteins where solvent exchange is 
not limiting, although it seems likely that here, too, there 
would be considerable benefit with spin-locking of 1Hα mag-
netization during the relaxation measurement. This work sets 
the stage for the measurement of electrostatic potentials in 
CAPRIN1 condensates, in order to establish the role of elec-
trostatics in phase separation.
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